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1 Introduction

This document describes the tool PReMo(Probabilistic Recursive Models an-
alyzer) and illustrate it on some simple examples. PReMo(read as primo)
is capable of analyzing Recursive Markov Chains(RMCs), Recursive Simple
Stochastic Games(RSSGs) and Stochastic Context Free Grammars(SCFGs).
RMCs are a natural model for recursive imperative programs with proba-
bilistic transitions. Probability comes either from an explicit randomization
like in the Quicksort algorithm or by abstracting some aspects of a program.
A very tightly related model to this one is Probabilistic Pushdown Systems
(pPDSs). There exist polynomial time algorithms translating one model into
the other.

The theory behind RMCs and pPDSs was investigated and published in a
whole series of papers [2, 4, 1]. There are many interesting question we could
ask about a given Recursive Markov Chain such as computation of termi-
nation probability, expected time of termination or its variance. Algorithms
were given in [2, 1], that use results from the Existential Theory of Reals, al-
lowing us to decide in PSPACE whether those values are greater than a given
rational value. On top of that, in [2], a reduction was established from the
well known Square Root Sum problem to the problem of computing the ter-
mination probabilities for RMCs. This means that finding an algorithm with
substantially better complexity than PSPACE, would solve a long standing
open problem. On the other hand we have efficient numerical approximation
algorithms described in [2] for computing all these values by computing the
least fixed point of a specific nonlinear system of equations, eg. using New-
ton’s method. Related to RMCs, but placed in the game theoretic setting,
are Recursive Simple Stochastic Games[3] where we allow some of the nodes
to be controlled by players. The player called maximizer tries to maximize
eg. the termination probability, while minimizer tries to minimize it.

The program has four input modes: RMC for typing as an input a source
of Recursive Markov Chain, RSSG for modeling Recursive Markov Deci-
sion Processes and Recursive Simple Stochastic Games, SCFG for Stochastic
Context Free Grammar and Equations where the user can type any set of
recursive equations with standard functions and the system will try to find
the fixed point if one exists starting at all zero vector.
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2 Input languages

2.1 Recursive Markov Chains

We can see an example Recursive Markov Chain in the Fig. 1.A(2,2);B(1,2);A{L1(A);L2(B);entry0:0.5:gotoL3;0.5:callL2(0);entry1:0.3:callL1(0);0.7:callL1(1);L1{exit0:0.8:gotoL3;0.2:callL2(0);exit1:1.0:return1;}L2{exit0:1.0:gotoL3;exit1:0.5:return0;0.5:return1;}L3{0.5:return0;0.5:return1;}}B{L1(A);entry0:0.3:callL1(0);0.3:callL1(1);0.4:gotoL2;L1{exit0:0.5:return0;0.5:return1;exit1:0.5:return0;0.5:gotoL2;}L2{0.4:gotoL2;0.6:return0;}}
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Figure 1: Source code of an example Recursive Markov Chain and its under-
lying transition graph

The PReMo syntax for defining RMCs is as follows: first we declare all
components (procedures), using two numbers as parameters which denote
the number of entries and exits; for instance in the example showed on fig.
1 B(1,2); declares “Component B has 1 entry and 2 exits”. Next, we de-
fine the components. Each component definition starts with a declaration of
all the boxes contained in the component, together with the component it
maps to, e.g., L2(B); declares a box named L2 that is mapped to component
B. Next for all entries, internal nodes, and exits of the boxes, we specify a
list of transitions available from that control state. A single transition is a
probability followed by a goto, call or return instruction separated by a
colon. We use goto instruction when the transition leads to an internal node
of this component. An instruction call name of the box(entry number)

is used when we want to call the component that is mapped to the box la-
beled name of the box with a parameter entry number. Finally we use return

3



value; when we want to exit this component and return value value.

A formal grammar of the input language for RMCs is specified in 4.1.

