
Detecting unknots via equational reasoning, I:
Exploration

Andrew Fish1 and Alexei Lisitsa2

1 School of Computing, Engineering and Mathematics, University of Brighton
2 Department of Computer Science, The University of Liverpool

Andrew.fish@brighton.ac.uk, A.Lisitsa@csc.liv.ac.uk

Abstract. We explore the application of automated reasoning tech-
niques to unknot detection, a classical problem of computational topol-
ogy. We adopt a two-pronged experimental approach, using a theorem
prover to try to establish a positive result (i.e. that a knot is the unknot),
whilst simultaneously using a model finder to try to establish a negative
result (i.e. that the knot is not the unknot). The theorem proving ap-
proach utilises equational reasoning, whilst the model finder searches
for a minimal size counter-model. We present and compare experimen-
tal data using the involutary quandle of the knot, as well as comparing
with alternative approaches, highlighting instances of interest. Further-
more, we present theoretical connections of the minimal countermodels
obtained with existing knot invariants, for all prime knots of up to 10
crossings: this may be useful for developing advanced search strategies.

1 Introduction

One of the most well-known and intriguing problems in computational topology
is unknot detection (UKD): given a knot, which is a closed loop without self-
intersection embedded in 3-dimensional Euclidean space R3, is it possible to
deform R3 continuously such that the knot is transformed into a trivial unknotted
circle without passing through itself? Knots are often studied as a diagrammatic
system: (i) a knot diagram is a regular projection of the knot onto a plane,
having a finite number of singularities, all of which are transverse double points
annotated to indicate which strand is passing over and which is passing under
at each crossing; (ii) knots are equivalent if and only if their diagrams differ by
a finite sequence of Reidemesiter moves [20]. Figure 1 shows the diagrams of two
knots with a negative a) and positive b) answers to the unknottedness question.
All work and results stated assume that knots are tame (a common technical
requirement which is generally imposed on knots, ruling out pathological cases
such as permitting infinite sequences of trefoil-like knot pieces of decreasing sizes
glued together within a knot); see [26] for more details, for instance.

The unknot detection (or unknot recognition) problem has attracted a lot of
attention, but some of the fundamental questions about it still remain open. In
particular, it is unknown whether it is possible to recognize unknots in PTIME.
It is known, though, that the problem lies in NP ∩ coNP [12, 16] (membership

Fig. 1. a) non-trivial trefoil knot and b) trivial knot or unknot

in coNP is subject to generalized Riemann hypothesis holding). There has been
a slow but steady development of algorithms for unknot detection and their
experimental evaluation. An early algorithm, presented by W. Haken in his proof
of the decidability of UKD [11], was developed for theoretical purposes and was
deemed to be impractical due to being too complex to attempt to implement
it. Since then various algorithms for unknot detection have been proposed with
various degrees of implementability and efficiency [7]. The algorithms based on
monotone simplifications [7] provide practically fast recognition of unknots but
do not necessarily yield a decision procedure. The algorithms based on normal
surface theory, implemented in Regina system [3], provide efficient recognition
of non-trivial knots. In particular, it is reported that every non-trivial knot with
crossing number ≤ 12 is recognized as such by the procedure from [3] in under 5
minutes. There still are efficiency problems with the existing algorithms, which in
the worst case are exponential, and it appears that establishing that a particular
diagram with a few hundred (or even dozens of) crossings represents a non-trivial
knot may well be out of reach of the available procedures. Thus the exploration
of alternative procedures for unknot detection is an interesting and well-justified
task.

In this paper we explore the following route to the efficient practical algo-
rithms for unknot detection. The unknotedness property can be faithfully charac-
terized by the properties of algebraic invariants associated with knot projections.
We attempt to establish the properties of concrete invariants by using methods
and procedures developed in the automated reasoning area. A key observation
is that the task of unknot detection can be reduced to the task of (dis)proving a
first-order formulae, and for this there are efficient generic automated procedures,
notwithstanding the fact that generally first-order-order validity is undecidable.

2 Involutory quandles and Unknot detection

We provide relevant background definitions; for example, see [9, 15, 19, 6] for
further details.

Definition 1. Let Q be a set equipped with a binary operation . (product) such
that the following hold:

Q1 x . x = x for all x ∈ Q.
Q2 For all x, y ∈ Q, there is a unique z ∈ Q such that x = z . y.
Q3 For all x, y, z ∈ Q, we have (x . y) . z = (x . z) . (y . z).

Then Q is called a quandle 1. If Q additionally satisfies the identity Q2′

below, then Q is called an involutory quandle:

Q2’ (x . y) . y = x for all x, y ∈ Q.

Remark 1. For a quandle Q, the unique element z ∈ Q from axiom 2 is denoted
by z = x.−1 y, and .−1 also defines a quandle structure. However, for involutory
quandles, we have . = .−1, which can be taken as an equivalent definition of
involutory; axiom 2’ supersedes axiom 2.

Definition 2. A function φ : Q1 → Q2 between quandles is a homomorphism if
(a . b)φ = (a)φ . (b)φ for any a, b ∈ Q1.

Given a knot K (i.e. a circle embedded in R3), a well known invariant is the
knot group of K, which is π(K) = π1(R3 − K), the fundamental group of the
complement of the knot K in R3 (i.e. homotopy class of paths in the complement
of the knot). One can compute a presentation of the knot group, in terms of gen-
erators and relations, from a knot diagram, following Wirtinger (e.g. see [26] for
details). An analogous construction can be used to construct a presentation of
the quandle of the knot, Q(K) (e.g. see [19] for details). One acquires the pre-
sentation of the knot group from the presentation of the quandle by considering
the generators and relations in the group, and imposing the quandle operation
to be conjugation. Since we focus primarily on involutory quandles, we provide
the simplified construction for these below; a method for generalising to (not in-
volutory) quandles is to assign an orientation to the knot, which yields a sign for
each crossing according to the relative orientations of the involved curves, and
then the relation assigned to the crossing is either a.b = c or a.−1 b = c accord-
ing to the sign of the crossing. Interpreting the quandle relation . as conjugation
in the knot group (i.e. a . b = b1ab), and .−1 as its inverse (i.e. a .−1 b = bab1)
returns the well known Wirtinger presentation of the knot group.

Definition 3. A presentation of the involutory knot quandle, IQ(K) for a knot
K, is obtained from a diagram D for K as follows: a solid arc of the diagram is
an unbroken line of the diagram with an undercrossings at each of its ends; every
solid arc of the diagram is labelled by an unique label; all labels of D form the
set GD of generators; to every crossing of D one associates a relation, as shown
in Figure 2; denote the set of all such relations by RD. Then the presentation
〈GD | RD〉 defines the involutory quandle IQ(D). This is a quotient of the free
involutory quandle modulo the equational theory defined by RD.

The three equalities Q1, Q2′ and Q3 form an equational theory of involutory
quandles, which we denote by Eiq.

1 A rack [9] is such a Q that satisfies Q2 and Q3 but not necessarily Q1.

Fig. 2. (a) Left: A labelled crossing and its corresponding relation a.b = c; here a and
c are the labels of the underarcs at this crossing, whilst b is the label of the overarc,
and we often identify the arcs with their labels to simplify language in discussions.

(b) Right: The trefoil knot diagram, with solid arcs a,b,c.

