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ABSTRACT.  In everyday disputes, and especially political 
disputes, people often use analogical arguments to support their 
views. For example, many of the arguments about the War in Iraq 
were regularly bolstered by analogical comparisons to WWII and 
Vietnam. Though logic and philosophy has always viewed 
analogical argumentation as suspect, analogical thinking has 
recently been studied and modelled extensively in cognitive 
science (see e.g., [1], [2], [3], [4], [5]). In this paper, we assess 
whether computational models of analogy can be safely applied to 
analogical argumentation. For various reasons, we conclude that 
they cannot because they are too powerful. 

1   INTRODUCTION 
In everyday disputes, and especially political disputes, people often 
use analogical arguments to support their views. In Logic and 
Philosophy argumentation by analogy has often languished in 
darkness of sophistry rather than in the shining light of formally 
correct reasoning. However, recently, Cognitive Science has 
somewhat restored the reputation of analogical thinking by 
demonstrating its centrality in human thinking [see e.g., 3, 6].   

Work like Gentner’s Structure-Mapping Theory (SMT)[6] 
characterises analogy as an isomorphic mapping between two 
domains of knowledge based on matching connected sets of 
relational predicates {e.g., cause [(kick (John, ball), enter(ball, 
goal)]} rather than attribute predicates [e.g., round(ball-1)] 
between a base/source domain and a target domain. For example, 
in the ‘atom is like a solar system’ analogy, the connected set of 
relations about mass differences causing revolution are mapped 
from the base solar system domain to the target atom domain. This 
preference for connected sets of matches is called the systematicity 
principle and has been confirmed by many psychological studies. 
SMT’s distinction between relations and attributes also allows us to 
define a taxonomy of comparisons from deep analogies (many 
connected relations and few attributes, like the solar system and 
atom) to literally similar comparisons (sharing relations and 
attributes, like our solar system and the K9 solar system) to 
superficial comparisons (matching attributes only, e.g. the earth 
and a football are both round). As we shall see in section 3, there 
are common computational mechanisms that capture many of these 
comparison types [see 1, 5]. 

2   ANALOGIES AND ARGUMENTATION 
Given the generality of SMT’s formulation, one would expect it to 
be able to also characterise analogical arguments. Indeed, it is 
possible to describe a schema for analogical arguments using the 
theory’s precepts (see Figure 1). For example, let’s assume we are 
arguing about the factual proposition that “Prison causes 
recidivism” and someone says that “Prisons are universities for 
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criminals”. Unpacked, the essence of this argument is a mapping 
between relations like attend(student, university) -> 
attend(prisoner, prison), sleep-in(students, dormitories) ->sleep-
in(prisoners, cell-blocks). These basic mappings support 
predictions that are transferred from the analogical domain to the 
factual domain; for example, inferences like learn-in(student, 
university) -> learn-in(prisoner, prison), prepare-for(university, 
student, later-life)->prepare-for(prison, prisoner, later-life). These 
analogical transfers then have established new facts in the target 
domain that support the original proposition. The learning 
environment of the prison supports further crime in later life. 
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3.5   Conclusion on Models mapping, using only the structure of the source and target domains.  
It basically finds relational mappings and any object mapping 
supported by these relations and then merges these root mappings 
into larger consistent groups. The group with the highest degree of 
connectiveness (i.e., systematicity) is the preferred interpretation 
for the analogy. Computationally, SME is essentially finding the 
least-common sub-graph of the two domains of connected 
predicates [see 1, 12]. SME performs a bottom-up search through 
the space of possible inter-domain mappings retaining the largest 
mapping found. Unmatched source items are transferred to the 
target domain forming the analogical inferences. This “carry over” 
strategy has since been formalised into the CWSG (Copy With 
Substitution and Generation Algorithm) algorithm [8].   

