
Improved Undecidability Results on the Emptiness
Problem of Probabilistic and Quantum Cut-Point

Languages

Mika Hirvensalo

mikhirve@utu.fi

Department of Mathematics

University of Turku

FIN-20014 Turku, Finland

Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



Preliminaries
Stochastic (Markov) matrix: Each column is a
probability distribution.

Adjoint matrix: (M ∗)ij = (Mji)
∗.

Unitary matrix: U ∗U = UU ∗ = I.

Alphabet Σ = {a1, . . . , ak} is a finite set.

Words over Σ: Σ∗.
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Preliminaries
An n-state probabilistic automaton over Σ:
P = (x, {Ma | a ∈ Σ},y). y ∈ R

n is the initial
distribution, x ∈ {0, 1}n is the final state
vector, and each Ma is an n× n stochastic
matrix.
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Preliminaries
An n-state probabilistic automaton over Σ:
P = (x, {Ma | a ∈ Σ},y). y ∈ R

n is the initial
distribution, x ∈ {0, 1}n is the final state
vector, and each Ma is an n× n stochastic
matrix.

An n-state quantum automaton over Σ:
Q = (P, {Ua | a ∈ Σ},y). y ∈ C

n is the initial
amplitude vector with ||y|| = 1, P is the
measurement projection, and each Ua is an
n× n unitary matrix.
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Preliminaries
An n-state quantum automaton over Σ:
Q = (P, {Ua | a ∈ Σ},y). y ∈ C

n is the initial
amplitude vector with ||y|| = 1, P is the
measurement projection, and each Ua is an
n× n unitary matrix.

A Z-automaton: matrices and vectors with
integer entries.
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Graph
Representation

a | σ(u), b | 1

a | σ(v), b | 2a | 0, b | 3

1 2 3

a | k|u|, b | 2 a | k|v|, b | 8 a | 1, b | 1

1 1

Ma =







k|u| 0 0

0 k|v| 0

σ(u) σ(v) 1






, Mb =







2 0 0

3 8 0

1 2 1






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Preliminaries
Let P = (x, {Ma | a ∈ Σ},y) be a probabilistic
automaton over Σ.
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Preliminaries
Let P = (x, {Ma | a ∈ Σ},y) be a probabilistic
automaton over Σ.

For w = a1 . . . ar ∈ Σ∗, fP (w) is defined as
fP (w) = xTMar

· . . . ·Ma1
y. Analogously for

Z-automata.
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Preliminaries
Let P = (x, {Ma | a ∈ Σ},y) be a probabilistic
automaton over Σ.

For w = a1 . . . ar ∈ Σ∗, fP (w) is defined as
fP (w) = xTMar

· . . . ·Ma1
y. Analogously for

Z-automata.

Let Q = (P, {Ua | a ∈ Σ},y) be a quantum
automaton over Σ.

For w = a1 . . . ar ∈ Σ∗, fQ(w) is defined as
fQ(w) = ||PUar

· . . . · Ua1
y||2.
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Cut-point languages

For any λ ∈ [0, 1] and automaton A let

L≥λ(A) = {w ∈ Σ∗ | fA(w) ≥ λ},
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Cut-point languages

For any λ ∈ [0, 1] and automaton A let

L≥λ(A) = {w ∈ Σ∗ | fA(w) ≥ λ},
a cut-point language, and

L>λ(A) = {w ∈ Σ∗ | fA(w) > λ}
a strict cut-point language.
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Cut-point languages

For any λ ∈ [0, 1] and automaton A let

L≥λ(A) = {w ∈ Σ∗ | fA(w) ≥ λ},
a cut-point language, and

L>λ(A) = {w ∈ Σ∗ | fA(w) > λ}
a strict cut-point language.

The problems studied: given a binary automaton
A and λ, is L≥λ(A) = ∅? Is L>λ(A) = ∅?
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Results
L≥λ(A) = ∅?
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Results
L≥λ(A) = ∅? undecidable for probabilistic
automata with 47 states. (V. Blondel and V.
Canterini: 2003).
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Results
L≥λ(A) = ∅? undecidable for probabilistic
automata with 47 states. (V. Blondel and V.
Canterini: 2003). New : 25 states.