Example 1. Let Dtr be the diagram of the trefoil knot K shown in Figure 2.
The involutory quandle of Dtr is defined by the presentation IQ(Dtr) = 〈a, b, c |
a.b = c, b.c = a, c.a = b〉. For comparison, the quandle Q(Dtr) has presentation
Q(Dtr) = 〈a, b, c | a .−1 b = c, b .−1 c = a, c .−1 a = b〉, whilst the knot group
has presentation G(K) = 〈a, b, c | bab−1 = c, cbc−1 = a, aca−1 = b〉. In detail,
consider the crossing of the diagram in which a and c are underarcs, whilst b is
an overarc; i.e. match up the crossing locally with (a rotated version of) Figure
2(a). This gives rise to either the relation a .−1 b = c or a . b = c, depending on
whether the sign of the crossing is negative or positive, respectively. One method
for reading off the sign is to choose an orientation of the knot (i.e. pick a direction
on the knot, often depicted using an arrowhead) and if a is the approaching
underarc, following orientation (one can traversing a knot, or part of a knot,
intuitively being a walk along the around the knot along the arcs; then following
orientation means that one is traversing the arc in the direction determined by
the orientation), check if one turns left or right, respectively, when passing onto
the overarc b, following orientation. In this case, all three crossings are negative;
a mirror of the diagram (i.e. exchanging all over and under crossings) would
have the above presentation for knot quandle, but with .−1 replaced by ., and
similarly for the knot group.

2.1 Overview of the approach

The importance of involutory quandles, in the context of unknot detection, relies
on the following properties [14, 15, 19]:

– Involutory quandle is a knot invariant, i.e. it does not depend on the choice
of diagram;
[Theorem 15.1 of [14] shows that the quandle Q(K) of knot K is an invariant
of the knot type of K, and the involutory quandle IQ(K) is a homomorphic
image of Q(K)]

– Involutory quandle IQ(K) of a knot K is trivial (i.e. it contains a single
element e with e ∗ e = e) if and only if K is the unknot.
[Theorem 5.2.5 of [19]].

K Q(K) π(K)

DK 〈Q(K)〉DK 〈π(K)〉DK

〈IQ(K)〉DK

X C

Fig. 3. An overview of the objects related to the unknot detection programme.

These properties suggest the following approach to unknot detection. Given
a knot diagram, one can try to decide whether its associated involutory quan-
dle is trivial. Notice that an involutory quandle of a knot can be an infinite
set [19]. Not much progress has been made towards the development of specific
decision procedures for such a problem, apart of that presented in the thesis
of S. Winker [19]; the diagrammatic method presented there, together with de-
tails and explanations, allows one to construct the involutory quandles for many
knot diagrams, and in our opinion, is a very good starting point for develop-
ing algorithmic procedures directly dealing with the involutary quandles. In this
paper, we take an alternative route and propose, instead of applying a specific
involutory quandles decision procedure, to tackle unknot detection as follows:

– Given a knot diagram, compute its involutary quandle presentation;

– Convert the task of involutary quandle triviality detection into the task of
proving a first-order equational formula;

– Concurrently, apply generic automated reasoning tools for first-order equa-
tional logic to tackle the (dis)proving task

Thus, we concurrently search for a proof and for a model to disprove the
formula. After explaining the details, we apply these methods in parallel, present
empirical data for many knots, and compare the countermodels with existing
knot invariants that are encoded in the smallest homomorphic image of the
involutory quandle of the knot. As an overview of the related objects, Figure 3
shows the following. In the top row, we have the knot K, fundamental quandle of
the knot, Q(K), and the projection from Q(K) onto the fundamental group π(K)
obtained by forgetting information (peripheral subgroup and meridian, discussed
later), and essentially setting the quandle operation to be conjunction. In the
second row, the diagram DK of the knot K, together with presentations of Q(K)
and π(K) obtained from those diagrams. The third row shows the involutory
quandle presentation IQ(K) obtained by identifying the quandle operation with
its inverse. Here C is a finite involutory quandle that is the homomorphic image
of the involutory quandle of the knot. Then, if X is any quandle, one can ask if
imposing the involutory condition on X can yield such a C.

2.2 Unknot detection by equational reasoning

Given a knot diagram D, with n arcs, consider its involutory quandle repre-
sentation IQ(D) = 〈GD | RD〉 with GD = {a1, . . . , an}. Denote by Eiq(D) an
equational theory of IQ(D), i.e. Eiq(D) = Eiq∪RD. It is known that the axioms
of (involutory) quandles are algebraic counterparts of the Reidemeister moves
(see further discussion of that in Section 6).

Proposition 1. A knot diagram D is a diagram of the unknot if and only if
Eiq(D) ` ∧i=1...n−1(ai = ai+1), where ` denotes derivability in the equational
logic (or, equivalently in the first-order logic with equality).

Proof. (Sketch) D is a diagram of unknot iff IQ(D) is a trivial involutive quan-
dle [19]. The proposition “IQ(D) is a trivial involutory quandle iff Eiq(D) `
∧i=1...n−1(ai = ai+1)” is an easy consequence of the soundness and complete-
ness of equational logic (Birkhoff Theorem) [4]. See also Lemma 4.2.7 p. 30 of
[19]. The case of first-order logic with equality follows from the conservativity of
first-order logic with equality over equational logic for equational theories. ut

Now, if Eiq(D) ` ∧i=1...n−1(ai = ai+1) holds true, then this fact can be estab-
lished by a proof of the formula Eiq(D) → ∧i=1...n−1(ai = ai+1) by a complete
automated theorem prover for first-order logic with equality, of which there are
many around, see e.g. [2]. By a complete theorem prover we mean an automated
procedure which, given a valid formula, terminates with a proof of the formula.

For an introduction to automated theorem proving see e.g. [10]. In order to
show that Eiq(D) ` ∧i=1...n−1(ai = ai+1) does not hold, it suffices to disprove
Eiq(D) → ∧i=1...n−1(ai = ai+1). We propose to do this by the application of
generic finite model finding procedures [5, 18] to find a finite countermodel to the
formula, or equivalently a finite model for Eiq(D)∧¬∧i=1...n−1 (ai = ai+1). So,
the unknot detection procedure P which we propose here consists of the parallel
composition of

– automated proving Eiq(D)→ ∧i=1...n−1(ai = ai+1), and
– automated disproving Eiq(D) → ∧i=1...n−1(ai = ai+1) by a finite model

finder.

It is obvious that the parallel composition above provides with at least a
semi-decision algorithm for unknotedeness. If D is a diagram of the unknot then
the termination of the theorem proving is guaranteed by the completeness of
a theorem prover. On the other hand, if D is a diagram of a non-trivial knot
then the termination can be guaranteed only if a finite countermodel exists. In
general, in the first-order logic, there are formulae which can only be refuted on
infinite countermodels, so for arbitrary formulae the termination of the auto-
mated disproving cannot be guaranteed.

For the specific type of formulae Eiq(D) → ∧i=1...n−1(ai = ai+1) we con-
jecture that they have finite countermodel property, that is if there exists a

countermodel for a formula of this form at all, then there is a finite counter-
model too. Since a countermodel for Eiq(D)→ ∧i=1...n−1(ai = ai+1) is a model
for Eiq(D) ∧ ¬ ∧i=1...n−1 (ai = ai+1), it follows that: 1) such a countermodel
is a homomorphic image of the involutory quandle IQ(D) of D, by satisfac-
tion of Eiq(D); and 2) it is non-trivial involutory quandle, by satisfaction of
¬ ∧i=1...n−1 (ai = ai+1).

Thus the required finite countermodel property, for the programme to yield
a decision procedure, is equivalent to the property of the involutory quandles of
knots being residually finite, as formulated in the following conjecture.

Conjecture 1 (Involutory quandles are finitely residual). For any knot diagram
D, if IQ(D) is not trivial (i.e. consists of more than 1 element), then there is a
finite non-trivial involutory quandle Q which is a homomorphic image of IQ(D).

We remark on the conjecture. Following Hempel and Thurston, we know that
knot groups are residually finite. Thurston [21] states that “It is a standard fact
that a finitely generated subgroup of GLn(Q) (the general linear group with
coefficients in the rationals) is residually finite. Using this, one easily sees that
the fundamental group of any geometric 3-manifold is residually finite. After a
certain amount of fussing, one can assemble finite quotients of the fundamental
groups of pieces of a geometric decomposition of a 3-manifold to obtain finite
quotients of the fundamental group of the entire manifold.”. The question of
whether the proof can be lifted to quandles is another matter. Since the knot
quandle contains the same information as a group system which is the triple
(G,P,m) consisting of the knot group G, a peripheral subgroup P , and a merid-
ian m in P , one would require that the group system (see e.g. [19, 14]) is somehow
preserved, and the finite homomorphic image has an induced quandle structure.

