
Software Development

COMP220/COMP285
Seb Coope

Ant: Structured Build

These slides are mainly based on “Java Development with Ant” - E. Hatcher & S.Loughran. Manning Publications, 2003

2

Imposing Structure

In the build process discussed in the previous

lecture and considered in a Lab sessions:

• source files, output files, and build file were in

the same directory.

• These were files Main.java, Main.class

and build.xml in

C:\Antbook\ch02\firstbuild

(In Labs you will use H: instead of C:)

3

Imposing Structure

• In a bigger project, things could get out of

hand.

• We want to automate the cleanup in Ant.

• If done wrong, this could accidentally delete

source files.

• Thus, let us separate source and generated

files into different directories.

4

Imposing Structure

• We also want to place Java source file into a
Java package.

• We want to create a JAR file containing the
compiled code.

• We should be able to clean up the directories
with compiled files and this JAR file before
starting the next build.

• Hence, use (de facto) standard directory
names as in the next table:

5

STANDARD DIRECTORY NAMES

Directory name Function

src source files

build\classes

(or bin – a default in Eclipse)

intermediate output
(generated; cleanable)

dist distributable files
(generated; cleanable)

Let these directories be sub-directories of a new

base directory:

C:\Antbook\ch02\secondbuild

STANDARD DIRECTORY NAMES

 Thus, we will have the following

directory structure:

C:\Antbook\ch02\secondbuild\src

 \build\classes

 \dist

 which will be further extended.

 Please relate all the following considerations
and your Lab exercises exactly with the
directory structure suggested in these slides

 (except your personal directory structure under src

related with your personal packages – to be
discussed below). 6

Packages

Keep files together with close
associations

Related to scope

Stops naming collisions

Relation with domain names

 Reversed

 comp220.csc.liv.ac.uk

 Package could be

 uk.ac.liv.csc.comp220.utils

7

8

Laying out the source directories and
source files

• When working on a project it makes sense to add some (your
personal) package declaration to our java classes such as
Main.java considered in the previous lecture (and a Lab):

package org.example.antbook.lesson1; //package declaration

public class Main {

 public static void main(String args[]) {

 for(int i=0;i<args.length;i++) {

 System.out.println(args[i]);

 }

 }

}

• In this case we should also put so modified
Main.java into the sub-…-sub-directory of src:
src\org\example\antbook\lesson1

 corresponding to (or matching) the above
package name.

9

Laying out the source directories and
source files

• Recall that Java packages and “contained” in these
packages Java classes are always organized in such
a way:

– package names of Java classes exactly match directory
system where to find them (also in JAR files).

• That is, we use traditional agreement that any Java
class declaring its package

package aaa.bbb.ccc;

 MUST be contained in a corresponding sub-sub-…-
directory

...\aaa\bbb\ccc

10

Laying out the source directories and
source files

• Recall also that packages give an appropriate level of
access to their classes and methods.

• It is quite reasonable that related classes are in the
same package (i.e. have the same package
declaration).

• Packages also allow to use “qualified” class and
method names specific to these packages like

org.example.antbook.lesson1.Main

- without any conflict even with possibly identical names in
some other projects within other packages.

11

Compilation from command line

TRY the following:

• Compile our renewed java class with the full name

C:\Antbook\ch02\secondbuild\src\

org\example\antbook\lesson1\Main.java

by the command

C:\Antbook\ch02\secondbuild\src>javac -d ..\build\classes
org\example\antbook\lesson1\Main.java

 javac option -d ..\build\classes specifies directory (full or
relative name) where to place generated class files .

 org\example\antbook\lesson1\Main.java

 is source file to be compiled:

 this should be either full name or a name relative to the current
directory C:\Antbook\ch02\secondbuild\src.

12

Compilation from command line

• Then the resulting compiled Main.class will
have the corresponding full path:

C:\Antbook\ch02\secondbuild\build\classes\

 org\example\antbook\lesson1\Main.class

provided that the subdirectories

build\classes

exist.

Check that existence of these directories is really
necessary!

13

Compilation from command line

• Summarise that, the general form of compile
command is:

javac –d [where to compile] [what to compile]

• Package declaration aaa.bbb.ccc of the compiled
class shows the path aaa\bbb\ccc for the compiled
class relatively to [where to compile]

• WHAT TO CHANGE above in the command

javac -d ..\build\classes

org\example\antbook\lesson1\Main.java

if you compile from secondbuild instead of src??

