
Software Development

COMP220/COMP285

Seb Coope

Introducing Ant

These slides are mainly based on “Java Development with Ant” - E. Hatcher & S.Loughran. Manning Publications, 2003

2

Introducing Ant

Ant is Java based build tool which is

- easy to use,

- cross-platform,

- extensible, and

- scalable.

It can be used either in

- small personal or

- large, multi-team software projects.

3

What is a build process and
why do we need one?

In order to build a software product, we
manipulate our source code in various ways:

• compile

• generate documentation

• unit test

• package

• deploy

4

What is a build process and
why do we need one?

Initially this can be done manually.

But when we are tired of doing
repetitive actions, we look for tools,
that can ease the burden of repetitions.

5

Why Ant is a good build tool?

Ant

 has a very simple syntax which is

 easy to learn

 easy to use

 cross-platform

 is very fast — uses its own JVM, reducing start-up
delays

 does tasks’ dependency checking to avoid doing
any more work than necessary

6

Why Ant is a good build tool?

 integrates tightly with JUnit test framework

 easily extensible using Java

 can be used for automated deployment

 de facto standard for most open source Java
projects

7

Why Ant is a good build tool?

Because Ant understands testing and
deployment, it can be used for a

 unified build-test-deploy process.

In a software project experienced
constant change, an automated build
can provide a foundation of stability.

Ant is the means of controlling the
building and deployment that
would otherwise overwhelm a team.

8

The Core Concepts of Ant

To understand Ant, you need to
understand the core concepts of Ant build
files:

• XML format

• declarative syntax

9

The Core Concepts of Ant

• A build file contains one project
(to build, test, deploy, etc.)

• Large projects may be composed of

- smaller subprojects, each with its own
build file

- a higher-level or master build file can
coordinate the builds of subprojects

10

The Core Concepts of Ant

• Each Ant project contains multiple targets
to represent stages in the build process:

- compiling source,

- testing,

- deploying redistributable file to a remote server,

- etc.

• Targets can have dependencies on other
targets:

- e.g. redistributables are built, only after sources get
compiled

11

The Core Concepts of Ant

• Targets contain tasks doing actual work

• Ant has various predefined tasks such as
<javac>, <copy> and many others

• New tasks can easily be added to Ant as
new Java classes

- because Ant itself is implemented in Java

• It may be that somebody have already
written a specific task you need;

- so you can use it (or vice versa)

12

An example project

• The next slide shows the conceptual view
of an Ant build file build.xml

- as a graph of targets,

- each target containing the tasks.

• The Ant run time determines which targets
need to be executed, and

• chooses an order of the execution that
guarantees a target is executed after all
those targets it depends on.

• If a task somehow fails, the whole build halts
as unsuccessful.

13

OurProject : Project

doc:Target

<javadoc>:Task

init:Target

<mkdir>:Task

<mkdir>:Task

compile:Target

<javac>:Task

deploy:Target

<ftp>:Task

<jar>:Task

Arrows show

dependencies

between targets

14

<?xml version="1.0" ?>

<project name="OurProject" default="deploy">

 <target name="init">

 <mkdir dir="build/classes" />

 <mkdir dir="dist" />

 </target>

 <target name="compile" depends="init" >

 <javac srcdir="src"

 destdir="build/classes"

 includeAntRuntime="no"/>

 </target>

 <target name="doc" depends="init" >

 <javadoc destdir="build/classes"

 sourcepath="src"

 packagenames="org.*" />

 </target>

File build.xml:

(continues)

15

 <target name="deploy" depends="compile,doc" >

 <jar destfile="dist/project.jar"

 basedir="build/classes"/>

 <ftp server="${server.name}"

 userid="${ftp.username}"

 password="${ftp.password}">

 <fileset dir="dist"/>

 </ftp>

 </target>

</project>

Compare yourself the values of depends attribute with

the structure of the above graph.

Let us look at the output of our build to get some
impression on the whole process.

16

C:\OurProject>ant –propertyfile ftp.properties

Buildfile: C:\OurProject\build.xml

init:

 [mkdir] Created dir: C:\OurProject\build\classes

 [mkdir] Created dir: C:\OurProject\dist

compile:

 [javac] Compiling 1 source file to C:\OurProject\build\classes

doc:

 [javadoc] Generating Javadoc

 ...

deploy:

 [jar] Building jar: C:\OurProject\dist\project.jar

 [ftp] sending files

 [ftp] 1 file sent

BUILD SUCCESSFUL

Total time: 5 seconds

17

Note, that the command

>ant

invokes by default the file named as build.xml.

The command we used above

>ant –propertyfile ftp.properties

invokes additionally property file

ftp.properties

An example project (cont.) An example project (cont.)

18

ftp.properties file contains three properties

(parameters)

An example project (cont.)

server.name=ftp.texas.austin.building7.eblox.org

ftp.username=kingJon

ftp.password=password

The property handling mechanism allows parameterisation and
reusability of our build file.

On the other hand, using as above the command-line option

-propertyfile

is also atypical .

It is used in exceptional situations where override control is
desired, such as forcing a build to deploy to a server other than
the default server.name already described directly in build.xml.

19

The Beauty of Ant:

• Specify the build file correctly, and

• Ant will work out dependencies and call
the targets (with their tasks) in the right
order.

• One or two lines of XML is often
enough to describe what you want a
task to do.

20

The Beauty of Ant:

• Imagine also how useful is Ant build file
if a new developers join a team.

• Imagine how many build errors could
you make manually, without such a tool
as Ant.

• Even very complex build repeated with
Ant will give

• always the same standard result.