Theorem 1. The unknot detection procedure, P , given above, is a decision pro-
cedure if conjecture 1 holds and a semi-decision procedure otherwise.

In the next section we illustrate the practical applicability of the proposed
(semi)-decision procedure to various instances of unknot detection problem. In
the experiments, we use an automated theorem prover Prover9 and a finite model
finder Mace4, both by W. McCune [18]. We present some examples of the results
of the approach on unknots with interesting properties.

3 Experiments: detecting unknots

Culprit Unknot is shown in Figure 4. This is an interesting unknot which, dur-
ing any untangling of it by Reidemeister moves, necessarily requires an increase in
the number of crossings. The formula of the form Eiq(D)→ ∧i=1...n−1(ai = ai+1)
for the culprit unknot diagram in the syntax of Prover9/Mace4 (with ∗ denoting
involutory quandle operation .) is presented to the right of the figure. Prover9
proves the formula in 0.03 seconds demonstrating thereby that culprit is indeed
the unknot. The entire proof can be found in [17].

Fig. 4. Culprit Unknot

Assumptions:

%Involutory quandle axioms

x * x = x.

(x * y) * y = x.

(x * z) * (y * z) = (x * y) * z.

%Culprit unknot

a1 = a9 * a7.

a3 = a1 * a2.

a2 = a3 * a4.

a5 = a2 * a10.

a6 = a5 * a4.

a7 = a6 * a1.

a8 = a7 * a4.

a10 = a8 * a9.

a4 = a10 * a3.

a9 = a4 * a8.

Goals:

(a1 = a2) & (a2 = a3) &

(a3 = a4) & (a4 = a5) &

(a5 = a6) & (a6 = a7) &

(a7 = a8) & (a8 = a9) &

(a9 = a10).

Haken’s Gordian unknot diagram has 141 crossings, and is the one of the
most well-known concrete, hard-to-detect, unknots; see Figure 3. Prover9 pro-
duces the proof of the formula of the form Eiq(D) → ∧i=1...n−1(ai = ai+1)
for this diagram in just under 15 seconds, demonstrating that indeed it is the
unknot. The input, and the proof produced by the prover, can be found in [17].

The only alternative approach capable of detecting unknotedness of Haken’s
Gordian Unknot in practice, that we are aware of, is Dynnikov’s algorithm based
on monotone simplifications [7, 8, 1].

We have experimented also with the detection of other well-known hard un-
knots, such as Goerlitz unknot, Thistlethwaite unknot, Friedman’s Twisted un-
knot. In all of these cases Prover9 was able to establish unknotedness in under
a second. See further details in [17]. This can be compared with the times “in
only a few seconds” required to detect unknotedness of these instances by the
Heegaard tool, reported by the author in [27].

4 Experiments: detecting non-trivial knots

We first provide an example of the output from the counter-model finder for a
non-trivial knot. Next, we present a table containing the time taken for each of
the prime knots in the knot tables, for up to 10 crossings. We will compare the
output sizes with the known invariant of knots, called the determinant of the
knot, later.

Trefoil (Figure 1 a) is the simplest non-trivial knot; the countermodel found is:

interpretation(3, [number=1, seconds=0], [

function(a1, [0]),

function(a2, [1]),

Fig. 5. Haken’s Gordian Unknot

function(a3, [2]),

function(*(_,_), [

0, 2, 1,

2, 1, 0,

1, 0, 2])

]).

The table of prime knots, the size of the minimal countermodel found, and
the time taken to find, is given in the Appendix.

Comparisons For the collection of prime non-trivial knots of up to 12 cross-
ings from [22], the system in [3], based on linear programming in conjunction
with normal surface theory, claims to massively improve on previous approaches,
claiming to solve all cases efficiently (in under 5 minutes). Their time-based data
is subsequent to highly optimised polynomial time pre-processing simplifications
and uses an encoding based on triangulations of the complement of the knot.
Bearing in mind the differences in encodings we have compared the performance
of the Regina unknot detection algorithm with our approach using Mace4 on the
knots with 10 crossings. For the five special cases 1083, 1091, 1092, 10117, 10119 for
which our approach does not terminate in a reasonable time, whilst Regina com-
pleted the work in under 3 minutes per knot. For remaining cases the average
time was 47s for Regina, and 1230s for our approach. In general our approach
demonstrates much higher discrepancy in timing data: it was very efficient for
the cases when small countermodels were found. For countermodels sizes up to
15-17 the detection time is under a second – that holds in more than 70% of
instances, where our approach outperforms Regina’s algorithm. In a few cases
with large countermodels (e.g 1088, 1094, 10115) it takes 40000-80000s to com-
plete the search. Further comparisons on the large sets of knots is a subject of
ongoing and future work.

5 Countermodels and knot invariants

Any countermodel found is a finite quandle, C, which is a homomorphic image
of IQ(K). Thus it a homomorphic image of Q(K) which factors through IQ(K).
Such finite quandles may be constructed via “involutising” quandles which are
homomorphic images of Q(K). The countermodel search process finds the small-
est such finite quandle C, and we see that these do not all arise via the same
known quandles. We present results which demonstrate that the majority, but
not all, of the small alternating knots (of size up to 10) arise as quotients of the
dihedral quandle. The question of how the other minimal size finite quandles
arise is still open, but this demonstrates that the methodology is particularly
interesting in that it is discovering the smallest size quandle invariant, over all
such invariants, for each case, as opposed to computing each invariant in turn,
as per the common approach using invariants.

Definition 4 (dihedral quandle). Let Rn be the set of reflections in the dihe-
dral group D2n of order 2n (which one can regard as the symmetry group of the
regular n-gon). Then Rn forms a quandle of order n, called the dihedral quandle
of order n.

Proposition 2. For any knot K, with determinant not equal to ±1, Rp is a fi-
nite non-trivial involutory quandle which is the image of the fundamental quandle
of the knot, where p is smallest prime divisor of the determinant of the knot.

Proof. For more details on racks and quandles, and this construction, see [9]. A
homomorphic image of the fundamental quandle of the knot K into Rn may be
given by colouring the arcs of any diagram of K with n colours 0, 1, . . . , n − 1
such that at each crossing if xa, xb, xc are the three colours assigned to the arcs
labelled a, b, c, with b the overarc, then xc ≡ 2xb − xa mod n. If n is prime,
then it is well known that these equations have a non-constant solution if and
only if n divides det(K) the determinant of K (obtainable as the evaluation of
the Alexander polynomial at t = −1, sometimes denoted ∆(−1)). In general, a
representation into any finite quandle can be interpreted as a suitable colour-
ing scheme for the diagram. Since the elements of the dihedral quandle are all
reflections, the quandle is involutory by definition.

The experimental computation, together with comparison of the determinant
of the knot gives us the following, where as usual, the numbering convention is
that generally adopted for prime knots in the knot tables; see [22] for example.

Proposition 3. Out of the 251 prime, alternating knots of up to 10 crossings,
from the knot tables, a smallest non-trivial involutory quandle which is a homo-
morphic image of the fundamental quandle of the knot is: of size 15 for 22 knots:
922, 925, 930, 936, 944, 945, 1046, 1047, 1049, 1070, 1072, 1073, 1079, 1080, 1093, 10102,
10124, 10126, 10127, 10148, 10149, 10153; of size 28 for 11 knots: 1050, 1051, 1052, 1053,
1054, 1055, 1057, 10131, 10135, 10150, 10151; of size 31 for 1 knot: 10115; of size 32
for 1 knot: 10118; of size 36 for 1 knot: 10110; of size equal to the smallest prime
divisor of the determinant of the knot for the remaining 213 knots.