2.2 Recursive Markov Decision Processes and Recur-
sive Simple Stochastic Gamees

We can see an example source code of a RSSG with its transition graph on
the fig. 2. The specification of an RSSG is the same as for an RMC except
that any entries, internal nodes or box-exits can be preceded by the name of
the player(min or max) in square brackets eg. [max] L1 {...} makes the
internal node L1 be controlled by the maximizer. On the transition graph
drawing nodes controlled by the maximizer are painted red, while the nodes
controlled by the minimizer are painted blue and the random nodes are black
as for the RMCs.

A(2,2);B(1,2);A{L1(A);L2(B);[min]entry0:gotoL3;callL2(0);entry1:0.3:callL1(0);0.7:callL1(1);L1{exit0:0.8:gotoL3;0.2:callL2(0);exit1:1.0:return1;}L2{exit0:1.0:gotoL3;[max]exit1:return0;return1;}L3{0.5:return0;0.5:return1;}}B{L1(A);entry0:0.3:callL1(0);0.3:callL1(1);0.4:gotoL2;L1{[min]exit0:return0;return1;exit1:0.5:return0;0.5:gotoL2;}[max]L2{gotoL2;return0;}}
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Figure 2: Source code of an example Recursive Simple Stochastic Game and
its underlying transition graph

A formal grammar of the input language for Recursive Markov Decision
Processes and Recursive Simple Stochastic Gamees is defined in 4.2.
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2.3 Stochastic Context Free Grammars

To give Stochastic Context Free Grammar as an input the user specify a set
of productions, one on each line. Each production specifies firstly the prob-
ability of this productions, then the non-terminal that we will be replacing,
a symbol -> followed by any sequence of terminals and non-terminals. The
user does not have to specify which symbols are terminals as the program
assumes that any symbol without a production attached to it is a terminal.
For an example SCFG shown on the fig. 3, the only terminal is D and the
non-terminals are A, B and C.0.5A�>BCD0.5A�>AA0.7B�>C0.3B�>A0.4C�>B0.6C�>D

Figure 3: Source code of an example Stochastic Context Free Grammar

A formal grammar of the input language for Stochastic Context Free
Grammars is defined in 4.3.

2.4 Arbitrary equations systems

Here we define a list of equations separated by a newline character. Each
equation defines a recursive expression that this variable has to fulfill eg. x

= cos(y) + x defines an equation for the variable x and its dependence on
the variables y and x. A formal grammar in short could look like this:

〈Equation〉 ::= 〈V ariable〉=〈Expression〉

I am not going to go in details how expressions in our grammar looks like,
see http://www.singsurf.org/djep/html/grammar.html for more details
what expressions are allowed. List of supported functions is available here:
http://www.singsurf.org/djep/html/grammar.html. On top of that we
added functions max and min with arbitrary number of arguments. Obvi-
ously if such function occurs in our equation system, Newton method won’t
work as it won’t be able to differentiate them.
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3 Using PReMo in practice

3.1 Creating and opening a new source file

First, we create a new or open an existing file using appropriate model from
the File menu (fig. 4. We have a choice of four models RMC, RSSG, SCFG
and Equation system described in details in section 2.

PReMo has a source code editor that support syntax highlighting, auto-
indentation and if a parsing error occurred, jumping and selecting that line.
The user can save the code or graph source, generated equations and found
solution with performance analysis to an external file.

Figure 4: File Menu

In the case we have chosen to open a file, a file selection dialog appears
with an extension filter depending on what type of a model we have chosen
to open.

After typing a new model or opening a file we might in an example RMC
as seen on fig. 5.

3.2 Parsing

When our source code is ready, we need to parse it in order to create a model.
Based on that model the system will be able to draw a transition graph of
our model (only for RMCs and RSSGs) or create an equation system (for
termination probability or expected termination time) and then solve it using
one of many numerical algorithms available in the program.

In order to parse the file we choose from the Run menu option Parse. If
the parsing was successful, in the Status Log display we will see appropriate
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Figure 5: Example source editing

message with a short summary of the model. If there was an error the
selected line where the parser failed will become highlighted(although it isn’t
100% accurate, because the parser might have parsed few buggy lines before
noticing an error) and the error description will be displayed in the Status
Log (fig. 6).

