COMP 516 Research Methods in Computer Science

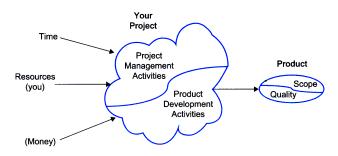
Dominik Wojtczak

Department of Computer Science University of Liverpool

COMP 516 Research Methods in Computer Science

Lecture 13: Project planning (1)

Dominik Wojtczak


Department of Computer Science University of Liverpool

- All projects consume resources including time and money in order to deliver a product of a particular scope and quality
- There is always a tension between the extent of resource input and the extent of product output
- There is also tension between project management activities and project development activities

- All projects consume resources including time and money in order to deliver a product of a particular scope and quality
- There is always a tension between the extent of resource input and the extent of product output
- There is also tension between project management activities and project development activities

- All projects consume resources including time and money in order to deliver a product of a particular scope and quality
- There is always a tension between the extent of resource input and the extent of product output
- There is also tension between project management activities and project development activities

- All projects consume resources including time and money in order to deliver a product of a particular scope and quality
- There is always a tension between the extent of resource input and the extent of product output
- There is also tension between project management activities and project development activities

Main Project Activities

Project management

Concerned with

- planning the conduct of the project
- controlling and checking project progress
- monitoring milestones and deliverables
- managing risk

Should account for not more than 10% of overall effort

→ not evenly distributed; spend most of it towards the start!

'Product' development

Concerned with

- achieving the aims and objectives of the project
- producing the deliverables in accordance with the project plan
- optimising scope and quality of the deliverables relative to the resources available

Main Project Activities

Project management

Concerned with

- planning the conduct of the project
- controlling and checking project progress
- monitoring milestones and deliverables
- managing risk

Should account for not more than 10% of overall effort

→ not evenly distributed; spend most of it towards the start!

'Product' development

Concerned with

- achieving the aims and objectives of the project
- producing the deliverables in accordance with the project plan
- optimising scope and quality of the deliverables relative to the resources available

Project Stages

From a project management perspective, projects proceed in five stages:

- Definition Deciding on a project; making a project proposa
- Planning Detailed planning of the project
- Initiation Organising work (in particular, group work); literature survey
- 4 Control

 Monitoring the progress of the project
- Closure Delivering/deploying result of the project; preparing fina presentation; writing up reports

Project Stages

From a project management perspective, projects proceed in five stages:

- Definition Deciding on a project; making a project proposal
- Planning Detailed planning of the project
- Initiation
 Organising work (in particular, group work); literature survey
- Control Monitoring the progress of the project
- Closure Delivering/deploying result of the project; preparing final presentation; writing up reports

Project Definition: Aims and Objectives (1)

Clear specification of what the project is to achieve definition of aims and objectives

Aims: Broad statement(s) of intent Identify the project's purpose

Examples

- Design a methodology for GUI development of technical courseware material
- Develop and evaluate an Artificial Neural Network to predict stock market indices

Project Definition: Aims and Objectives (1)

Clear specification of what the project is to achieve definition of aims and objectives

Aims: Broad statement(s) of intent Identify the project's purpose

Examples:

- Design a methodology for GUI development of technical courseware material
- Develop and evaluate an Artificial Neural Network to predict stock market indices

Project Definition: Aims and Objectives (2)

Clear specification of what the project is to achieve definition of aims and objectives

Example aim:

 Develop and evaluate an Artificial Neural Network to predict stock market indices

Objectives: Identify specific, measurable achievements

Quantitative and qualitative measures by which
completion of the project can be judged

Example:

- Complete a literature search and literature review of existing stock market prediction techniques
- Develop a suitable Artificial Neural Network model
- 3 Identify and collect suitable data for analyses and evaluation
- 4 Evaluate the model using appropriate statistical techniques
- Complete final report

Project Definition: Aims and Objectives (2)

Clear specification of what the project is to achieve definition of aims and objectives

Example aim:

 Develop and evaluate an Artificial Neural Network to predict stock market indices

Objectives: Identify specific, measurable achievements

Quantitative and qualitative measures by which
completion of the project can be judged

Example:

- 1 Complete a literature search and literature review of existing stock market prediction techniques
- Develop a suitable Artificial Neural Network model
- 3 Identify and collect suitable data for analyses and evaluation
- 4 Evaluate the model using appropriate statistical techniques
- 5 Complete final report

Project Definition: SMART Objectives

Each objective should be

- Specific
- Measurable
- Appropriate
- Realistic
- Time-related

Example

1 Complete a literature search and literature review of existing stock market prediction techniques

Project Definition: SMART Objectives

Each objective should be

- Specific
- Measurable
- Appropriate
- Realistic
- Time-related

Example:

- 1 Complete a literature search and literature review of existing stock market prediction techniques
- Is it specific? Does it tells us what will be done?
- Is it measurable? How will we know to what extent and to what quality the objective has been completed?
- Is it appropriate? Is it related to and in support of our aims?