Corollary 1. For 213 of the 251 prime, alternating knots of up to 10 cross-
ings, there is no smaller non-trivial involutory quandle which is a homomorphic
image of the fundamental quandle of the knot than the dihedral rack on p ele-
ments, where p is smallest prime divisor of the determinant of the knot. For the
remaining 38 knots, there is a smaller such non-trivial involutory quandle.

5.1 Discussion: Countermodels and Small Quandles

Winker [19] remarks that for a certain class of knots (technically, those which
are the closure of 4-strand braids), the involutory quandle IQ(K) is finite and
has order equal to the knot determinant |K| (or det(K)), citing [14], and that
since every prime knot of 7 or fewer crossings is 4-strand it has finite involu-
tory quandle. On the other hand, IQ(816) and IQ(935) are infinite, as are the
(k,m, n)-pretzel knots (knots obtainable by a construction involving a certain
process of k twists, m twists and n twists) when 1/k + 1/m + 1/n ≤ 1; knots
85 = K2,3,3 and 935 = K3,3,3 are examples of such pretzel knots. There does
not appear to be an existing complete classification of involutory quandles. We
observe that for any knot K which has a finite involutory quandle IQ(K), this
involutory quandle itself would be a countermodel, as would the projection onto
the quandle arising from each of the colouring numbers. Whilst we we may find
the homomophic image of the quandle with size the smallest prime divisor of
det(K), corresponding to the smallest colouring number, this does not, a priori,
rule out smaller homomorphic images of involutory quandles that arise in other
ways. Furthermore, there are some prime knots K with det(K) = ±1. The knots
10124 and 10153 are the only such prime alternating knots with up to 10 cross-
ings. For both of these knots we find a smallest homomorphic image of involu-
tory quandle of size 15. In [9], they observe that the representation in a reflection
rack, whose elements are the edges of a dodecahedron, can be used to distinguish
knots which have determinant ±1 and so have no non trivial representation to
Rn, giving 10124 an an example. Similarly, in [14], they present the knot 10124
with determinant 1, indicating that AbQ2(K) is trivial (this is the abelian, invo-
lutory quandle on K, where abelian means that (w.x).(y.z) = (w.y).(x.z)).
But the involutory quandle IQ(K) = Q2(K) is non-trivial and has order 30, and
may be faithfully represented on a sphere as the 30 midpoints of the edges of a
dodecahedron projected onto the sphere.

In [23], they use the Library for Automated Deduction Research in the en-
deavour of identifying isomorphism classes of small quandles, and they present
several families of quandles; as well as considering the dihedral quandle, they also
refer to linear quandles, the Alexander quandles, and transposition quandles.
These are candidate classes to consider in the identification of the countermod-
els. For instance, the transposition quandle, Tn, has size n(n−1)/2, and so these
are candidates to explain our countermodels arising at sizes 15, 28 and 36. The
identification and understanding of exactly which quandle families have small-
est homomorphic image is an intriguing open problem to be explored in future
work, with guidance from the countermodel finder approach adopted. Further-
more, Proposition 11.2 of [14] says that every involutory quandle is representable

as an involutory quandle with geodesics, and so the construction of the smallest
such involutory quandle with geodesics for a knot K will, in fact, correspond to
our search for minimal countermodel.

Winker [19] states that the involutory quandle of a knot or link is either finite
or “not too infinite”, and gives examples to show that knots can have different
knot groups but the same involutory quandle (e.g. the Figure of Eight knot and
the (5, 2) torus knot), and that the involutory quandle of a particular prime link
(the Borromean rings) is infinite.

6 Equational Reasoning and Untangling Unknots

Recall Proposition 1: a knot diagram D is a diagram of the unknot if and
only if Eiq(D) ` ∧i=1...n−1(ai = ai+1), where ` denotes derivability in the
equational logic (or, equivalently in the first-order logic with equality). We adopt
the abbreviation TRIV ≡ ∧i=1...n−1(ai = ai+1) for the generators a1, . . . , an.
Then the condition above will be rewritten as Eiq `?TRIV . The axioms of
involutory quandles can be seen as algebraic counterparts of the Reidemeister
moves:

1. x . x = x for all x ∈ Q (∼ RM1)
2. (x . y) . y = x for all x, y ∈ Q (∼ RM2)
3. (x . z) . (y . z) = (x . y) . z for all x, y, z ∈ Q (∼ RM3)

For I ⊆ {1, 2, 3}, denote by EI
iq an equational theory formed by the corre-

sponding subset of the axioms 1 − 3 given above. In particular E
{1,2,3}
iq = Eiq.

Reidemeister’s theorem [20] says that a diagram D is a diagram of an unknot if
and only if D can be transformed to a trivial diagram DU by a finite sequence of
Reidemeister moves. Denote by D →I D′ the fact that D can be transformed to
D′ using the Reidemeister moves drawn only from I. In this section we explore
possible connections between equational proofs and Reidemeister transforma-
tions. The following proposition expresses the fact that the equational proof can
simulate simplifications by Reidemeister moves.

Proposition 4. For any non-empty I ⊆ {1, 2, 3}, if D →I DU then EI
iq `

TRIV . Furthermore an equational proof can be constructively built by a simple
procedure from the untangling sequence of Reidemeister moves.

Proof. (Sketch) Consider the case of I = {1, 2, 3}. Assume that for a di-
agram D we have D →I DU . That is, there is a sequence of diagrams D =
D1, . . . , Di, . . . , Dn = DU such that every diagram in the sequence is obtained
from the previous one by a single application of a Reidemeister move. Let
IQ(D) = 〈GD | RD〉 be a presentation of the involutary quandle of D with
the set of generators GD and set of relators RD. Denote by T (D) the set of all
terms built upon the set of constants, identified with the generators GD, together
with the involutory quandle operation . as the only term construct. Denote by

A(Di) the set of solid arcs of the diagram Di. A labelling L of a diagram Di is
a mapping L : A(Di)→ T (D). Now we demonstrate the inductive construction
of a sequence of pairs (E(Di), Li), associating with each Di a set of equations
E(Di) and a labelling Li : A(Di)→ T (D) satisfying the following properties:

1. E(Di) ⊆ E(Di+1);
2. E(Di) ` E(Di+1);
3. Li is consistent w.r.t. involutory quandle labelling rules on solid arcs of
A(Di), meaning E(Di) ` Li(a) . Li(b) = Li(c) for all a, b, c ∈ A(Di) posi-
tioned as shown in Figure 2 (a);

4. If t ∈ T (D) is in Li(A(Di)) but not in Li+1(A(Di+1)), and |A(Di) |> 1 then
there exist an s in Li+1(A(Di+1)) and t = s in E(Di+1).

The intuition is that the equation set grows, adding statements of equality
which are derived from the axioms, according to the progress in the unknotting
sequence. The condition on the size of the arc set in Property 4 is required since
one can still apply RM moves to untangle a diagram which has only one arc,
but there is no more equational rewriting to perform.

Assume that the above four properties are satisfied. Then, in any untangling
sequence of diagrams the last diagram DU is a trivial diagram of the unknot.
Then DU has just one arc with a label τ , say. Let Dk be the last diagram in the
sequence which has this property of having just one arc with label τ . Then, by
Property 4, the label ρ of the last removed arc (in the diagram Dk−1 preceding
Dk in the sequence) is provably equal to τ , that is, E(Dk−1) ` (τ = ρ), and
(τ = ρ) ∈ E(Dk−1). Unwinding the process backwards (and formally applying
induction) we obtain that the labels of all of the removed arcs are provably
equal to each other, including all of the generators. Thus, the required n − 1
pairwise equalities of the n generators are derivable from E(DU), and the result
follows. The details of the construction of the sequence (E(Di), Li) can be found
in the Appendix of the extended version of this paper in [17]. For any I which is
a proper subset of {1, 2, 3} the proof follows the same route using the property
that the construction of (E(Di+1), Li+1) depends only on (E(Di), Li) and a type
of RM used to transform Di into Di+1.

