Anonymity and Pseudonymity

COMP 522

Crowds Crowd Web Servers 3 5 1 Paths in a crowd. Picture by M.Reiter and A. Rubin

Anonymity, further approaches

M.Reiter, A. Rubin, 1998, Crowds: anonymity for Web Transactions

- Based on the idea "blending into a crowd", that is hiding one's actions within the actions of many others
- To execute a web transaction a user first joins a "crowd" of other users;
- Then the user's request to a web server is passed to a random member of the crowd:
- That member can either submit the request to the server, or forward it to another randomly chosen member of the crowd and so on.

COMP 522

Privacy protection by the crowd

- When the request submitted to the end server, it is submitted by a random member of a crowd, so identity of an initiator is hidden ("in the crowd") from an external observer
- Members of the crowd cannot identify initiator as well, they "just passing requests"

COMP 522

Crowds vs anonymizers and mixes

- Unlike an anonymizer crowds provide no single point, where an attacker can compromise anonymity of all users
- Crowds does not provide anonymity against a global adversary able to oversee all communications. In contrast, mix-networks protect anonymity in that case.
- Crowds admit very efficient implementations in comparison with mixes: no encryption/decryption operations, no inflation of message lengths.

COMP 522

DC-networks

- To send a message M (sequence of bits), a node, say A, broadcasts the value (M +2 KAB+2 KAC), i.e. superposition of the message and all keys of A, here +2 stands for bitwise addition modulo 2 (or XOR operation)
- All other nodes broadcast superpositions of all their keys. So, B broadcasts (KAB+KBC) and C broadcasts (KAC+KBC)
- All nodes then superpose all received messages and get (M+2KAB+2KAC+2KAB+2KBC+2KAC+2KBC) = M (the initial message !!!)

COMP 522

DC-networks

D.Chaum, 1988: **D**ining **C**ryptographer networks

• At the preliminary stage between some pairs of nodes (at the picture between all) secret keys (sequences of bits) are exchanged

COMP 522

COMP 522

DC-network

Anonymity by DC-networks

- DC-networks provide for sender anonymity because an adversary is unable to decide whether the packets he may observe contain a message or not;
- DC-networks can be used in combination with other mechanisms, such as mix-networks to enhance anonymity
- A major drawback is that DC-Networks require the preliminary stage exchanging the secret keys between participants
- · Every round of communication requires a new set of keys
- Every node needs to participate every time a message is broadcasted => high load on the nodes => impractical in large networks

COMP 522

Unlinkable anonymity

- Highest degree of anonymity (of communications, or transactions) is unlinkable anonymity
- Communications (transactions) provide unlinkable anonymity if
 - they do not reveal any information about identity of participants, and
 - There is no way to establish that a participant is the same participant that performed some other transaction
- · Example: cash transactions

Broadcast and receiver anonymity

- Broadcast itself is a way to protect anonymity of a receiver: sender just broadcasts a message to some group of users, including intended receiver;
- Of course, as such it does not protect the content of communications:
- Better way: a sender broadcasts a message, encrypted in a way that only intended receiver can decrypt;
- It can be done by public-key encryption (we will discuss later on in the course)

COMP 522

Linkable anonymity

- · Unlinkable anonymity, often is too strong requirement
- · Linkable anonymity appears when
 - No information about true identity of participants is revealed, but
 - Different transactions made by the same participant can be linked together
- Example: transactions by pre-paid telephone cards
- Transactions with linkable anonymity protect user privacy and at the same time allow to collect some (aggregate) information about users

COMP 522

Linkable anonymity and pseudonymity

- When transactions or communications provide with linkable anonymity, then we are dealing essentially with pseudonyms, which are
 - identifiers, linked to the true names (identities). In the phone card example, the number on the card can serve as the pseudonym of the card holder
- If the link between true names and identifiers (pseudonyms) is persistent and unforgeable, that is only a particular user (group of users) can use a pseudonym, we call such a property persistent pseudonymity, or just pseudonymity

COMP 522

Communications using pseudonymes

Email pseudonym server nym.alias.net

- Allows anyone create an email pseudonym (alias, nym) without revealing his identity
- Nym appears as an ordinary email address to the rest of the world
- Nym.alias.net uses the anonymous remailer network as a mix-net, i.e. it forwards mail received for a nym through a sequence of independent remailers

COMP 522

Pseudonymity and Reputation

- Pseudonymity can protect privacy (no true identity revealed) and at the same time
- Allows to use pseudonyms to build (digital) reputation of an user (participant)
- Example:
 - in online auction user using particular pseudonym can be known as the trustable partner, who sells goods of good quality, etc
- · Persistence of pseudonyms is important here

COMP 522

Persistence

- Persistence of pseudonymity in nym.alias.net is achieved by using public key encryption
- Server can ensure the user is the same if it is able to decrypt the user signature by the key it has on file for the user
- A pair of suitable keys is established during the registration procedure
- We will return to the details later in the course

COMP 522