14

Compilation from command line

• TRY the same command again, but with commented
package declaration in Main.java:

// package org.example.antbook.lesson1;

package org.example2.antbook.lesson1;

In which directory the compiled Main.class

will appear? (Use time stamps to identify.)

• TRY the same command again with a different
package declaration in the class Main.java

• Where now the compiled class Main.class

will appear? (Use time stamps to identify.)

• RECOVER the original package name!!!

Summary on compiling with package
declarations in source files

• The general form of compile command is:

javac –d [directory where to compile]

[what to compile]

• Package declaration in a .java file says where

to put the resulting compiled class relatively

to a directory (-d [directory]).

• When the Java compiler compiles the files, it

always places the output files in a directory

path that matches the package declaration.

15

<javac> task, laying out directories and
dependency checking

Recall that in Ant build file:

• <javac> task means compiling.

• The next time <javac> task runs, it does
dependency checking :

• looks at the directories tree of generated class files
and

• compares them to the source files

- whether they are up-to date and should be recompiled.

• When doing dependency checking, it relies on
matching the source tree to the destination
tree.

16

<javac> task, laying out directories and
dependency checking

• For Java source dependency checking to work, you MUST lay out source Java
files in a directory tree that matches the package declarations in the source
files.

• When the source file has no package declaration (the empty package) you
must place this file in the base of the source tree (typically, the directory
src).

• If Ant keeps on unnecessary recompiling your Java files every time you do
a build, it is probably because you have not placed them correctly in the
package hierarchy.

• Unnecessary recompiling, even if done automatically, is time consuming!

• That is, if the package name aaa.bbb.ccc of the source File.java does
not match with its directory path, e.g., ...\aaa\bbbbb\ccc\File.java

(by your mistake) then the directory path leading to
...\aaa\bbb\ccc\File.class will be different from that of the source
and <javac> will not be able to compare time stamps of these files.

17

18

Comments on laying out directories

• It may seem inconvenient to rearrange your files into a system
of subdirectories.

• But on a large project, such a layout is critical to separating
and organizing classes.

• Modern Integrated Development Environments (IDE) (such as
Eclipse) also prefer and supports using this layout structure, as
does the underlying Java compiler javac (as we have

already seen).

• Recall again that correctly laid out directories also serve for
dependency checking of <javac> which consists in comparing
the timestamps of the source and destination files. In big
projects this saves time!

19

Adding dependency checks

• Besides dependency check by <javac> task, there is an

additional <depend> task to do more advanced dependency

checking.

• The <javac> dependency logic (to insure that out of date

classes are not recompiled during incremental builds)

implements a rudimentary check that only passes .java files

to the compiler if the corresponding .class file is older or

nonexistent.

• It does not rebuild classes when the files that they depend

upon change, such as a parent class or an imported class.

• The latter problem is resolved by the <depend> task

20

Laying out the build and dist directories

Imagine that you have a huge project where
we should create

• many intermediate files,

• as well as delivered or deployed files

 Taking into account our previous discussion,
the directories for a project may look like in
the following slide.

base

Main.Java

antbook

Main.class

dist

project.jar

build

classes

org

example

build.xml

lesson1

src

org

example

antbook

lesson1

A source tree (branch) is

separated from the build

and distribution output.

All the shaded

directories and files are

created by Ant during

the build automatically!

Note, that in our case

base directory is

secondbuild

Red colour and darker

shade correspond to the

package name
21

Laying out the build and dist directories

22

The directory layout
• Assume putting all intermediate files into the build directory

tree.

• Recall that Java compiler lays out compiled *.class files into a

(darker shaded above) directory structure that matches the

package declarations in the source files.

• The compiler will create the appropriate directories under

build/classes subdirectory automatically, so we do not need to

create them manually and therefore to bother too much about this.

• After deciding on package name and creating corresponding

directories under src, we need to prescribe in the build file

(only once) that the following directories be generated:

- the top level build directory, and the classes subdirectory,

- as well as the dist directly for deployed (JAR, Zip, tar, WAR,

etc.) archive files.

23

The directory layout

• Note that the dist directories are usually much simpler
than the intermediate file directories under build.

• All these (shaded above) files and directories will be
created automatically (and even can be automatically
deleted before any new build) by Ant.

• So, we are not worrying about them.