The approach can be used to investigate which of the Reidemeister moves
are required in a proof of unknottedness.

Proposition 5. Culprit unknot (see above) needs all three Reidemeister moves
to untangle.

Proof For I = {2, 3}, {1, 3}, {1, 2} one can disprove EI
iq ` TRIV by finding

countermodels by Mace4 automatically of sizes 2,3,4, respectively.

An interesting question: is it possible to make a simulation in the opposite di-
rection, that is, to extract an untangling sequences of Reidemeister moves from
equational proofs? Although we don’t have a definite answer here, in some simple
cases one can indeed extract the moves from the proofs. We leave the develop-
ment of systematic Reidemester move extraction procedures for future work.

7 Conclusion

We presented the basis for a new method for unknot detection, based on parallel
application of theorem prover and (counter)-model finder. It appears interest-
ing, in that it has different abilities to existing approaches. In particular, the
countermodel finder is producing the smallest non-trivial homomorphic image
of the involutory quandle of the knot; thus it is, in some sense, finding the small-
est invariant which distinguishes it from the unknot. Furthermore, the approach
lends itself to new avenues of research, such as the exploration of the correla-
tions between the equational proofs provided by the theorem provers and the
corresponding sequences of labelled diagrams in an unknotting sequence. Thus,
whilst we have provided some interesting examples of unknot detection, explor-
ing the whole spectrum of unknots and the relative difficulty of their detection,
in comparison with other methodologies, will be an interesting avenue to explore.
Furthermore, developing any correspondences between quandle-labelled diagram
transformations and the unknotting proofs produced may provide interesting in-
sights, potentially leading to more advanced tailored reasoning strategies.

Another direction is to explore automated deduction approach using different
knot invariants such as knot groups and (non-involutory) quandles. In terms of
groups, unknotedness corresponds to commutativity deciding which can also be
reduced to the equational theorem (dis)proving. We have early indications that
using involutory quandles, as explored in this paper, might be more efficient than
using knot groups; for example, for a torus knot T3,5 disproving using involutory
quandles took less than a second and produced a countermodel of size 15, whilst
disproving commutativity of the group of T3,5 did not finish in 500 seconds and
no countermodels of size less than 120 were found.

References

1. M. Andreeva, I. Dynnikov, S. Koval, K. Polthier, I. Taimanov, Book Knot Sim-
plifier, http://www.javaview.de/services/knots/doc/description.html (ac-
cessed 14.03.2014)

2. The CADE ATP System Competition, The World Championship for Automated
Theorem Proving http://www.cs.miami.edu/~tptp/CASC/ (accessed 07.06.2013)

3. Benjamin A. Burton and Melih Olzen, A fast branching algorithm for unknot recog-
nizion with experimental polynomial-time behaviour arXiv:1211.1079 [math.GT],

4. G. Birkhoff. On the structure of abstract algebras, Proc. Cambridge Philos. Soc.,
31:433–454, 1935

5. R. Caferra, A. Leitsch, N. Peltier, Automated Model Building, Applied Logic Series,
31, Kluwer, 2004.

6. J Scott Carter. A survey of quandle ideas. arXiv:1002.4429 [math.GT].

7. I. A. Dynnikov, Recognition algorithms in knot theory, Uspekhi Mat. Nauk 58
(2003), no. 6(354), 45-92.

8. A. Dynnikov. Three-page link presentation and an untangling algorithm. Proc. of
the International Conference Low-Dimensional Topology and Combinatorial Group
Theory, Chelyabinsk, July, 31 - August 7, 1999; Kiev, 2000; pp. 112–130.

9. Fenn, R. and Rourke, C., Racks and Links in Codimension two. J. Knot Theory
Ramifications 01, 343 (1992).

10. J. Goubault-Larrecq and Ian Mackie, Proof Theory and Automated Deduction,
Applied Logic Series, 6, Kluwer, 2001

11. Wolfgang Haken, Theorie der Normalachen, Acta Math. 105 (1961), 245375.
12. Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger, The computational com-

plexity of knot and link problems, J. Assoc. Comput. Mach. 46 (1999), no. 2,
185211.

13. John Hempel, Residual finiteness for 3-manifolds, Combinatorial group theory and
topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press,
Princeton, NJ, 1987, pp. 379–396.

14. Joyce, D., A Classifying Invariant of Knots, the Knot Quandle, Journal of Pure
and Applied Algebra 23 (1982) 37-65.

15. Joyce, D., Simple Quandles, Journal of Algebra 79 (1982) pp. 307-318.
16. Greg Kuperberg, Knottedness is in NP, modulo GRH, Preprint, arXiv:1112.0845,

November 2011
17. Unknot detection by equational reasoning, www.csc.liv.ac.uk/~alexei/unknots/

(accessed 14.04.2014)
18. W. McCune Prover9 and Mace4 http://www.cs.unm.edu/~mccune/mace4/

19. Steven N. Winker, Quandles, Knot Invariants and the N-fold Branching Cover.
PhD Thesis, University of Illinois at Chicago (1984).

20. Kurt Reidemeister, Elementare Begründung der Knotentheorie, Abh. Math. Sem.
Univ. Hamburg 5 (1926), 24-32

21. W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic
geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357381.

22. Jae Choon Cha and Charles Livingston, KnotInfo: Table of knot invariants,
http://www. indiana.edu/ knotinfo, accessed January 2014.

23. Zhiwei Steven Wu. Computable Invariants for Quandles. Thesis, Bard College, New
York, 2012.

24. Steven D. Wallace. Homomorphic images of link quandles. MA thesis, Houston,
Texas, 2004.

25. Bella Manoim. Toward an Online Knowledgebase for Knots and Quandles.
Technical report, available at: http://asclab.org/asc/sites/default/files/docs/ On-
line%20database%20knots%20%26%20quandles.pdf

26. D. Rolfsen. Knots and Links. AMS Chelsea Publishing, 2004.
27. http://mathoverflow.net/questions/144158/what-is-the-state-of-the-art-for-

algorithmic-knot-simplification

Appendix

The table below shows the experimental data obtained so far for the knots in the
standard knot tables of at most 10 crossings. For each case, we present the size
of the minimal countermodel to unknottedness which is found, together with the
time taken to find this countermodel. In the majority of these cases the size of
the countermodel is the smallest prime divisor of the determinant of the knot.
In a few cases, the process was manually terminated after a certain time had
elapsed, as indicated.

Table 1. Experimental data for the time taken to find the minimal countermodels for
the knots in the standard knot tables of at most 10 crossings.

Knot 31 41 51 52 61 62 63 71 72 73 74 75 76 77 81 82

Size 3 5 5 7 3 11 13 7 11 13 3 17 19 3 13 17
T ime 0.0 0.01 0.01 0.0 0.0 0.01 0.01 0.01 0.03 0.03 0. 0 0.08 0.16 0.01 0.06 0.11

Knot 83 84 85 86 87 88 89 810 811 812 813 814 815 816 817 818

Size 17 19 3 23 23 5 5 3 3 29 29 31 3 5 37 3
T ime 0.12 0.17 0.01 0.41 0.47 0.01 0.01 0.01 0.01 1.31 2.11 2.06 0.01 0.01 37.66 0.03

Knot 819 820 821 91 92 93 94 95 96 97 98 99 910 911 912 913

Size 3 3 3 3 3 19 3 23 3 29 31 31 3 3 5 37
T ime 0.00 0.01 0.01 0.00 0.00 0.12 0.00 0.45 0.00 1.53 3.77 1.50 0.00 0.01 0.01 3.77

Knot 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

Size 37 3 3 3 41 41 41 43 15 3 3 15 47 7 3 3
T ime 4.28 0.00 0.01 0.00 5.97 12.0 122.73 20.83 0.11 0.00 0.00 0.11 13.20 0.00 0.03 0.00