Project Definition: SMART Objectives

Each objective should be

- Specific
- Measurable
- Appropriate
- Realistic
- Time-related

Example:

- 1 Complete a literature search and literature review of existing stock market prediction techniques
- Is it realistic? Can we realistically expect to achieve this objective?
- Is it time-related? Have we identified how long the task will take and when we will complete it?

Project Planning

Objectives of project planning

- Identifying the tasks that need to be done
- Clarifying the order in which tasks need to be done
- Determining how long each task will take
- (Redefining the project if there are problems)

Steps of project planning

- 1 Work breakdown
- 2 Time estimates
- 3 Milestone identification
- 4 Activity sequencing
- 5 Scheduling
- 6 Replanning

Project Planning

Objectives of project planning

- Identifying the tasks that need to be done
- Clarifying the order in which tasks need to be done
- Determining how long each task will take
- (Redefining the project if there are problems)

Steps of project planning

- Work breakdown
- 2 Time estimates
- 3 Milestone identification
- 4 Activity sequencing
- 5 Scheduling
- 6 Replanning

Running Example

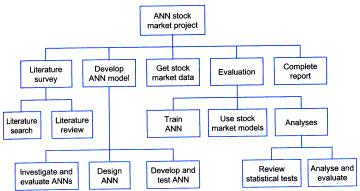
Example aim:

Develop and evaluate an Artificial Neural Network to predict stock market indices

Example objectives:

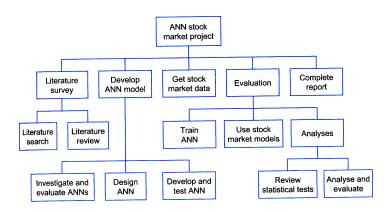
- 1 Complete a literature search and literature review of existing stock market prediction techniques
- Develop a suitable Artificial Neural Network model
- 3 Identify and collect suitable data for analyses and evaluation
- 4 Evaluate the model using appropriate statistical techniques
- 5 Complete final report

Steps of project planning


- Work breakdown
- 2 Time estimates
- 3 Milestone identification
- 4 Activity sequencing
- 5 Scheduling
- 6 Replanning

Work Breakdown (1)

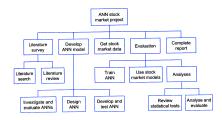
- First step of project planning: Identify the tasks that need to be done
- Starting point(s) should be the objectives of the project;
 Then break your objectives down into lower and lower levels of detail
- Work breakdown structures are used to visualise the process of breaking down the project


Work Breakdown (1)

- First step of project planning: Identify the tasks that need to be done
- Starting point(s) should be the objectives of the project;
 Then break your objectives down into lower and lower levels of detail
- Work breakdown structures are used to visualise the process of breaking down the project

Work Breakdown (2)

- Tasks at all levels need to be separate from one another
- Continue to break down your project into smaller tasks until each task takes up no less than 5% of the total effort

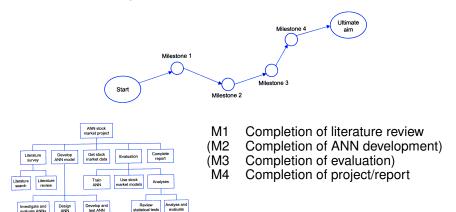


Steps of project planning

- Work breakdown
- 2 Time estimates
- 3 Milestone identification
- 4 Activity sequencing
- 5 Scheduling
- 6 Replanning

Time Estimates

- Make reasonably accurate predictions of
 - the effort needed for completion and
 - the duration until completion
 - of each leaf node of the work breakdown structure
- If the estimate exceeds the total time available for the project, then either modify the objectives and work breakdown or reduce and reallocate time between tasks