All of these programs can instantiate the schema for analogical 
argument described in Figure 1 and as such are candidates for a 
computational treatment of argumentation by analogy.  The choice 
of one model over another could be driven by efficient 
considerations but there is a bigger issue to be resolved before any 
choice can be made. A crucial issue is whether the argument 
schema is actually accurate as a characterisation of analogical 
arguments or, more subtly, whether analogical arguments of the 
form outlined in the schema are more convincing than their factual 
equivalents. Fortunately, we have carried out some recent 
empirical work on this issue and can thus shed some light on these 
questions. 

3.2   ACME 
4   ARE PEOPLE ANALOGICALLY CONVINCED? 

The Analogical Constraint Mapping Engine [ACME, 9] models 
analogy according to SMT using a parallel constraint satisfaction 
network. It forms a localist network where each unit represents a 
possible mapping with activation/inhibition links between these 
units signifying, for example, if one mapping supports another or if 
one mapping violates the isomorphism of the mapping between the 
two domains. After the network of nodes is built activation is 
passed between the nodes until it settles into a stable state, then the 
mapping nodes with the highest activations above a given threshold 
are read off, reflecting the best interpretation for the analogy. 
Transfers are achieved by a separate CWSG mechanism. ACME 
works very efficiently once the network is built to find the optimal 
mapping, but the building of the network can be very 
computationally expensive, as its forms nodes for every predicate 
of the same parity in both domains [see 5, 11]. See LISA for a 
newer and better neural network approach to analogy by this group 
[10]. 

We have carried out several experiments designed to see whether 
analogical arguments based on the proposed schema are arguments 
that people find more convincing than their factual equivalents. In 
these experiments people were either given analogical arguments 
or factual arguments for various topical propositions (numbering 
10 in total).  The propositions dealt with topics like alcohol abuse, 
military service, the Iraq war and so on. For each proposition we 
created two supporting factual arguments and two corresponding 
analogical arguments. For example, for the proposition ‘The War 
on Iraq was justified’ the two factual arguments were that “Saddam 
was a dictator” and “Saddam committed genocide in his country”.  
The corresponding analogical arguments were that Saddam was 
like Hitler, in that “Hitler was a dictator” and “Hitler committed 
genocide in his country”.   

Participants in the study were asked to rate their belief in 
the proposition (independent of the arguments made) and also rate 
the goodness/convincingness of the factual/analogical arguments. 
These belief-bias and goodness-ratings tasks were counter- 
balanced. When analysed, they showed that people’s 
agreement/disagreement with the proposition did not predict how 
convincing they found the arguments to be. In other words, these 
undergraduate participants could consistently separate their 
assessment of the argument from their a priori belief in the 
proposition.  

3.3   IAM 
The Incremental Analogy Matching  [IAM, 5] performs serial 
constraint satisfaction after selecting a subset of the base-domain’s 
predicates from which to build the analogy incrementally. It 
performs a top-down heuristic search to find the best interpretation 
for the analogy making it more efficient than SME and ACME. 
IAM correctly predicts human performance very closely in analogy 
problems and that the order of information in a domain description 
influences solution speed and quality.  More recent versions of 
SME and the LISA model have also adopted some form of 
incrementally. 

Surprisingly, we found that people found the factual 
arguments to be reliably more convincing than the analogical 
arguments, suggesting that generations of sophist politicians have 
been wasting good comparisons on their voting audiences. 
Furthermore, this result was replicated in several successive studies 
showing that this is a robust finding. However, several 
manipulations showed that part of the source of this effect lie in the 
amount of cognitive processing people carried out on the analogy. 
We found that when people were encouraged to spend more time 
considering the analogy (e.g., to overtly draw out the comparisons, 
by being asked to explicitly indicate the matching objects in both 
domains) they started to find the analogical arguments slightly 
more convincing.  

