
17

AUTOMATA-THEORETIC TECHNIQUES FOR

TEMPORAL REASONING

Moshe Y. Vardi

1 Introduction . 971
2 Automata Theory . 973

2.1 Words and Trees . 973
2.2 Nondeterministic Automata on Infinite Words . 974
2.3 Alternating Automata on Infinite Words . 974
2.4 Nondeterministic Automata on Infinite Trees . 976
2.5 Alternating Automata on Infinite Trees . 976

3 Temporal Logics and Alternating Automata . 979
3.1 Linear Temporal Logic . 979
3.2 Branching Temporal Logic . 980

4 Model Checking . 982
4.1 Linear Temporal Logic . 983
4.2 Branching Temporal Logic . 983

5 Validity Checking . 985
5.1 Linear Temporal Logic . 985
5.2 Branching Temporal Logic . 985

1 INTRODUCTION

This chapter describes an automata-theoretic approach to temporal reasoning. The basic
idea underlying this approach is that for any temporal formula we can construct a finite-
state automaton that accepts the computations that satisfy the formula. For linear
temporal logics the automaton runs on infinite words while for branching temporal logics
the automaton runs on infinite trees. The simple combinatorial structures that emerge
from the automata-theoretic approach decouple the logical and algorithmic components
of temporal reasoning and yield clear and asymptotically optimal algorithms.

Temporal logics, which are modal logics geared towards the description of the temporal
ordering of events, have been adopted as a powerful tool for specifying behavior concur-
rent programs and for verifying that such programs meet their specifications [47, 57].
One of the most significant developments in this area is the discovery of algorithmic
methods for verifying temporal logic properties of finite-state programs [15, 44, 60, 81].

972 Moshe Y. Vardi

(A state of a program is a complete description of its status, including the assignment
of values to variables, the value of the program counter, which points to the instruction
currently being executed, and the like. Finite-state programs have finitely many pos-
sible states, which means that the variables range over finite domains and recursion, if
allowed, is bounded in depth.) This derives its significance from the fact that many syn-
chronization, coordination and communication protocols can be modeled as finite-state
programs [46, 63]. Finite-state programs can be modeled by transition systems where
each state has a bounded description, and hence can be characterized by a fixed number
of Boolean atomic propositions. This means that a finite-state program can be viewed
as a finite propositional Kripke structure and that its properties can be specified using
propositional temporal logic. Thus, to verify the correctness of the program with respect
to a desired behavior, one only has to check that the program, modeled as a finite Kripke
structure, is a model of (satisfies) the propositional temporal logic formula that specifies
that behavior. Hence the name model checking for the verification methods derived from
this viewpoint. An extensive survey of model checking can be found in [16, 37]. Model
checking is an algorithmic approach to program verification. It is different from the de-
ductive approach, in which in which a person, perhaps aided by computers, use deductive
techniques to prove that a program satisfy its specification [48].

We distinguish between two types of temporal logics: linear and branching (see [43]
and general discussion of temporal structures in Chapter 11 of this handbook). In linear
temporal logics, each moment in time has a unique possible future, while in branching
temporal logics, each moment in time may split into several possible futures. (For an
extensive discussion of various temporal logics, see [22].) For both types of temporal
logics, a close and fruitful connection with the theory of automata on infinite structures
has been developed. The basic idea is to associate with each temporal logic formula a
finite automaton on infinite structures that accepts the computations that satisfy the
formula. For linear temporal logic the structures are infinite words [66, 45, 68, 83],
while for branching temporal logic the structures are infinite trees [30, 69, 21, 26, 82].
This enables the reduction of temporal logic decision problems, such as satisfiability and
model checking, to known automata-theoretic problems, such as nonemptiness, yielding
clean and asymptotically optimal algorithms. This reduction is the subject matter of
this chapter. (See also Chapter 11 for a general discussion of temporal reasoning and
Chapters 4 and 7 for discussions of modal reasoning.)

Initially, the translations in the literature from temporal logic formulas to automata
used nondeterministic automata (cf. [34, 82, 83]). These translations have two disad-
vantages. First, the translation itself is rather nontrivial; For example, in [82, 83] the
translations go through a series of ad-hoc intermediate representations in an attempt to
simplify the translation. Second, for both linear and branching temporal logics there
is an exponential blow-up involved in going from formulas to automata. This suggests
that any algorithm that uses these translations as one of its steps is going to be an
exponential-time algorithm. Thus, the automata-theoretic approach did not seem to be
applicable to branching-time model checking, which in many cases can be done in linear
execution time [15, 17, 60].

In the mid 1990s, it was shown that if one uses alternating automata rather than
nondeterministic automata, then these problems can be addressed [42, 74]. Alternating
automata generalize the standard notion of nondeterministic automata by allowing sev-
eral successor states to go down along the same word or the same branch of the tree. In