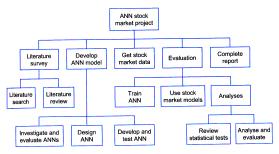

Activity	Effort	Duration
Literature search	2 weeks	8 weeks
Literature review	2 weeks	4 weeks
Investigate and evaluate ANNs	2 weeks	4 weeks
Design ANN	2 weeks	4 weeks
Develop and test ANN	2 weeks	2 weeks
Get stock market data	1 week	1 week
Train ANN	1 week	1 week
Use stock market models	1 week	2 weeks
Review statistical tests	1 week	2 weeks
Analyse and evaluate	4 weeks	4 weeks
Complete report	8 weeks	8 weeks
Total	26 weeks	40 weeks

Steps of project planning

- Work breakdown
- 2 Time estimates
- 3 Milestone identification
- 4 Activity sequencing
- 5 Scheduling
- 6 Replanning

Milestone Identification

- Milestones are significant steps towards the completion of the project
 - → intermediate goals at which to aim

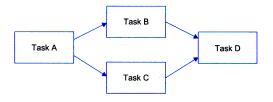


Steps of project planning

- Work breakdown
- 2 Time estimates
- 3 Milestone identification
- 4 Activity sequencing
- 5 Scheduling
- 6 Replanning

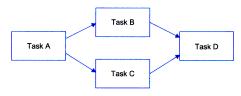
Activity Sequencing

The work breakdown structure does not state in which order tasks are performed



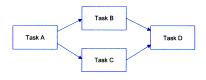
- To represent the order and inter-dependency of tasks we can use activity networks
 - Activity-on-the-node diagrams
 - Activity-on-the-arrow diagrams

Activity-on-the-node Diagrams

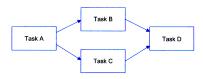

- Tasks are represented by rectangular nodes
- Milestones are represented by diamond-shape nodes
- Arrows indicate the order in which they need to be performed

Example:

- Task A has to be completed before tasks B and C can start
- Task B and C can be done independently (in parallel)
- Task D can only start once both tasks B and C have been completed

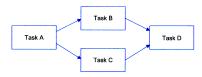

Activity-on-the-node Diagrams: Start and End Dates

Assume we estimate effort and duration for the four tasks as follows


Activity	Effort	Duration
Task A	2 weeks	4 weeks
Task B	2 weeks	4 weeks
Task C	2 weeks	4 weeks
Task D	2 weeks	3 weeks

- Also assume
 - the project starts on 1 January
 - each month has four weeks
 - there are no breaks, holidays, etc
- What is the start date for each of the tasks?

Activity	Effort	Duration
Task A	2 weeks	4 weeks
Task B	2 weeks	4 weeks
Task C	2 weeks	4 weeks
Task D	2 weeks	3 weeks


Activity	Start Date
Task A	Jan 1
Task B	Feb 1
Task C	Feb 1
Task D	Mar 1

Activity	Effort	Duration
Task A	2 weeks	4 weeks
Task B	3 weeks	4 weeks
Task C	2 weeks	4 weeks
Task D	2 weeks	3 weeks

Activity	Start Date
Task A	Jan 1
Task B	Feb 1
Task C	Feb 1
Task D	Mar 1 or Mar 8?

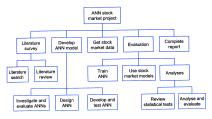
We need to consider our ability to do activities in parallel

Activity	Effort	Duration
Task A	2 weeks	4 weeks
Task B	3 weeks	4 weeks
Task C	2 weeks	4 weeks
Task D	2 weeks	3 weeks

Activity	Start Date
Task A	Jan 1
Task B	Feb 1
Task C	Feb 1
Task D	Mar 1 or Mar 8?

We need to consider our ability to do activities in parallel

Activity-on-the-node diagrams: Critical Path


- Critical path: Longest-duration path through a network
 → identifies the tasks in the project that must not be delayed
- Determination of critical paths:
 - Determine earliest start dates for activities
 - Work backwards from the end to the start
 - As long as there is only one preceding task, this task must be on the critical path
 - If there is more than one preceding tasks, only the task(s) which force the start time of the next task are on the critical path
 - there can be more than one critical path

Activity-on-the-node diagrams: Critical Path

- Critical path: Longest-duration path through a network
 identifies the tasks in the project that must not be delayed
- Determination of critical paths:
 - Determine earliest start dates for activities
 - Work backwards from the end to the start
 - As long as there is only one preceding task, this task must be on the critical path
 - If there is more than one preceding tasks, only the task(s) which force the start time of the next task are on the critical path
 - → there can be more than one critical path