L≥λ(A) = ∅? undecidable for quantum
automata with 43 states. (V. Blondel, E.
Jeandel, P. Koiran, and N. Portier 2005).
New: 21 states.

L>λ(A) = ∅? undecidable for probabilistic
automata.

L>λ(A) = ∅? decidable for quantum
automata.
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Post Correspondence Problem (PCP)
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Post Correspondence Problem (PCP)

Given pairs of words I = {(u1, v1, ), . . ., (uk, vk)},
decide if there is a sequence of indices i1, . . ., in
so that ui1 . . . uin = vi1 . . . vin.
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Post Correspondence Problem (PCP)

Given pairs of words I = {(u1, v1, ), . . ., (uk, vk)},
decide if there is a sequence of indices i1, . . ., in
so that ui1 . . . uin = vi1 . . . vin.

Undecidable for k ≥ 7 (Y. Matiyasevich and G.
Sénizergues 2005).
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Post Correspondence Problem (PCP)

Given pairs of words I = {(u1, v1, ), . . ., (uk, vk)},
decide if there is a sequence of indices i1, . . ., in
so that ui1 . . . uin = vi1 . . . vin.

Undecidable for k ≥ 7 (Y. Matiyasevich and G.
Sénizergues 2005).

Undecidable if all minimal solutions are of
form i1 = 1, in = k, and
i2 . . . in−1 ∈ {2, . . . , k − 1}+. (V. Claus 1980).

Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



Encodings

σ(i1i2 . . . in) =
n
∑

j=1

ij2
n−j
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Encodings

σ(i1i2 . . . in) =
n
∑

j=1

ij2
n−j

σ is a bijection Σ∗ = {1, 2}∗ → N.

Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



Encodings

σ(i1i2 . . . in) =
n
∑

j=1

ij2
n−j

σ is a bijection Σ∗ = {1, 2}∗ → N.

σ(1) = 1, σ(2) = 2, σ(11) = 3, σ(12) = 4,
σ(21) = 5, σ(22) = 6, σ(111) = 7, . . ..
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Encodings

σ(i1i2 . . . in) =
n
∑

j=1

ij2
n−j

σ is a bijection Σ∗ = {1, 2}∗ → N.

σ(1) = 1, σ(2) = 2, σ(11) = 3, σ(12) = 4,
σ(21) = 5, σ(22) = 6, σ(111) = 7, . . ..

σ(uv) = σ(u)2|v| + σ(v).
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Encodings

σ(i1i2 . . . in) =
n
∑

j=1

ij2
n−j

σ is a bijection Σ∗ = {1, 2}∗ → N.

σ(1) = 1, σ(2) = 2, σ(11) = 3, σ(12) = 4,
σ(21) = 5, σ(22) = 6, σ(111) = 7, . . ..

σ(uv) = σ(u)2|v| + σ(v).

δ(u) =

(

2|u| 0

σ(u) 1

)
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Encodings

δ(u) =

(

2|u| 0

σ(u) 1

)
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Encodings

δ(u) =

(

2|u| 0

σ(u) 1

)

δ is an embedding Σ∗ → N
2×2

(δ(uv) = δ(u)δ(v)).
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Encodings

δ(u) =

(

2|u| 0

σ(u) 1

)

δ is an embedding Σ∗ → N
2×2

(δ(uv) = δ(u)δ(v)).

γ0(u, v) =







2|u| 0 0

0 2|v| 0

σ(u) σ(v) 1







γ0 is an embedding Σ∗ × Σ∗ → N
3×3.
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Encodings

δ(u) =

(

2|u| 0

σ(u) 1

)

δ is an embedding Σ∗ → N
2×2.

