
Lecturer: Sebastian Coope 

Ashton Building, Room G.18 

E-mail: coopes@liverpool.ac.uk  
 

COMP 201 web-page: 
http://www.csc.liv.ac.uk/~coopes/comp201 

 

Lecture 5 – Software Requirements 
 

1 COMP201 - Software Engineering 



Software Requirements  
Descriptions and specifications of a system   

Last time: 

 Introduce the concepts of user and system requirements 

 

 Described functional / non-functional requirements 

 

 

 To explain two techniques for describing system requirements 

 

 To explain how software requirements may be organised in a 

requirements document 

2 COMP201 - Software Engineering 

This lecture: 



System Requirements 

System Requirements are more detailed 
specifications of user requirements: 

 They serve as a basis for designing the system; 

may be used as part of the system contract; 

may be expressed using system models (will be 
discussed more later). 

3 COMP201 - Software Engineering 



Requirements and Design 

 In principle, requirements should state what the system 
should do and the design should describe how it does this 

 In practice, requirements and design are inseparable 

 A system architecture may be designed to structure the 
requirements 

 The system may inter-operate with other systems that 
generate design requirements 

 The use of a specific design may be a domain 
requirement 

4 COMP201 - Software Engineering 



User Requirements  System Requirements Software 
requirements Software Design 

 The system will have a secure login (User requirement) 

 The system must provide a secure mechanism to allow a user to 
deal with the issue of forgotten or compromised passwords (User 
requirements) 

 The system will have a secure login which complies with NIST 
Special Publication 800-63-1  authentication guidelines (System 
Requirement) 

 The system must use only allow 3 attempts and login before locking 
the user out (Software Requirement) 

 There is a class called Login, which will generically handle the login 
attempt regardless of the underlying authentication mechanism? 

 
COMP201 - Software Engineering 5 



Problems with Natural Language Specification 

 Ambiguity 

 The readers and writers of the requirement must interpret the 
same words in the same way. Natural Language is ambiguous so 
this is very difficult 

 Over-flexibility 

 The same thing may be said in a number of different ways in the 
specification which can lead to confusion 

 Lack of modularisation 

 Natural language structures are inadequate to structure system 
requirements 

6 COMP201 - Software Engineering 



An Example 

 Imagine the following example of an informal specification 
from a critical system [1] : 

 “The message must be triplicated. The three copies must be 
forwarded through three different physical channels. The 
receiver accepts the message on the basis of a two-out-of-three 
voting policy.” 

 Questions: Can you identify any ambiguities in this 
specification? 

 We will later see some other ways with documenting this 
example by a Petri net (see Lecture 9). 

7 
[1] - C. Ghezzi, M. Jazayeri, D. Mandrioli, “Fundamentals of Software 

Engineering”,  Prentice Hall, Second Edition, page 196 - 198 



Alternatives to NL Specification 
Notation Description

Structured
natural
language

This approach depends on defining standard forms or
templates to express the requirements specification.

Design
description
languages

This approach uses a language like a programming
language but with more abstract features to specify the
requirements by defining an operational model of the
system.

Graphical
notations

A graphical language, supplemented by text annotations is
used to define the functional requirements for the system.
An early example of such a graphical language was SADT
(Ross, 1977; Schoman and Ross, 1977). More recently,
use-case descriptions (Jacobsen, Christerson et al., 1993)
have been used. I discuss these in the following chapter.

Mathematical
specifications

 These are notations based on mathematical concepts
such as finite-state machines or sets. These unambiguous
specifications reduce the arguments between customer
and contractor about system functionality. However, most
customers don’t understand formal specifications and are
reluctant to accept it as a system contract. I discuss formal
specification in Chapter 9.