Example

 Our goal is to construct an activity-on-the-node diagram for the example stock market project based on our example project

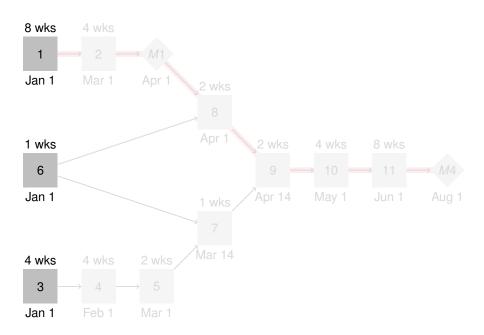
Activity	Effort	Duration
1 Literature search	2 weeks	8 weeks
2 Literature review	2 weeks	4 weeks
3 Investigate and evaluate ANNs	2 weeks	4 weeks
4 Design ANN	2 weeks	4 weeks
5 Develop and test ANN	2 weeks	2 weeks
6 Get stock market data	1 week	1 week
7 Train ANN	1 week	1 week
8 Use stock market models	1 week	2 weeks
9 Review statistical tests	1 week	2 weeks
10 Analyse and evaluate	4 weeks	4 weeks
11 Complete report	8 weeks	8 weeks
Total	26 weeks	40 weeks

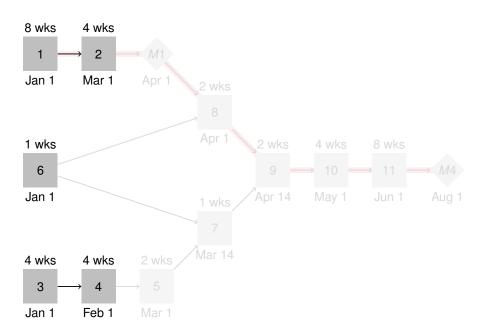
Dependencies

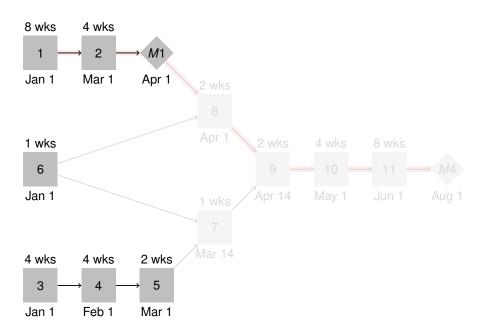
$2 \rightarrow 1$	$7 \rightarrow 5 \rightarrow 4 \rightarrow 3$	8 → 6
$11 \rightarrow 10 \rightarrow 9 \rightarrow 8$	$9 \rightarrow 7 \rightarrow 6$	8 → 2

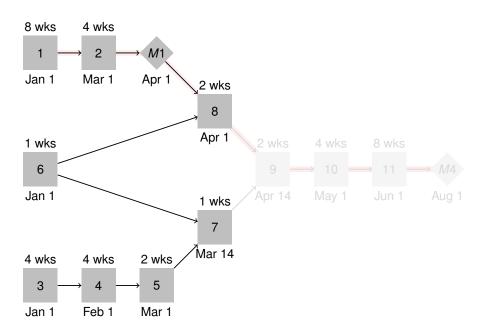
Milestones

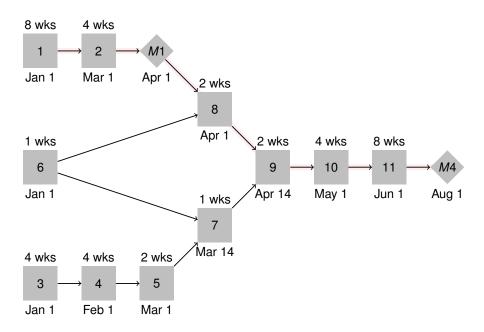
M1 Completion of literature review M4 Completion of project/report

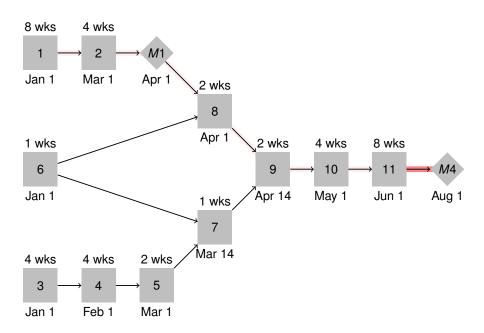

- Determine start dates for each task
- Determine the critical path(s) for this project