Figure 6: Highlighting the syntax error in the source code

After a successful parsing in the menu Run, new options will appear.
We will be able to generate an equation system based on the model and in
the case when our model is an RMC or an RSSG an option to generate the
underlying transition graph will be enabled as well.

3.3 Graph generation and exporting as an image

If our model is an RMC or an RSSG then after successful parsing we will be
able to generate the underlying transition graph as a dot input file from the
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Run → Generate graph option. We can see an example on the fig. 7

Figure 7: Generated graph source as a dot file

Once we generate a graph we can save it as a dot file for further processing
(fig. 10) or if we have a dot processing system installed on our system eg.
GraphViz, we can export as an image directly from the menu File → Export
as → PS | JPEG | GIF | PNG int a desired image format.

Figure 8: Exporting a graph as a image

3.4 Equation system generation

In the case of RMC and 1-exit RSSG the user by selecting Run → Generate
Equations → Termination probability can generate a set of equations that
the Least Fixed Point(LFP) solution gives exactly the probability of termi-
nation at any exit of all the components, starting at any node of the exit’s
component. Also for 1-exit RMC and 1-exit RSSG the user can generate an
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Figure 9: Saving a graph as a dot source file

equation system for which the LFP solution gives a solution to the problem
of computing the average number of steps needed to terminate from a given
node at the exit of the same component (and gives as an answer Infinity if
the termination time is ∞).

Figure 10: Saving a graph as a dot source file

3.5 Finding solution

We choose out of the submenu Find solution one of the available methods
(fig. 11). After we have chosen one of them we will be asked for the toler-
ance (absolute, relative, or wont be asked if we are in a constant number of
iteration mode, see subsection 3.8.2) (fig. 12). Depending on the equation
system and the convergence criteria the solver can converge or not (fig. 13).
If it converges, then it will list the value for each of the variables. Also, it
will print some performance analysis data and the equation system statistics.
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Figure 11: Choosing one of the methods of looking for a LFP solution

Figure 12: Specifying the tolerance of the solution
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Figure 13: Solution was found on the left picture while on the right it wasn’t
as the maximum number of steps was reached

3.6 Interpreting the results

In case of an RMC and an RSSG the user has to interpret the variable names
to get the solution to the problem. If we want to check the termination prob-
ability at exit j of the component A, starting at entry i of component A we
have to look for the variable named: A i extj. In general the variable’s names
look like this: $componentName $entryNum ext$exitNum or for internal node
$label of component $componentName: $componentName$label ext$exitNum
or for the exit numbered $boxExitNum of the box $label of the component
$componentName: $componentName $label ret $BoxExitNum ext$exitNum. For
example the solution to the RMC defined at the figure 1 looks like this:

Sparse Newton(IR) method with decomposition into SCCs.

Number of variables: 32

Tue Oct 31 15:07:51 GMT 2006 Decomposing...

Decomposing time: 0h 0m 0.021s in seconds: 0.021

Number of SCCs: 15

Tue Oct 31 15:07:51 GMT 2006 Started solving...

Tue Oct 31 15:07:51 GMT 2006 Finished solving!

Diffrentaing time: 0.004

The maximum number of iterations for a single SCC of size 18 was 5

Solving time: 0h 0m 0.333s in seconds: 0.333

Elapsed time: 0h 0m 0.392s in seconds: 0.392

Solution:

A_L2_ret0_ext0 : 0.500000000000

A_L2_ret1_ext0 : 0.500000000000

A_L2_0_ext0 : 0.500000009906

A_L3_ext0 : 0.500000000000

A_L1_ret0_ext0 : 0.500000002376

A_L1_ret1_ext0 : 0.00000000000

A_L1_0_ext0 : 0.250000003849

A_L1_1_ext0 : 0.0576923091901

A_0_ext0 : 0.500000005940

A_1_ext0 : 0.115384618103

A_L2_ret0_ext1 : 0.500000000000

A_L2_ret1_ext1 : 0.500000000000
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A_L2_0_ext1 : 0.500000009906