3.4   Sapper 
Finally, Sapper [11, 12] uses a localist semantic network with 
spreading activation to model analogy in a wholly different way. 
Sapper views semantic memory as a localist-graph in which nodes 
represent distinct concepts and arcs between those nodes represent 
semantic relations between concepts. Mappings between concept 
nodes are represented by putative bridging links between these 
concepts, along with activation may/may not flow. Sapper builds 
these bridges in its knowledge base in advance of the analogical 
episode, when two concepts are analogically related in a statement, 
activation is initiated from these concept nodes and flows to related 
concepts (and across bridges) within a fixed link horizon. Sapper 
has been shown to be, perhaps, the most computationally efficient 
analogical mapper [see 11].  

Table 1 shows the results of one experiment in which 
there were four different groups of arguments: analogy-alone, 
analogy+mapping, analogy+mapping+factual and 
analogy+mapping+irrelevant. In the analogy-alone condition, 
people rated both factual and analogical arguments, where the 
analogical arguments were simply stated (as described above about 
Hitler and Saddam). In the analogy+mapping, the analogical 
argument was stated and people were asked to affirm the mappings 
established between the domain objects (e.g., that Saddam 
corresponded to Hitler etc). In the analogy+mapping+factual 
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condition, the factual equivalent of the analogical argument was 
given in conjunction with the analogy and mappings.  Finally, in 
the analogy+mapping+irrelevant, people were given the analogical 
arguments and mappings but also some additional factual material 
(e.g., other facts about Hitler). This latter condition was designed 
to control for any effects that might be due to just being given 
additional information (irrespective of its content) for the final two 
conditions. As can be seen from Table 1, the convincingness 
ratings for the factual arguments remain high and constant around 
4 and are not reliably different. In contrast, the convincingness of 
the analogical arguments gets progressively higher when people 
are given more information and are asked to consider the mappings 
in more detail. Note, that in the control condition, the 
analogy+mapping+irrelevant condition, the ratings drop back when 
people are given irrelevant additional information instead of the 
factual arguments.  

 

 
Table 1.   Results of Convincingness Experiment  

Condition Analogy Factual 

analogy-alone 3.225 4.1875 

analogy+mapping 3.985294 4.371429 

analogy+mapping+factual 4.0875 3.9375 

analogy+mapping+irrelevant 3.4125 4.05 

Average: 3.677574 4.136607 

 
These results present some interesting problems for current models 
of analogy.  They suggest that it is not enough to lead people to the 
analogical water, for them to drink from the font of conviction. In 
the final section we consider some of these implications. 

5   IMPLICATIONS FOR MODELS OF 
ARGUMENTATION 
The result of the studies of analogical arguments that we have 
outlined here, present several problems for current computational 
models. First, it is clear that people can understand analogical 
arguments though, as we have seen, they do not find them 
especially more convincing than a straight factual argument. 
Second, when they are given an analogical argument they appear to 
be more influenced by the amount of consideration they give to the 
analogy, than the content of the argument per se. The more time 
they put in to thinking about the analogy the more they find it 
convincing. The fundamental problem that these findings present 
for current analogical models is that they do not easily model any 
of these effects. All of the models would have no difficulty 
performing the analogical mappings on which the analogical 
arguments are based. Furthermore, they would not find any of 
these analogies any better or more convincing by virtue of the way 
they processed them. It is clear that any computational 
consideration of analogical arguments will require quite different 
sorts of models than those that currently exist; though it could be 
said that some properties of Sapper [11, 12] suggest that it might be 
more amenable to handling these effects. 

Finally, another very different conclusion could be drawn 
from these findings; namely, that the schema derived from SMT to 
characterise analogical arguments is inappropriate to the analogical 
arguments actually used by people. It may well be, that the schema 
is too complex for people to find convincing, it may require too 
much processing to be considered good as an analogical argument. 
We are currently pursuing this possibility by looking at much 
simpler analogical arguments; e.g., Astronauts will die in the 

attempt to reach Mars because many explorers died in the attempt 
to reach the New World.  Such arguments would, of course, require 
much less computational baggage than most current models offer. 
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