8 COMP201 - Software Engineering 



Structured Language Specifications 

 A limited form of natural language may be used to express 
requirements 

 This removes some of the problems resulting from ambiguity 
and flexibility and imposes a degree of uniformity on a 
specification 

 

 

 

 

 Often best supported using a forms-based approach 

Special-purpose forms where designed 

to describe the input, output and 

functions of a software system   

9 COMP201 - Software Engineering 



Forms 

 Define the information required 

 Constrain its format 

 Keeps the information in a defined structure 

 Filter out extra information that might cause confusion 

 Makes it possible to read specification quickly 

 Supports tasks like system testing 

 

COMP201 - Software Engineering 10 



Form-Based Specifications 

 Definition of the function or entity 

 Description of inputs and where they come from 

 Description of outputs and where they go to 

 Indication of other entities required 

 Pre and post conditions (if appropriate) 

 The side effects (if any) 

11 COMP201 - Software Engineering 



Form-Based Specification Example 

COMP201 - Software Engineering 12 

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in

the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)

Source Current sugar reading from sensor. Other readings from memory.

OutputsCompDose Š the dose in insulin to be delivered

Destination  Main control loop

Action: CompDose is zero if the sugar level is stable or fa lling or if the level is increasing but the rate of

increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is

computed by dividing the diff erence between the current sugar level and the previous level by 4 and

rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can

be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..

Post-condition r0 is replaced by r1 then r1 is replaced by r2

Side-effects  None



Forms and incompleteness 

 Forms help to check for incompleteness 

 Example.. You could add the following 

 Does function have implications for data protection act? 

 Is the function compliant with 35.240.80: IT applications in health 
care technology? 

 Is this function time constrained and if those what are the 
constraints? 

 What other modules does this function need to perform it’s task? 

COMP201 - Software Engineering 13 



Tabular Specification 

 Tabular Specification is used to supplement natural 
language. 

 It is particularly useful when you have to define a number 
of possible alternative courses of action 

 This can be thought of as a series of “if statements” to 
determine the action to be taken upon a certain criteria 
being met. 

COMP201 - Software Engineering 14 



Tabular Specification Example 

COMP201 - Software Engineering 15 

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing ((r2-r1)<(r1-r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing. ((r2-r1) •

(r1-r0))

CompDose = round ((r2-r1)/4)

If rounded result = 0 then

CompDose = MinimumDose



PDL-Based Requirements Definition 

 Program Design Language - Requirements may be defined 
operationally using a language like a programming 
language but with more flexibility of expression 

 Most appropriate in the following situations: 

 Where an operation is specified as a sequence of actions and the 
order is important 

 When hardware and software interfaces have to be specified 

 Disadvantages include: 

 The PDL may not be sufficiently expressive to define domain 
concepts 

 The specification will be taken as a design rather than a 
specification  (lead to non optimal solution) 

16 COMP201 - Software Engineering 



Part of an ATM Specification 

set try_count to 0 

Do while PIN not equal to stored PIN 

 Get PIN from customer 

 If PIN  doesn’t equal stored PIN then increment 
try_count 

 If try_count equals to maximum tries retain card and 
quit  transaction with error message 

End Do 

COMP201 - Software Engineering 17 



Interface Specification 
 Most systems must operate with existing systems and the 

operating interfaces must be precisely specified as part of the 
requirements 

 Three types of interface may have to be defined 

 Procedural interfaces (calling methods) 

 Data structures that are exchanged  (XML schema) 

 Data representations (UNICODE, ASCII etc.) 

 Formal notations are an effective technique for interface 
specification but their specialised nature means they are 
difficult to understand without special training. 