γ0(u, v) =







2|u| 0 0

0 2|v| 0

σ(u) σ(v) 1







γ0 is an embedding Σ∗ × Σ∗ → N
3×3;

γ(u1, v1)γ(u2, v2) = γ(u1u2, v1v2).
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Encodings

γ(u, v) =











22|u| 0 0 0 0 0

0 2|uv| 0 0 0 0

0 0 22|v| 0 0 0

σ(u)2|u| σ(v)2|u| 0 2|u| 0 0

0 σ(u)2|v| σ(v)2|v| 0 2|v| 0

σ(u)2 2σ(u)σ(v) σ(v)2 2σ(u) 2σ(v) 1











γ is an embedding Σ∗ × Σ∗ → N
6×6.
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Encodings

γ(u, v) =











22|u| 0 0 0 0 0

0 2|uv| 0 0 0 0

0 0 22|v| 0 0 0

σ(u)2|u| σ(v)2|u| 0 2|u| 0 0

0 σ(u)2|v| σ(v)2|v| 0 2|v| 0

σ(u)2 2σ(u)σ(v) σ(v)2 2σ(u) 2σ(v) 1











γ is an embedding Σ∗ × Σ∗ → N
6×6.

xT
1 γ(u, v)y1 = 1 − (σ(u) − σ(v))2 for

x1 = (0, 0, 0, 0, 0, 1)T and
y1 = (−1, 1,−1, 0, 0, 1)T .
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Encodings

γ(u, v) =











22|u| 0 0 0 0 0

0 2|uv| 0 0 0 0

0 0 22|v| 0 0 0

σ(u)2|u| σ(v)2|u| 0 2|u| 0 0

0 σ(u)2|v| σ(v)2|v| 0 2|v| 0

σ(u)2 2σ(u)σ(v) σ(v)2 2σ(u) 2σ(v) 1











xT
1 γ(u, v)y1 = 1 − (σ(u) − σ(v))2 for

x1 = (0, 0, 0, 0, 0, 1)T and
y1 = (−1, 1,−1, 0, 0, 1)T .

xT
1 γ(u, v)y1 > 0 if and only if u = v.
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From PCP to
matrices
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From PCP to
matrices

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.
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From PCP to
matrices

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.

Define A1 = γ(u1, v1), . . ., Ak = γ(uk, vk).

xT
1Ai1 . . . Ainy1 =

1 − (σ(ui1 . . . uin) − σ(vi1 . . . vin))
2.
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From PCP to
matrices

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.

Define A1 = γ(u1, v1), . . ., Ak = γ(uk, vk).

xT
1Ai1 . . . Ainy1 =

1 − (σ(ui1 . . . uin) − σ(vi1 . . . vin))
2.

xT
1Ai1 . . . Ainy1 > 0 if and only if I has a

solution.
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matrices

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.

Define A1 = γ(u1, v1), . . ., Ak = γ(uk, vk).

xT
1Ai1 . . . Ainy1 =

1 − (σ(ui1 . . . uin) − σ(vi1 . . . vin))
2.

xT
1Ai1 . . . Ainy1 > 0 if and only if I has a

solution.

fA(w) > 0 for some w ∈ Σ+ undecidable for
Z-automata with 6 states and k = 7 alphabet
symbols.
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From PCP to
matrices

Define A1 = γ(u1, v1), . . ., Ak = γ(uk, vk).

xT
1Ai1 . . . Ainy1 =

1 − (σ(ui1 . . . uin) − σ(vi1 . . . vin))
2.

xT
1Ai1 . . . Ainy1 > 0 if and only if I has a

solution.

fA(w) > 0 for some w ∈ Σ+ undecidable for
Z-automata with 6 states and k = 7 alphabet
symbols.

A shorthand notation: For w = i1 . . . in, let
Aw = Ai1 . . . Ain.
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Reducing the number
of matrices
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Reducing the number
of matrices

x2 = (xT
1A1)

T , y2 = Aky1, B1 = A2, . . .,
Bk−2 = Ak−1.

Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



Reducing the number
of matrices

x2 = (xT
1A1)

T , y2 = Aky1, B1 = A2, . . .,
Bk−2 = Ak−1.

xT
2Bwy2 = xT

1A1BwAky1 > 0 iff I has a
solution (V. Claus).
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Reducing the number
of matrices

x2 = (xT
1A1)

T , y2 = Aky1, B1 = A2, . . .,
Bk−2 = Ak−1.

xT
2Bwy2 = xT

1A1BwAky1 > 0 iff I has a
solution (V. Claus).

fA(w) > 0 for some w ∈ Σ+ undecidable for
Z-automata with 6 states and k − 2 = 5
alphabet symbols.
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Reducing the number
of matrices

x2 = (xT
1A1)

T , y2 = Aky1, B1 = A2, . . .,
Bk−2 = Ak−1.

xT
2Bwy2 = xT

1A1BwAky1 > 0 iff I has a
solution (V. Claus).

fA(w) > 0 for some w ∈ Σ+ undecidable for
Z-automata with 6 states and k − 2 = 5
alphabet symbols.