Knot 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

Size 15 5 59 61 3 3 15 3 3 5 3 7 7 13 15 15
T ime 0.09 0.00 1498.44 670 0.00 0.00 0.11 0.03 0.05 0.01 0.01 0.01 0.01 0.06 0.08 0.08

Knot 946 947 948 949 101 102 103 104 105 106 107 108 109 1010 1011 1012

Size 3 3 3 5 17 23 5 3 3 37 43 29 3 3 43 47
T ime 0.03 0.01 0.03 0.05 0.09 0.72 0.03 0.01 0.03 8.38 16.94 22.52 0.01 0.01 554 21.50

Knot 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

Size 53 3 43 47 41 5 3 5 3 7 59 5 5 61 71 53
T ime 90.53 0.03 16.22 11.84 18.14 0.01 0.03 0.00 0.00 0.01 144.42 0.01 0.00 1000 153 73.41

Knot 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

Size 3 67 3 3 5 37 7 3 53 59 61 3 71 3 73 79
T ime 0.01 298.11 0.03 0.00 0.03 11.38 0.03 0.03 36.98 157.08 76.25 0.00 554.25 0.01 728.36 968

Knots 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

Size 89 15 15 7 15 28 28 28 28 28 28 5 28 5 3 5
T ime 2629.41 0.11 0.11 0.01 0.14 4.12 6.33 4.76 5.94 3.28 8.53 0.03 5.51 0.01 0.03 0.01

Knot 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

Size 3 3 3 3 3 3 3 3 3 15 7 15 15 3 3 3
T ime 0.01 0.01 0.03 0.01 0.03 0.01 0.01 0.01 0.01 0.09 0.00 0.12 0.09 0.03 0.01 0.00

Knots 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

Size 3 3 15 15 5 3 ≥ 42 3 3 5 3 101 3 7 ≥ 34 ≥ 62
T ime 0.03 0.01 0.12 0.14 0.00 0.01 ≥ 21170 0.00 0.00 0.00 0.03 63849 0.00 0.03 ≥ 20828 ≥ 62848

Knot 1093 1094 1095 1096 1097 1098 1099 10100 10101 10102 10103 10104 10105 10106 10107 10108

Size 15 71 7 3 3 3 3 5 5 15 3 7 7 3 3 3
T ime 0.62 40879.72 0.01 0.00 0.01 0.01 0.01 0.01 0.01 1.01 0.00 0.01 0.03 0.03 0.00 0.00

Knot 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126

Size 7 3 3 3 31 5 ≥ 37 32 ≥ 41 3 5 3 11 15 11 15
T ime 0.00 0.00 0.00 0.03 85098 0.01 ≥ 150410 28 ≥ 261100 0.00 0.00 0.03 0.12 0.08 0.03 0.11

Knot 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142

Size 15 11 5 17 28 5 19 23 28 3 5 5 3 3 3 3
T ime 0.11 0.03 0.01 0.28 6.5 0.03 0.62 1.50 3.80 0.03 0.00 0.03 0.01 0.03 0.03 0.01

Knots 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158

Size 3 3 3 3 3 15 15 28 28 11 15 13 5 5 7 3
T ime 0.00 0.01 0.01 0.01 0.00 0.12 0.11 6.72 6.36 0.06 0.12 0.08 0.00 0.01 0.03 0.01

Knot 10159 10160 10161 10162 10163 10164 10165

Size 3 3 5 5 3 3 3
T ime 0.01 0.03 0.01 0.03 0.03 0.01 0.01

.1 Proof of Unknotedness of Culprit Unknot
============================== prooftrans ============================

Prover9 (32) version Dec-2007, Dec 2007.

Process 2448 was started by Alexei on Alexei-PC,

Sun Jun 9 13:41:59 2013

The command was "/cygdrive/c/Program Files (x86)/Prover9-Mace4/bin-win32/prover9".

============================== end of head ===========================

============================== end of input ==========================

============================== PROOF =================================

% -------- Comments from original proof --------

% Proof 1 at 0.03 (+ 0.03) seconds.

% Length of proof is 145.

% Level of proof is 22.

% Maximum clause weight is 27.

% Given clauses 56.

1 a1 = a2 & a2 = a3 & a3 = a4 & a4 = a5 & a5 = a6 & a6 = a7 & a7 = a8 & a8 = a9 & a9 = a10 # label(non_clause) # label(goal). [goal].

3 x * x = x. [assumption].

4 (x * y) * y = x. [assumption].

5 (x * y) * (z * y) = (x * z) * y. [assumption].

6 a1 = a9 * a7. [assumption].

7 a9 * a7 = a1. [copy(6),flip(a)].

8 a3 = a1 * a2. [assumption].

9 a1 * a2 = a3. [copy(8),flip(a)].

10 a2 = a3 * a4. [assumption].

11 a3 * a4 = a2. [copy(10),flip(a)].

12 a5 = a2 * a10. [assumption].

13 a2 * a10 = a5. [copy(12),flip(a)].

14 a6 = a5 * a4. [assumption].

15 a5 * a4 = a6. [copy(14),flip(a)].

16 a7 = a6 * a1. [assumption].

17 a6 * a1 = a7. [copy(16),flip(a)].

18 a8 = a7 * a4. [assumption].

19 a7 * a4 = a8. [copy(18),flip(a)].

20 a10 = a8 * a9. [assumption].

21 a8 * a9 = a10. [copy(20),flip(a)].

22 a4 = a10 * a3. [assumption].

23 a10 * a3 = a4. [copy(22),flip(a)].

24 a9 = a4 * a8. [assumption].

25 a4 * a8 = a9. [copy(24),flip(a)].

26 a2 != a1 | a2 != a3 | a4 != a3 | a5 != a4 | a6 != a5 | a6 != a7 | a8 != a7 | a8 != a9 | a10 != a9. [deny(1)].

27 a2 != a1 | a3 != a2 | a3 != a4 | a5 != a4 | a6 != a5 | a6 != a7 | a8 != a7 | a9 != a8 | a9 != a10. [copy(26),flip(b),flip(c),flip(h),flip(i)].

29 (x * y) * x = x * (y * x). [para(3(a,1),5(a,1,1)),flip(a)].

30 ((x * y) * z) * y = x * (z * y). [para(4(a,1),5(a,1,1)),flip(a)].

31 (x * (y * z)) * z = (x * z) * y. [para(4(a,1),5(a,1,2)),flip(a)].

32 ((x * y) * z) * (u * (y * z)) = ((x * z) * u) * (y * z). [para(5(a,1),5(a,1,1))].

33 (x * (y * z)) * ((u * y) * z) = (x * (u * z)) * (y * z). [para(5(a,1),5(a,1,2))].

34 a1 * a7 = a9. [para(7(a,1),4(a,1,1))].

35 (a9 * x) * a7 = a1 * (x * a7). [para(7(a,1),5(a,1,1)),flip(a)].

36 (x * a9) * a7 = (x * a7) * a1. [para(7(a,1),5(a,1,2)),flip(a)].

37 a3 * a2 = a1. [para(9(a,1),4(a,1,1))].

39 (x * a2) * a3 = (x * a1) * a2. [para(9(a,1),5(a,1,2))].

40 a2 * a4 = a3. [para(11(a,1),4(a,1,1))].

41 (a3 * x) * a4 = a2 * (x * a4). [para(11(a,1),5(a,1,1)),flip(a)].

42 (x * a3) * a4 = (x * a4) * a2. [para(11(a,1),5(a,1,2)),flip(a)].

46 a6 * a4 = a5. [para(15(a,1),4(a,1,1))].

48 (x * a5) * a4 = (x * a4) * a6. [para(15(a,1),5(a,1,2)),flip(a)].

49 a7 * a1 = a6. [para(17(a,1),4(a,1,1))].