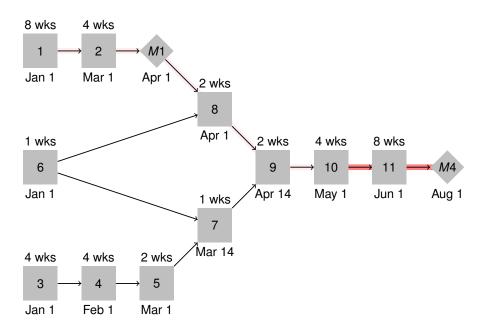

Activity	Effort	Duration
1 Literature search	2 weeks	8 weeks
2 Literature review	2 weeks	4 weeks
3 Investigate and evaluate ANNs	2 weeks	4 weeks
4 Design ANN	2 weeks	4 weeks
5 Develop and test ANN	2 weeks	2 weeks
6 Get stock market data	1 week	1 week
7 Train ANN	1 week	1 week
8 Use stock market models	1 week	2 weeks
9 Review statistical tests	1 week	2 weeks
10 Analyse and evaluate	4 weeks	4 weeks
11 Complete report	8 weeks	8 weeks
Total	26 weeks	40 weeks

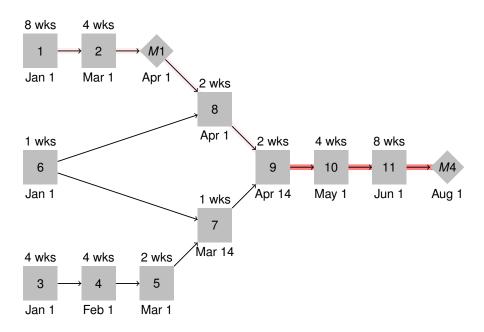

Dependencies

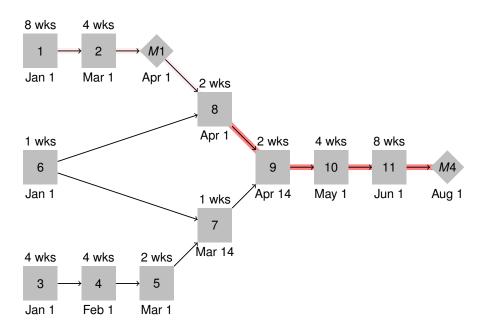

Milestones

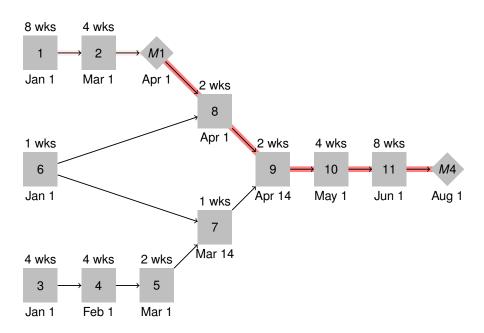

M1 Completion of literature reviewM4 Completion of project/report

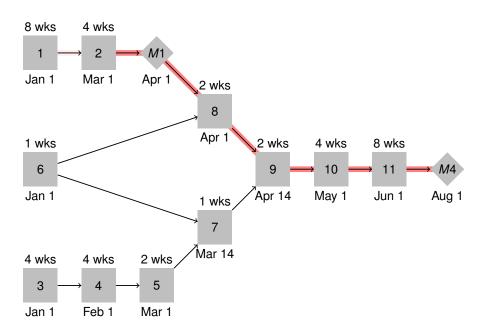


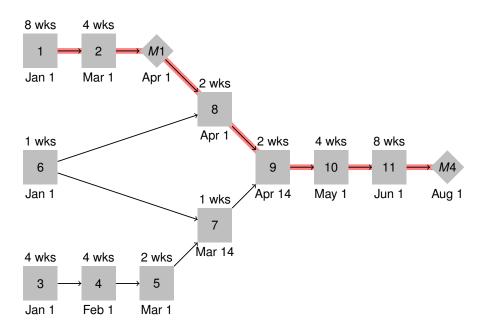


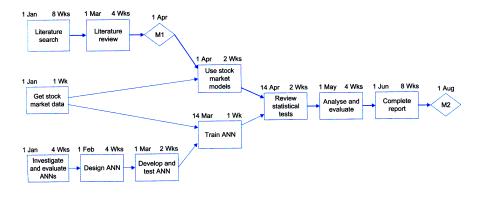












Solution

Correctness of activity diagrams is difficult to check

Example:	Activity	Effort	Duration
	Task A	1 week	4 weeks
	Task B	1 week	4 weeks

Question: Can tasks A and B be done in parallel and both be

finished within 4 weeks?