For k − 2 = 5 alphabet symbols we define
ψ(1) = 2, ψ(2) = 12, ψ(3) = 112, ψ(4) = 1112,
ψ(5) = 1111.
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An observation

Bi−1 = γ(ui, vi)

=











22|ui| 0 0 0 0 0

0 2|uivi| 0 0 0 0

0 0 22|vi| 0 0 0

σ(ui)2
|ui| σ(vi)2

|ui| 0 2|ui| 0 0

0 σ(ui)2
|vi| σ(vi)2

|vi| 0 2|vi| 0

σ(ui)
2 2σ(ui)σ(vi) σ(vi)

2 2σ(ui) 2σ(vi) 1










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Binary Z-automaton
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Binary Z-automaton

The numbers are input symbols, not the
weights.
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Binary Z-automaton

The numbers are input symbols, not the
weights.

New automaton has
5(k − 3) + 1 = 5k − 14 = 21 states.
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Binary Z-automaton

New automaton has
5(k − 3) + 1 = 5k − 14 = 21 states.

I has a solution iff xT
3Cwy3 > 0 for some

w ∈ {1, 2}∗.
Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



From Z-automaton to
probabilistic

Procedure by P. Turakainen (1969)
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From Z-automaton to
probabilistic

Procedure by P. Turakainen (1969)

1. Di =







0 0 0

Ciy3 Ci 0

xT
3Ciy3 xT

3Ci 0






, x4 =







0

...

0

1






,

y4 =







1

0

...

0






; xT

4Dwy4 = xT
3Cwy3; 21 + 2 = 23

states.
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From Z-automaton to
probabilistic

Procedure by P. Turakainen (1969)

2. Ei =







0 0 0

ti Di 0

si rT
i 0






,

x5 = (0,xT
4 , 0)

T , y5 = (0,yT
4 , 0)

T ;
xT

5Ewy5 = xT
4Dwy4; 23 + 2 = 25 states.
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From Z-automaton to
probabilistic

3. Fi = Ei + c1. Note that Ei1 = 1Ei = 0,
1

k = 25k−1
1; Fw = Ew + c|w|25|w|−1

1.
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From Z-automaton to
probabilistic

3. Fi = Ei + c1. Note that Ei1 = 1Ei = 0,
1

k = 25k−1
1; Fw = Ew + c|w|25|w|−1

1.

4. Gi = 1
25cFi. Now Gw = 1

(25c)|w|Ew + 1
251, and

xT
5Gwy5 = 1

(25c)|w|x
T
5Ewy5 + 1

25. Notice also that G1

and G2 are (doubly) stochastic matrices.
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From Z-automaton to
probabilistic

3. Fi = Ei + c1. Note that Ei1 = 1Ei = 0,
1

k = 25k−1
1; Fw = Ew + c|w|25|w|−1

1.

4. Gi = 1
25cFi. Now Gw = 1

(25c)|w|Ew + 1
251, and

xT
5Gwy5 = 1

(25c)|w|x
T
5Ewy5 + 1

25. Notice also that G1

and G2 are (doubly) stochastic matrices.

Theorem: For a 25-state probabilistic automaton
(x5, {G1, G2},y5), xT

5Gwy5 >
1
25 for some w ∈ Σ∗

if and only if I has a solution.
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Quantum automata
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Quantum automata

Let U1 =
1

5

(

3 −4

4 3

)

, U2 =
1

5

(

3 4i

4i 3

)

(both

unitary), and y = (1, 0)T
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Quantum automata

Let U1 =
1

5

(

3 −4

4 3

)

, U2 =
1

5

(

3 4i

4i 3

)

(both

unitary), and y = (1, 0)T

Lemma: For each u, v ∈ Σ∗ = {1, 2}∗, equality
Uuy = Uvy implies u = v.
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Quantum automata

Define γ(u, v) = 1
2

(

Uu + Uv Uu − Uv

Uu − Uv Uu + Uv

)

,

y1 = (y,0)T , and P1 =

(

0 0

0 I

)

.
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Quantum automata

Define γ(u, v) = 1
2

(

Uu + Uv Uu − Uv

Uu − Uv Uu + Uv

)

,

y1 = (y,0)T , and P1 =

(

0 0

0 I

)

.