A_L3_ext1 : 0.500000000000

A_L1_ret0_ext1 : 0.500000002376

A_L1_ret1_ext1 : 1.00000000000

A_L1_0_ext1 : 0.750000009348

A_L1_1_ext1 : 0.942307718159

A_0_ext1 : 0.500000005940

A_1_ext1 : 0.884615411760

B_L2_ext0 : 1.00000001100

B_L1_ret0_ext0 : 0.500000000000

B_L1_ret1_ext0 : 1.00000000550

B_L1_0_ext0 : 0.750000010997

B_L1_1_ext0 : 0.942307722769

B_0_ext0 : 0.907692327467

B_L2_ext1 : 0.00000000000

B_L1_ret0_ext1 : 0.500000000000

B_L1_ret1_ext1 : 0.00000000000

B_L1_0_ext1 : 0.250000002749

B_L1_1_ext1 : 0.0576923089363

B_0_ext1 : 0.0923076937823

3.7 Gray shading

When we modify the source code of an RMC, RSSG or SCFG, but generated
before that a graph, equation system or computed a solution for the previ-
ous version of the model, then all the tabs retain their contents, but their
background becomes gray(fig. 14) meaning that they are not up to date with
the sourcecode. The user can still save the contents of them to a file, but it
is forced to Parse the file again before doing anything else as all the other
options from the Run menu becomes not available.

Figure 14: Gray shading the previously generated graph source after the
sourcecode has been changed
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3.8 Advanced options

All the options described here are accessible after selecting Find solution →
Advanced Options from the Run menu.

3.8.1 Equations decomposition

The user can choose if he wants to decompose the equations or not in the
case of using Jacobi, Gauss-Seidel or SOR methods as it is not necessary. It
can choose whatever option he wants by checking or unchecking the mark
next to the option Decompose equations. By default this option is checked.

3.8.2 Convergence Criteria

There are three different methods of declaring a convergence:

1. absolute tolerance, relative tolerance and running for a specified number
of iterations. In the absolute tolerance mode algorithm stops when an
absolute difference in any of the variables is lower than the threshold.

2. relative tolerance In this method I compute the difference between the
new approximation and the old one for each of the variables and divide
it by the previous(old) value of the variable (in case it is not equal to
0).

3. number of iterations Here we let the algorithm run for the specified
number of steps no matter what absolute or relative error was obtained
before that and return the approximation on the last step as the result
of the computation.
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3.8.3 Sparse linear solvers

The Sparse Newton’s method uses at each step a sparse linear iterative solver
to find the next approximation of the solutions. The user can choose from
five solvers: BiConjugate Gradient (see http://mathworld.wolfram.com/

BiconjugateGradientMethod.html), BiConjugate Gradient Stabilized (see
http://mathworld.wolfram.com/BiconjugateGradientStabilizedMethod.

html), Iterative Refinement (preconditioned Richardson method)(see http:

//math.nist.gov/iml++/ir.h.txt or [5]), Conjugate Gradients Squared
(see http://mathworld.wolfram.com/ConjugateGradientSquaredMethod.
html), Quasi Minimal Residual
(see http://mathworld.wolfram.com/Quasi-MinimalResidualMethod.html).

According to the performance testing the Iterative Refinement(preconditioned
Richardson method) is the fastest among them in most of the occurring cases.
However if the system of equations hast the determinant of the Jacobian
matrix close or equal to zero at the point were it has the LFP solution, this
method is very slow. In such a case user should choose Quasi Minimal Resid-
ual method that doesn’t have this problem and is just a little bit slower on
the average.

4 Syntax of the input languages in the BNF

format

Formal grammars of the input languages in the BNF are defined below.
Characters in the (bold typeset are a part of the syntax of the input language.