- Do not allow to express distribution of effort within a task
- Do not reflect the duration/effort of each task well (all nodes are of equal size)
- Do not allow to indicate slack
- Simplistic view of activities/tasks: No loops, no conditions

Correctness of activity diagrams is difficult to check

Example:	Activity	Effort	Duration
	Task A	1 week	4 weeks
	Task B	1 week	4 weeks

Question: Can tasks A and B be done in parallel and both be

finished within 4 weeks?

- Do not allow to express distribution of effort within a task
- Do not reflect the duration/effort of each task well (all nodes are of equal size)
- Do not allow to indicate slack
- Simplistic view of activities/tasks: No loops, no conditions

Correctness of activity diagrams is difficult to check

Example:	Activity	Effort	Duration
	Task A	1 week	4 weeks
	Task B	1 week	4 weeks

Question: Can tasks A and B be done in parallel and both be

finished within 4 weeks?

- Do not allow to express distribution of effort within a task
- Do not reflect the duration/effort of each task well (all nodes are of equal size)
- Do not allow to indicate slack
- Simplistic view of activities/tasks: No loops, no conditions

Correctness of activity diagrams is difficult to check

Example:

Activity Effort Duration
Task A 1 week 4 weeks
Task B 1 week 4 weeks

Question: Can tasks A and B be done in parallel and both be

finished within 4 weeks?

- Do not allow to express distribution of effort within a task
- Do not reflect the duration/effort of each task well (all nodes are of equal size)
- Do not allow to indicate slack
- Simplistic view of activities/tasks: No loops, no conditions

Correctness of activity diagrams is difficult to check

Example:	Activity	Effort	Duration
	Task A	1 week	4 weeks
	Task B	1 week	4 weeks

Question: Can tasks A and B be done in parallel and both be

finished within 4 weeks?

- Do not allow to express distribution of effort within a task
- Do not reflect the duration/effort of each task well (all nodes are of equal size)
- Do not allow to indicate slack
- Simplistic view of activities/tasks: No loops, no conditions

Correctness of activity diagrams is difficult to check

Example:	Activity	Effort	Duration
	Task A	1 week	4 weeks
	Task B	1 week	4 weeks

Question: Can tasks A and B be done in parallel and both be

finished within 4 weeks?

- Do not allow to express distribution of effort within a task
- Do not reflect the duration/effort of each task well (all nodes are of equal size)
- Do not allow to indicate slack
- Simplistic view of activities/tasks: No loops, no conditions

Correctness of activity diagrams is difficult to check

Example:	Activity	Effort	Duration
	Task A	1 week	4 weeks
	Task B	1 week	4 weeks

Question: Can tasks A and B be done in parallel and both be

finished within 4 weeks?

- Do not allow to express distribution of effort within a task
- Do not reflect the duration/effort of each task well (all nodes are of equal size)
- Do not allow to indicate slack
- Simplistic view of activities/tasks: No loops, no conditions

Next time

Finish Project Planning:

- Work breakdown
- 2 Time estimates
- 3 Milestone identification
- 4 Activity sequencing
- 5 Scheduling (Gantt charts)
- 6 Replanning
- ... and then Risk Management

- No lectures next Monday (29th Oct) and Tuesday (30th Oct)
- you should spend that time working on your presentations
- we resume on Thursday (1st Nov at 10am)
- 2nd Nov (Friday) at 6pm: the deadline for submitting your presentation and preliminary bibliography for your essay

- No lectures next Monday (29th Oct) and Tuesday (30th Oct)
- you should spend that time working on your presentations
- we resume on Thursday (1st Nov at 10am)
- 2nd Nov (Friday) at 6pm: the deadline for submitting your presentation and preliminary bibliography for your essay

- No lectures next Monday (29th Oct) and Tuesday (30th Oct)
- you should spend that time working on your presentations
- we resume on Thursday (1st Nov at 10am)
- 2nd Nov (Friday) at 6pm: the deadline for submitting your presentation and preliminary bibliography for your essay

- No lectures next Monday (29th Oct) and Tuesday (30th Oct)
- you should spend that time working on your presentations
- we resume on Thursday (1st Nov at 10am)
- 2nd Nov (Friday) at 6pm: the deadline for submitting your presentation and preliminary bibliography for your essay