P1γ(u, v)y1 =

(

0

Uuy − Uvy

)

.
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Quantum automata

Define γ(u, v) = 1
2

(

Uu + Uv Uu − Uv

Uu − Uv Uu + Uv

)

,

y1 = (y,0)T , and P1 =

(

0 0

0 I

)

.

P1γ(u, v)y1 =

(

0

Uuy − Uvy

)

,

so ||P1γ(u, v)y1||2 = 0 iff u = v.
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From PCP to
quantum automata
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From PCP to
quantum automata

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.

Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



From PCP to
quantum automata

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.

Define A1 = γ(u1, v1), . . ., Ak = γ(uk, vk).
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From PCP to
quantum automata

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.

Define A1 = γ(u1, v1), . . ., Ak = γ(uk, vk).

||P1Awy1||2 = 0 for some nonempty w if and
only if I has a solution.
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From PCP to
quantum automata

Let I = {(u1, v1), . . . , (uk, vk)} be an instance
of PCP.

Define A1 = γ(u1, v1), . . ., Ak = γ(uk, vk).

||P1Awy1||2 = 0 for some nonempty w if and
only if I has a solution.

⇒ fQ(w) = ||P1Awy1||2 = 0 for some
nonempty w is undecidable for quantum
automata with 4 states and 7 alphabet
symbols.
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Reducing the number
of matrices
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Reducing the number
of matrices

Let B1 = A2, . . ., Bk−2 = Ak−1, y2 = Aky1, and
P2 = A−1

1 P1A1.
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Reducing the number
of matrices

Let B1 = A2, . . ., Bk−2 = Ak−1, y2 = Aky1, and
P2 = A−1

1 P1A1.

||P2Bwy2||2 = ||A−1
1 P1A1BwAky1||2 =

||P1A1BwAky1||2
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Reducing the number
of matrices

Let B1 = A2, . . ., Bk−2 = Ak−1, y2 = Aky1, and
P2 = A−1

1 P1A1.

||P2Bwy2||2 = ||A−1
1 P1A1BwAky1||2 =

||P1A1BwAky1||2

⇒ fQ(w) = 0 for some w is undecidable for
quantum automata with 4 states and 5
alphabet symbols.
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Reducing the number
of matrices

C1 =









B1 0 0 0 0

0 B2 0 0 0

0 0 B3 0 0

0 0 0 B4 0

0 0 0 0 B5









, C2 =









0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

I 0 0 0 0









.

C1 and C2 are unitary 20 × 20-matrices. Let also

P3 =
0BBBBBB�

P2 0 · · · 0

0 P2 · · · 0

...
...

. . .
...

0 0 · · · P2

1CCCCCCA , y3 =

0BBBBBB�

y2

0

...

0

1CCCCCCA
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Reducing the number
of matrices

C1 =









B1 0 0 0 0

0 B2 0 0 0

0 0 B3 0 0

0 0 0 B4 0

0 0 0 0 B5









, C2 =









0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

I 0 0 0 0









.

For each w ∈ {1, 2}∗ ||P3Cwy3||2 = ||P2Bw′y2||2
for some w′ ∈ {1, . . . , 5}∗.
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Reducing the number
of matrices

C1 =









B1 0 0 0 0

0 B2 0 0 0

0 0 B3 0 0

0 0 0 B4 0

0 0 0 0 B5









, C2 =









0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

I 0 0 0 0









.

For each w ∈ {1, 2}∗ ||P3Cwy3||2 = ||P2Bw′y2||2
for some w′ ∈ {1, . . . , 5}∗.
C2C1C

−1
2 = Diag(B2, B3, . . . , B5, B1)

Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



Reducing the number
of matrices

C1 =









B1 0 0 0 0

0 B2 0 0 0

0 0 B3 0 0

0 0 0 B4 0

0 0 0 0 B5









, C2 =









0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

I 0 0 0 0









.