• We only should write in the build file:

<mkdir dir="build/classes" />

<mkdir dir="dist" />

24

Create the build file structured.xml

<?xml version="1.0" ?>

<project name="structured" default="archive" >

 <target name="init">

 <mkdir dir="build/classes" />

 <mkdir dir="dist" />

 </target>

 <target name="compile" depends="init" >

 <javac srcdir="src"

 destdir="build/classes"

 includeAntRuntime="no"/>

 </target>

Creates the
output
directories

Compiles into the
output directories

C:\Antbook\ch02\secondbuild\structured.xml

(continues)

25

Creating the build file structured.xml

 <target name="archive" depends="compile" >

 <jar destfile="dist/project.jar"

 basedir="build/classes" />

 </target>

 <target name="clean" depends="init">

 <delete dir="build" />

 <delete dir="dist" />

 </target>

</project>

Creates the
Java archive
from all
compiled
classes

Cleans the
output
directories

(when invoked)

(continued)

26

Creating the build file structured.xml
(continued)

• The meaning of all these targets is evident.

• Let us note only that:

- the Ant task <javac> compiles all Java

source from src directory and all its
subdirectories.

- the Ant task <jar> creates JAR file containing
all files in and below the build/classes
directory, which in this case means:

 all *.class files created by compile target.

27

Target dependencies in
structured.xml

clean

init

compile

archive

Here clean depends upon
init;

archive depends on
compile directly and on init
indirectly (via compile).

The target archive is declared

as default in the build file
structured.xml

28

Running the new build file

• Recall that the command

ant

 runs, by default, the build file named as build.xml

• In the case of a different build file, like our
structured.xml, we should use the following

form of the command:

ant -f structured.xml

Running the new build file
• Since the target archive is default one in structured.xml,

the command

ant -f structured.xml

will run only the chain of targets

init -> compile -> archive

structured.xml calls archive which calls compile which
calls init

• In this run clean target will not be executed since it will not
be called.

Now,
• DELETE build and dist directories to start on a clean

space, and
• RUN the above command.

29

30

C:\Antbook\ch02\secondbuild>ant -f structured.xml

Buildfile: C:\Antbook\ch02\secondbuild\structured.xml

init:

 [mkdir] Created dir:

C:\Antbook\ch02\secondbuild\build\classes

 [mkdir] Created dir: C:\Antbook\ch02\secondbuild\dist

compile:

 [javac] Compiling 1 source file to

C:\Antbook\ch02\secondbuild\build\classes

archive:

 [jar] Building jar:

C:\Antbook\ch02\secondbuild\dist\project.jar

BUILD SUCCESSFUL

Total time: 3 seconds

Running the build

31

Rerunning the build again

C:\Antbook\ch02\secondbuild>ant -f structured.xml

Buildfile:

C:\Antbook\ch02\secondbuild\structured.xml

init:

compile:

archive:

BUILD SUCCESSFUL

Total time: 1 second

Why no real action, but BUILD SUCCESSFUL?

32

Rerunning the build again

• None of the tasks <mkdir>, <javac>,
<jar> say that they are doing any real work.

• All of these tasks check their dependencies:

• <mkdir> does not create directories that already

exist;

• <javac> compares source and class file

timestamps:

 if up to date – do actually nothing;

33

Rerunning the build again

• <jar> compares the time of all files to be

added to the archive with the time of the
.jar file itself.

• If the resulting files are up to date, these
tasks, although invoked,

 do actually nothing.

• TRY the same in -verbose or –v mode

to see the similar comments from Ant.

34

Clean it!

• Finally, TRY the command

ant -f structured.xml clean

which deletes build and dist directories.

• Hence, you can start build process again on a
clean place (after changing something in your
source files under src).

35

What if…?
• What if our subdirectories under src were laid out wrongly, not

according to the package declaration in Main.java?

• TRY to change the package declaration in our source file

src\org\example\antbook\lesson1\Main.java

to

• and RUN repeatedly the command

ant -f structured.xml

• Check that Ant really keeps on unnecessary recompiling Main.java

every time you do a build because you have not placed them correctly
in the package hierarchy.

• RECOVER the original package name!!!

package org.example2.antbook.lesson1;

Multiple targets on the command line
The command with multiple targets as arguments

ant -f structured.xml compile archive

is equivalent to running Ant twice:

ant -f structured.xml compile

ant -f structured.xml archive

The resulting sequence of targets will be:

init -> compile, and then
init -> compile -> archive

Thus, for multiple targets called, repetitions of
targets are possible in the resulting sequence!!

 TRY it!

36

Multiple dependencies in build file
• When a target lists multiple dependencies

 then Ant executes them in the order listed :

• It first calls archive and then clean.

• Note that archive will also call its dependencies, that is,
 init -> compile -> archive will be executed.