18 COMP201 - Software Engineering 



Example - Interface Description 
interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize ( Printer p ) ;
void print ( Printer p, PrintDoc d ) ;
void displayPrintQueue ( Printer p ) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;

} //PrintServer

19 COMP201 - Software Engineering 

Note this is supported in Java 
allowing you to use the design to 

constrain the code 



The Requirements Document 

 The software requirements document is the official 
statement of what is required of the system developers 

 Should include both a definition and a specification of 
requirements 

 It is NOT a design document. As far as possible, it should 
set of WHAT the system should do rather than HOW it 
should do it 

 The requirements document has a diverse set of users as 
we see in the next slide 

20 COMP201 - Software Engineering 



Users of a 
Requirements 

Document 

Use the requirements to
develop validation tests for
the system

Use the requirements
document to plan a bid for
the system and to plan the

system development process

Use the requirements to
understand what system is to
be developed

System test
engineers

Managers

System engineers

Specify the requirements and
read them to check that they

meet their needs. They
specify changes to the
requirements

System customers

Use the requirements to help

understand the system and
the relationships between its
parts

System
maintenance

engineers

21 COMP201 - Software Engineering 



Requirements Document 

 Specify external system behaviour (what does it do?) 

 Specify implementation constraints (what system it must 
run on, what programming language it must use) 

 Easy to change 

 Serve as reference tool for maintenance 

 Record forethought about the life cycle of the system i.e. 
predict changes (how can it be expanded for more users) 

 Characterise responses to unexpected events (e.g. what 
should it do if power is lost!) 

22 COMP201 - Software Engineering 



Requirements Document 

 The level of detail used within the requirements document 
depends on both the type of system and the development 
process being used. 

 For an evolutionary development model the requirements 
may change many times. In the waterfall model however, it 
should be more complete since this has more impact on later 
stages of the software design process. 

 If the (sub)-system will be developed by an external contractor 
or it is a critical system, more time needs to be taken on 
finalizing the requirements document. 

COMP201 - Software Engineering 23 



Requirements Document Structure example 
 Preface (including change history) 

 Introduction 

 Contents 

 Glossary 

 User requirements definition 

 System architecture  

 System requirements specification  

 System models 

 System evolution (we have 10,000 customers, what happens if we 
have 100,000,000) 

 Appendices 

 Index 
24 COMP201 - Software Engineering 



Requirements Document Structure 

 Preface 
 Define the expected readers of the document, the version history with a 

rationale for version changes and a summary of changes. Author list 

 Introduction 
 Describes the need for the system and the functions provided as well as how it 

interacts with existing systems. Explain how the software fits into the business 
or strategic objectives of the organisation. 

 Glossary 
 Define technical terms used in the document making no assumptions on the 

technical expertise of the reader. 

25 COMP201 - Software Engineering 



Requirements Document Structure 

 User requirements definition 

 Describe the services provided for the user and the non-functional 
requirements of the system using natural language, diagrams 
understandable by customers. Define any product and process 
standards. 

 System architecture 

 High-level overview of the system architecture showing the 
distribution of functions across system modules. 

 System requirements specification 

 Detailed description of the functional and non-functional 
requirements. 

26 COMP201 - Software Engineering 



Requirements Document Structure 

 System models 
 Define system models showing relationships between system 

components, the system and its environment (object, data-flow models 
etc.) 

 System evolution 
 Describe anticipated changes to the system due to hardware evolution 

and changing user requirements etc. 

 Appendices 
 Detailed specific information about the system being developed such as 

hardware and database descriptions. 

 Index 
 Indices of the document including diagrams and functions. 

27 COMP201 - Software Engineering 



Key Points 

 Requirements set out what the system should do and 
define constraints on its operation and implementation 

 Functional requirements set out services the system 
should provide 

 Non-functional requirements constrain the system being 
developed or the development process 

 User requirements are high-level statements of what the 
system should do 

28 COMP201 - Software Engineering 



Key Points 

 User requirements should be written in natural language, 
tables and diagrams 

 System requirements are intended to communicate the 
functions that the system should provide 

 System requirements may be written in structured natural 
language, a PDL or in a formal language 

 A software requirements document is an agreed 
statement of the system requirements 

29 COMP201 - Software Engineering 



Next Lecture 

 We shall be looking in more detail at requirements 
engineering processes and way in which we can elicit, 
analyse, validate and maintain our requirements. 

 

30 COMP201 - Software Engineering 