For each w ∈ {1, 2}∗ ||P3Cwy3||2 = ||P2Bw′y2||2
for some w′ ∈ {1, . . . , 5}∗.
C2C1C

−1
2 = Diag(B2, B3, . . . , B5, B1)

⇒ ∀w ∈ {1, . . . , 5}∗ ||P2Bwy2||2 = ||P3Cw′y3||2
for some w′ ∈ {1, 2}∗.

Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-P



Reducing the number
of matrices

For each w ∈ {1, 2}∗ ||P3Cwy3||2 = ||P2Bw′y2||2
for some w′ ∈ {1, . . . , 5}∗.
C2C1C

−1
2 = Diag(B2, B3, . . . , B5, B1)

⇒ ∀w ∈ {1, . . . , 5}∗ ||P2Bwy2||2 = ||P3Cw′y3||2
for some w′ ∈ {1, 2}∗.
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Reducing the number
of matrices

For each w ∈ {1, 2}∗ ||P3Cwy3||2 = ||P2Bw′y2||2
for some w′ ∈ {1, . . . , 5}∗.
C2C1C

−1
2 = Diag(B2, B3, . . . , B5, B1)

⇒ ∀w ∈ {1, . . . , 5}∗ ||P2Bwy2||2 = ||P3Cw′y3||2
for some w′ ∈ {1, 2}∗.
⇒ ||P3Cwy3||2 = 0 for some w ∈ {1, 2}∗ if and
only if I has a solution.
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Reducing the number
of matrices

For each w ∈ {1, 2}∗ ||P3Cwy3||2 = ||P2Bw′y2||2
for some w′ ∈ {1, . . . , 5}∗.
C2C1C

−1
2 = Diag(B2, B3, . . . , B5, B1)

⇒ ∀w ∈ {1, . . . , 5}∗ ||P2Bwy2||2 = ||P3Cw′y3||2
for some w′ ∈ {1, 2}∗.
⇒ ||P3Cwy3||2 = 0 for some w ∈ {1, 2}∗ if and
only if I has a solution.

⇒ fQ(w) = 0 for some w is undecidable for
binary quantum automata with 20 states.
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Setting the threshold
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Setting the threshold

1 = ||Cwy3||2 = ||(I − P3)Cwy3||2 + ||P3Cwy3||2,
hence ||(I − P3)Cwy3||2 ≥ 1 if and only if I
has a solution.
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Setting the threshold

1 = ||Cwy3||2 = ||(I − P3)Cwy3||2 + ||P3Cwy3||2,
hence ||(I − P3)Cwy3||2 ≥ 1 if and only if I
has a solution.

Let Di =
(

Ci 0

0 1

)

, P4 =
(

I − P3 0

0 0

)

, and

y4 = (
√
λyT

3 ,
√

1 − λ)T .
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Setting the threshold

1 = ||Cwy3||2 = ||(I − P3)Cwy3||2 + ||P3Cwy3||2,
hence ||(I − P3)Cwy3||2 ≥ 1 if and only if I
has a solution.

Let Di =
(

Ci 0

0 1

)

, P4 =
(

I − P3 0

0 0

)

, and

y4 = (
√
λyT

3 ,
√

1 − λ)T .

||P4Dwy4||2 = ||
√
λ(I − P3)Cwy4||2 =

λ(1 − ||P3Cwy3||2).
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Setting the threshold

1 = ||Cwy3||2 = ||(I − P3)Cwy3||2 + ||P3Cwy3||2,
hence ||(I − P3)Cwy3||2 ≥ 1 if and only if I
has a solution.

Let Di =
(

Ci 0

0 1

)

, P4 =
(

I − P3 0

0 0

)

, and

y4 = (
√
λyT

3 ,
√

1 − λ)T .

||P4Dwy4||2 = ||
√
λ(I − P3)Cwy4||2 =

λ(1 − ||P3Cwy3||2).
⇒ fQ(w) ≥ λ for some some w is undecidable
for binary quantum automata with 21 states.
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Thank You!
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