52 a8 * a4 = a7. [para(19(a,1),4(a,1,1))].

55 a10 * a9 = a8. [para(21(a,1),4(a,1,1))].

57 (x * a9) * a10 = (x * a8) * a9. [para(21(a,1),5(a,1,2))].

58 a4 * a3 = a10. [para(23(a,1),4(a,1,1))].

60 (x * a10) * a3 = (x * a4) * a2. [para(23(a,1),5(a,1,2)),rewrite([42(4)]),flip(a)].

61 a9 * a8 = a4. [para(25(a,1),4(a,1,1))].

63 (x * a8) * a9 = (x * a4) * a8. [para(25(a,1),5(a,1,2))].

64 (x * a9) * a10 = (x * a4) * a8. [back_rewrite(57),rewrite([63(8)])].

69 a9 * (a7 * a9) = a1 * a9. [para(7(a,1),29(a,1,1)),flip(a)].

71 a3 * a10 = a2 * a3. [para(11(a,1),29(a,1,1)),rewrite([58(7)]),flip(a)].

72 a10 * a4 = a4 * a2. [para(11(a,1),29(a,2,2)),rewrite([58(3)])].

73 a2 * (a10 * a2) = a5 * a2. [para(13(a,1),29(a,1,1)),flip(a)].

77 a10 * a8 = a7. [para(21(a,1),29(a,1,1)),rewrite([61(7),52(6)])].

78 a9 * a10 = a4 * a9. [para(21(a,1),29(a,2,2)),rewrite([61(3)]),flip(a)].

79 a10 * (a2 * a3) = a4 * a10. [para(23(a,1),29(a,1,1)),rewrite([71(7)]),flip(a)].

80 a9 * a4 = a4 * a7. [para(25(a,1),29(a,1,1)),rewrite([52(7)])].

84 (x * a7) * a9 = (x * a1) * a7. [para(34(a,1),5(a,1,2))].

89 a3 * (a2 * a3) = a1 * a3. [para(37(a,1),29(a,1,1)),flip(a)].

92 a2 * (a4 * a2) = a1. [para(40(a,1),29(a,1,1)),rewrite([37(3)]),flip(a)].

104 ((x * a9) * a4) * a8 = x * a10. [para(21(a,1),30(a,2,2)),rewrite([63(6)])].

114 (x * a7) * a1 = (x * a1) * a6. [para(49(a,1),5(a,1,2)),flip(a)].

115 (x * a9) * a7 = (x * a1) * a6. [back_rewrite(36),rewrite([114(8)])].

116 (x * a8) * a4 = (x * a4) * a7. [para(52(a,1),5(a,1,2)),flip(a)].

117 (x * a9) * a8 = (x * a10) * a9. [para(55(a,1),5(a,1,2))].

118 a10 * (a4 * a9) = a8 * a10. [para(55(a,1),29(a,1,1)),rewrite([78(7)]),flip(a)].

121 (x * a3) * a10 = (x * a4) * a3. [para(23(a,1),31(a,1,1,2)),flip(a)].

122 (x * a10) * a9 = (x * a4) * a7. [para(25(a,1),31(a,1,1,2)),rewrite([117(4),116(8)])].

128 a10 * (a8 * a10) = a7 * a10. [para(77(a,1),29(a,1,1)),flip(a)].

146 ((x * a4) * a8) * (y * a10) = ((x * a9) * y) * a10. [para(21(a,1),32(a,1,2,2)),rewrite([63(4),21(13)])].

155 ((x * a1) * a7) * (y * a9) = ((x * a7) * y) * a9. [para(34(a,1),32(a,1,2,2)),rewrite([34(13)])].

167 ((x * a4) * a3) * (y * a10) = ((x * a3) * y) * a10. [para(58(a,1),32(a,1,2,2)),rewrite([58(13)])].

176 (a2 * a3) * (x * a10) = (a3 * x) * a10. [para(71(a,1),5(a,1,1))].

177 (x * a10) * (a2 * a3) = (x * a4) * a3. [para(71(a,1),5(a,1,2)),rewrite([121(10)])].

178 ((a2 * a3) * x) * a10 = a3 * (x * a10). [para(71(a,1),30(a,1,1,1))].

180 (x * (a2 * a3)) * a10 = (x * a4) * a2. [para(71(a,1),31(a,1,1,2)),rewrite([60(10)])].

191 (x * a10) * (a4 * a9) = (x * a4) * a8. [para(78(a,1),5(a,1,2)),rewrite([64(10)])].

192 ((a4 * a9) * x) * a10 = a9 * (x * a10). [para(78(a,1),30(a,1,1,1))].

194 (x * (a4 * a9)) * a10 = (x * a4) * a7. [para(78(a,1),31(a,1,1,2)),rewrite([122(10)])].

217 (x * a10) * ((y * a4) * a8) = (x * (y * a9)) * a10. [para(21(a,1),33(a,1,1,2)),rewrite([63(6),21(13)])].

241 (x * a10) * ((y * a4) * a3) = (x * (y * a3)) * a10. [para(58(a,1),33(a,1,1,2)),rewrite([58(13)])].

288 a1 * (a4 * a2) = a2. [para(92(a,1),4(a,1,1))].

291 (a4 * a2) * a1 = a4 * (a4 * a2). [para(92(a,1),29(a,2,2)),rewrite([4(5)]),flip(a)].

297 ((x * a4) * a2) * a1 = x * (a4 * a2). [para(92(a,1),32(a,1,2)),rewrite([4(10)])].

300 a1 * (a4 * (a4 * a2)) = a2 * a1. [para(288(a,1),29(a,1,1)),rewrite([291(9)]),flip(a)].

310 (a4 * a1) * a6 = a1 * (a10 * a7). [para(78(a,1),35(a,1,1)),rewrite([115(5)])].

311 a1 * (a4 * a7) = a4. [para(80(a,1),35(a,1,1)),rewrite([4(5)]),flip(a)].

314 a4 * (a4 * a7) = a1. [para(311(a,1),4(a,1,1))].

315 (a1 * x) * (a4 * a7) = a4 * (x * (a4 * a7)). [para(311(a,1),5(a,1,1)),flip(a)].

318 a4 * ((a4 * a2) * a7) = a9. [para(311(a,1),29(a,2,2)),rewrite([114(5),310(5),315(9),5(8),72(4),29(12),19(11),25(10)])].

326 a1 * a4 = a4 * a9. [para(314(a,1),29(a,1,1)),rewrite([29(9),19(8),25(7)])].

336 (a4 * a9) * a1 = a1 * (a4 * a1). [para(326(a,1),29(a,1,1))].

338 (x * (a4 * a9)) * a4 = (x * a4) * a1. [para(326(a,1),31(a,1,1,2))].

345 a7 * (a7 * a9) = a6 * a9. [para(69(a,1),29(a,2,2)),rewrite([4(5),5(12),49(8)])].

350 ((x * a1) * a6) * a9 = x * (a7 * a9). [para(69(a,1),32(a,1,2)),rewrite([84(4),155(8),114(4),4(10)])].

372 (a10 * a5) * a2 = a10 * (a10 * a2). [para(73(a,1),29(a,2,2)),rewrite([4(5),5(12)]),flip(a)].

376 ((x * a10) * a5) * a2 = x * (a10 * a2). [para(73(a,1),32(a,1,2)),rewrite([5(8),4(10)])].

417 (x * (a2 * a3)) * (a4 * a10) = (x * a4) * a3. [para(79(a,1),5(a,1,2)),rewrite([177(14)])].

418 a1 * a3 = a5. [para(79(a,1),29(a,2,2)),rewrite([121(5),40(3),3(3),89(5),176(10),11(6),13(6)])].

420 ((x * a4) * a2) * (a2 * a3) = x * (a4 * a10). [para(79(a,1),30(a,2,2)),rewrite([180(6)])].

421 (a4 * a1) * a2 = a4 * a10. [para(79(a,1),30(a,2)),rewrite([23(3),39(5)])].