• Then clean will be called, but now init will not be repeated:

init -> compile -> archive -> clean -> all

 When Ant build file runs in itself, i.e. one or no targets is called

from the command line, then targets are not repeated

• TRY to check this by adding the above target all to
structured.xml; use the command

ant -f structured.xml all

 <target name= "all" depends= "archive,clean" />

37

38

Running Java Program from inside Ant

• We now have a structured build process
that compiles Java files and creates the
JAR file from the Java compiled classes.

• The next question is:

How to run a Java program with Ant?

39

First, Executing from Command Line

To execute our program Main.class we should first compile

Main.java. (See Main.java on Slide 7)

Then we could just call our program Main.class as usually

from the command line (or on console) by stating

• the classpath (showing where to find Main.class),

• the qualified class name (using the package name) and

• the arguments “a“, “ b“, and “.“ :

C:\Antbook\ch02\secondbuild>java -cp build\classes

org.example.antbook.lesson1.Main a b .

a

b

.

This program Main.class just types the argument values.

Three inputs

Three identical outputs

40

Why execute from inside Ant?

Running this program from the build file provides

some benefits in comparison with command line :

• no need to split program compilation from
execution

• a target to run depends upon the compilation
target, so we know we always

- run the latest version of the code

• easy to pass complex arguments to the program

• easier to set up the classpath

• the program can run inside Ant’s own JVM:

- it loads faster

41

Adding an execute target

 <target name="execute" depends="compile">

 <java

 classname="org.example.antbook.lesson1.Main"

 classpath="build/classes" >

 <arg value="a"/>

 <arg value="b"/>

 <arg file="."/>

 </java>

 </target>

Extend the previous build file structured.xml to

new file execute.xml by adding target

• <java> task executes the program
Main.class with the arguments specified.

See below on the difference
between value and file
attributes of <arg>

42

<arg> tags
• <arg value="somevalue"> adds a command-line

argument somevalue.

• The action of this task is evident (with the value attribute).

• The last argument is of another kind:

<arg file="."/>
 It tells Ant to resolve the file attribute "." (meaning “this

directory”) to an absolute build file location (more
precisely, to an absolute base directory location) and
consider this location as an argument value before calling the
program.

• The latter differs from the ordinary

<arg value="."/>

 used implicitly in the above command line running (Slide 38).

43

Running <java> task in the <execute> target

C:\Antbook\ch02\secondbuild>ant -f execute.xml execute

Buildfile: C:\Antbook\ch02\secondbuild\execute.xml

init:

compile:

execute:

 [java] a

 [java] b

 [java] C:\Antbook\ch02\secondbuild

BUILD SUCCESSFUL

Total time: 1 second

TRY it! Try it also with
<arg file="abcd/pqr.txt"/>

44

For the Lab:
Getting information about the project

-projecthelp lists the main and other targets in a project build file.

C:\Antbook\ch02\secondbuild>ant -projecthelp –f execute.xml

Buildfile: C:\Antbook\ch02\secondbuild\execute.xml

Main targets:

Other targets:

 archive

 clean

 compile

 execute

 init

Default target: archive

Here Ant lists no main targets because

main targets are those which contain the optional description

attribute, as these are the

targets intended for public consumption.

45

For the Lab:
Getting information about the project

 The above example is not very informative, which is our
fault for not documenting the file.

 Add a description attribute to each target of
execute.xml, such as

description= "Compiles the source code"

 for the compile target.
 Add also a <description> element right under the
<project> opening tag.

 Look at the resulting build.xml file (downloadable

from corresponding Lab Web page).

46

For the Lab:
Getting information about the project

 Note, that build.xml differs from execute.xml only

1. by such descriptions

2. by declaring execute as a default target, and

3. by changing the project name with secondbuild

 PUT this build.xml in C:\Antbook\ch02\secondbuild

directory.

 TRY the command

ant -projecthelp

(calling by default build.xml).

 Compare the result with the previous command (from the previous
slide)

 ant -projecthelp -f execute.xml:

47

C:\Antbook\ch02\secondbuild>ant -projecthelp

Buildfile: C:\Antbook\ch02\secondbuild\build.xml

Compiles and runs a simple program

Main targets:

 archive Creates the JAR file

 clean Removes the temporary directories used

 compile Compiles the source code

 execute runs the program

Default target: execute

• "Described" targets are listed as "Main targets“ now.

• Other "sub targets" are hidden from view.

• Use –verbose (or –v) to see these Other targets as

well

For the Lab:
Getting information about the project