4.1 Recursive Markov Chain grammar

〈RMC〉 ::= 〈ComponentDeclaration〉+ 〈ComponentDefinition〉+

〈ComponentDeclaration〉 ::= 〈Id〉 (〈Int〉, 〈Int〉);
〈ComponentDefinition〉 ::= 〈Id〉 { 〈BoxDeclaration〉∗ 〈EntryNode〉+

(〈NodeDefinition〉 | 〈BoxDefinition〉)∗ }
〈EntryNode〉 ::= entry 〈Int〉: 〈Transition〉+

〈ExitNode〉 ::= exit 〈Int〉: 〈Transition〉+

〈Transition〉 ::= 〈Probability〉: 〈Jump〉;
〈Jump〉 ::= goto 〈Label〉
| return 〈Int〉
| call 〈Label〉(〈Int〉)

14

http://mathworld.wolfram.com/BiconjugateGradientMethod.html
http://mathworld.wolfram.com/BiconjugateGradientMethod.html
http://mathworld.wolfram.com/BiconjugateGradientStabilizedMethod.html
http://mathworld.wolfram.com/BiconjugateGradientStabilizedMethod.html
http://math.nist.gov/iml++/ir.h.txt
http://math.nist.gov/iml++/ir.h.txt
http://mathworld.wolfram.com/ConjugateGradientSquaredMethod.html
http://mathworld.wolfram.com/ConjugateGradientSquaredMethod.html
http://mathworld.wolfram.com/Quasi-MinimalResidualMethod.html


〈BoxDeclaration〉 ::= 〈Label〉(〈Id〉);
〈NodeDefinition〉 ::= 〈Label〉(〈Transition〉+)

〈BoxDefinition〉 ::= 〈Label〉{〈ExitNode〉+}
〈Int〉 ::= (DIGIT )+

〈Probability〉 ::= (0 | 1).(DIGIT )+

〈Id〉 ::= UPCASE LETTER(LETTER|DIGIT )∗

〈Label〉 ::= UPCASE LETTER(LETTER|DIGIT )∗

4.2 Recursive Markov Decision Processes and Recur-
sive Simple Stochastic Gamees grammar

〈RMC〉 ::= 〈ComponentDeclaration〉+ 〈ComponentDefinition〉+

〈ComponentDeclaration〉 ::= 〈Id〉 (〈Int〉, 〈Int〉);
〈ComponentDefinition〉 ::= 〈Id〉 { 〈BoxDeclaration〉∗ 〈InputCase〉+

(〈NodeDefinition〉 | 〈BoxDefinition〉)∗ }
〈InputCase〉 ::= case 〈Int〉: 〈Transition〉+

〈OutputCase〉 ::= case 〈Int〉: 〈Transition〉+

〈Transition〉 ::= 〈Probability〉: 〈Jump〉;
〈Jump〉 ::= goto 〈Label〉
| return 〈Int〉
| call 〈Label〉(〈Int〉)

〈BoxDeclaration〉 ::= 〈Label〉(〈Id〉);
〈NodeDefinition〉 ::= 〈Label〉(〈Transition〉+)

〈BoxDefinition〉 ::= 〈Label〉(〈Id〉) {〈OutputCase〉+}
〈Int〉 ::= (DIGIT )+

〈Probability〉 ::= (0 | 1).(DIGIT )+

〈Id〉 ::= UPCASE LETTER(LETTER|DIGIT )∗

〈Label〉 ::= UPCASE LETTER(LETTER|DIGIT )∗

4.3 Stochastic Context Free Grammar grammar

〈SCFG〉 ::= 〈Production〉+
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〈Production〉 ::= 〈NonTerminal〉− >〈Probability〉 (〈NonTerminal〉|〈Terminal〉)∗

〈NonTerminal〉 ::= LETTER(LETTER|DIGIT )∗

〈Terminal〉 ::= LETTER(LETTER|DIGIT )∗

〈Probability〉 ::= 1.0|0.(DIGIT )+
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