429 a3 * (a2 * a3) = a5. [back_rewrite(89),rewrite([418(8)])].

455 a2 * a3 = a4 * a9. [para(37(a,1),41(a,1,1)),rewrite([326(3),40(7)]),flip(a)].

461 a3 * (a4 * a9) = a5. [back_rewrite(429),rewrite([455(4)])].

468 ((x * a4) * a2) * (a4 * a9) = x * (a4 * a10). [back_rewrite(420),rewrite([455(7)])].

470 (x * (a4 * a9)) * (a4 * a10) = (x * a4) * a3. [back_rewrite(417),rewrite([455(3)])].

480 (x * a4) * a7 = (x * a4) * a2. [back_rewrite(180),rewrite([455(3),194(6)])].

482 a9 * (x * a10) = a3 * (x * a10). [back_rewrite(178),rewrite([455(3),192(6)])].

483 (x * a4) * a8 = (x * a4) * a3. [back_rewrite(177),rewrite([455(5),191(6)])].

485 a8 * a10 = a4 * a10. [back_rewrite(79),rewrite([455(4),118(5)])].

497 (x * (a4 * a9)) * a10 = (x * a4) * a2. [back_rewrite(194),rewrite([480(10)])].

503 ((a4 * a9) * x) * a10 = a3 * (x * a10). [back_rewrite(192),rewrite([482(10)])].

506 (x * (y * a9)) * a10 = (x * (y * a3)) * a10. [back_rewrite(217),rewrite([483(6),241(7)]),flip(a)].

507 (x * a10) * (a4 * a9) = (x * a4) * a3. [back_rewrite(191),rewrite([483(10)])].

509 ((x * a9) * y) * a10 = ((x * a3) * y) * a10. [back_rewrite(146),rewrite([483(4),167(7)]),flip(a)].

510 ((x * a9) * a4) * a3 = x * a10. [back_rewrite(104),rewrite([483(6)])].

515 a10 * (a4 * a10) = a7 * a10. [back_rewrite(128),rewrite([485(4)])].

516 a10 * (a4 * a9) = a4 * a10. [back_rewrite(118),rewrite([485(8)])].

517 (x * a4) * a2 = x. [back_rewrite(497),rewrite([506(6),58(3),4(4)]),flip(a)].

518 a3 * (x * a10) = a10 * (x * a10). [back_rewrite(503),rewrite([509(6),58(3),29(4)]),flip(a)].

529 x * (a4 * a9) = x * (a4 * a10). [back_rewrite(468),rewrite([517(4)])].

531 x * (a4 * a2) = x * a1. [back_rewrite(297),rewrite([517(4)]),flip(a)].

537 a7 * a10 = a4 * a10. [back_rewrite(516),rewrite([529(5),515(5)])].

538 (x * a4) * a3 = (x * a4) * a10. [back_rewrite(507),rewrite([529(6),5(6)]),flip(a)].

544 (x * a4) * a10 = x. [back_rewrite(470),rewrite([529(4),4(8),538(4)]),flip(a)].

547 a4 * a10 = a5. [back_rewrite(461),rewrite([529(5),518(5),515(5),537(3)])].

550 (x * a4) * a6 = (x * a4) * a1. [back_rewrite(338),rewrite([529(4),547(3),48(4)])].

554 a1 * (a4 * a1) = a2 * a1. [back_rewrite(300),rewrite([531(6)])].

558 a2 = a1. [back_rewrite(288),rewrite([531(5),3(3)]),flip(a)].

569 x * a9 = x * a10. [back_rewrite(510),rewrite([538(6),544(6)])].

591 a5 = a4. [back_rewrite(421),rewrite([558(4),4(5),547(4)]),flip(a)].

592 (x * a4) * a1 = x. [back_rewrite(48),rewrite([591(1),4(4),550(4)]),flip(a)].

593 a4 * a1 = a1. [back_rewrite(336),rewrite([569(3),547(3),591(1),554(8),558(4),3(6)])].

617 x * (a10 * a1) = x * a10. [back_rewrite(376),rewrite([591(3),558(5),592(6),558(4)]),flip(a)].

618 a10 = a1. [back_rewrite(372),rewrite([591(2),72(3),558(2),593(3),558(2),3(3),558(4),617(6),3(4)]),flip(a)].

629 a9 = a1. [back_rewrite(318),rewrite([558(3),593(4),34(4),569(3),618(2),593(3)]),flip(a)].

648 a3 = a1. [back_rewrite(40),rewrite([558(1),326(3),629(2),593(3)]),flip(a)].

649 a1 != a4 | a6 != a4 | a6 != a7 | a8 != a7 | a8 != a1. [back_rewrite(27),rewrite([558(1),648(4),558(5),648(7),591(10),591(14),629(22),629(25),618(26)]),flip(h),xx(a),xx(b),xx(d),xx(i)].

650 a1 = a4. [back_rewrite(13),rewrite([558(1),618(2),3(3),591(2)])].

653 x * a8 = x * a4. [back_rewrite(350),rewrite([650(1),550(4),650(3),4(4),629(1),650(1),629(4),650(4),19(5)]),flip(a)].

654 a8 = a4. [back_rewrite(345),rewrite([629(3),650(3),19(4),653(3),19(3),629(3),650(3),46(4),591(2)])].

681 a6 = a4. [back_rewrite(15),rewrite([591(1),3(3)]),flip(a)].

687 a7 = a4. [back_rewrite(77),rewrite([618(1),650(1),654(2),3(3)]),flip(a)].

688 $F. [back_rewrite(649),rewrite([650(1),681(4),681(7),687(8),654(10),687(11),654(13),650(14)]),xx(a),xx(b),xx(c),xx(d),xx(e)].

============================== end of proof ==========================

.2 To the proof of Proposition 4

We explain now how to construct a sequence (E(Di), Li).

– For the initial diagram D = D1 we set E(D) = RD and L1 assigns to every
arc the corresponding generator from GD;

– If Di+1 is obtained from Di by an application of RM↓1 (the Reidemeister rule
of type I, decreasing the number of crossings), as shown in Figure 6, then
we set E(Di+1) = E(Di) ∪ {τ = ρ}. The labelling function Li is updated to
Li+1 as shown in the figure (remaining the same outside the picture);

Fig. 6. RM↓
1

– If Di+1 is obtained from Di by an application of RM↑1 (the Reidemeister
rule of type I, increasing the number of crossings) as shown in Figure 7, then
a new arc labelled by ρ is introduced; E(Di+1) = E(Di) ∪ {τ = ρ}. The
labelling function Li is updated to Li+1 as shown in the figure (remaining
the same outside the picture);

Fig. 7. RM↑
1

– If Di+1 is obtained from Di by an application of RM↑2 (the Reidemeister rule
of type II, increasing the number of crossings) as shown in Figure 8, then
two new arcs labelled by θ and ρ′ are introduced; E(Di+1) = E(Di) ∪ {θ =
ρ . τ, ρ′ = θ . τ}. The labelling function Li is updated to Li+1 as shown in
the figure (remaining the same outside the picture);

Fig. 8. RM↑
2

– If Di+1 is obtained from Di by an application of RM↓2 (Reidemeister rule
of type II decreasing the number of crossings) as shown in Figure 9, then
E(Di+1) = E(Di) ∪ {ρ = θ}. The labelling function Li is updated to Li+1

as shown in the figure (remaining the same outside the picture);

Fig. 9. RM↓
2

– If Di+1 is obtained from Di by an application of RM3 (Reidemeister rule
of type III) as shown in Figure 10, then E(Di+1) = E(Di) ∪ {(ρ . τ) . θ =
(ρ . θ) . (τ . θ)}. The labelling function Li is updated to Li+1 as shown in
the figure (remaining the same outside the picture).

Fig. 10. RM3

The required four properties can be checked by straightforward inspection.
� �

