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Abstract
We study the approximation of a description logic
(DL) ontology in a less expressive DL, focussing
on the case of Horn DLs. It is common to construct
such approximations in an ad hoc way in practice
and the resulting incompleteness is typically nei-
ther analyzed nor understood. In this paper, we
show how to construct complete approximations.
These are typically infinite or of excessive size and
thus cannot be used directly in applications, but our
results provide an important theoretical foundation
that enables informed decisions when constructing
incomplete approximations in practice.

1 Introduction
There is a large number of description logics (DLs) that vary
considerably regarding their expressive power and computa-
tional properties [Baader et al., 2017] and despite prominent
standardization efforts, many different DLs continue to be
used.1 As a result, it can be necessary to convert an ontol-
ogy formulated in a DL LS , the source DL, into a different
DL LT , the target DL. For example, this happens in ontology
import when an engineer who designs an ontology formu-
lated in LT wants to reuse content from an existing ontology
formulated in LS . A particularly important case is that LT
is a fragment of LS , in which case the described problem
is ontology approximation, a form of knowledge compilation
[Selman and Kautz, 1996; Darwiche and Marquis, 2002].

In this paper, we are interested in approximating an ontol-
ogy OS formulated in a DL LS by an ontology OT formu-
lated in a fragment LT of LS , aiming to preserve all informa-
tion fromOS that is expressible inLT ; this is called a greatest
lower bound in knowledge compilation [Selman and Kautz,
1996]. Formally, for every LT concept inclusion C v D
that is formulated in the signature Σ of OS , we require that
OS |= C v D if and only if OT |= C v D, and likewise
for role inclusions and any other type of ontology statement
supported by LT . We say that OT is sound as an approxima-
tion if it satisfies the “if” part of this property and complete
if it satisfies the “only if” part. We consider the case that

1See, for example, the BioPortal repository at https://bioportal.
bioontology.org/.

OT must be formulated in Σ (non-projective approximation)
and the case that additional symbols are admitted (projective
approximation).

In practice, approximations are often constructed in an ad
hoc way that is sound but not complete. In fact, it is common
to simply drop all statements from OS that are not express-
ible in LT , or at least inexpressible parts thereof. This easily
leads to incompleteness, as illustrated by the following ex-
ample extracted from the Galen ontology2, slightly simplified
for presentation purposes. Let PathoPhen stand for “patho-
logical phenomenon”, isConOf for “is consequence of”, and
hasCon for “has consequence”. Galen contains the following
statements formulated in the DL ELHI, the first three being
concept inclusions and the fourth one a role inclusion:

Hyperhidrosis v PathoPhen u ∃hasCon.ClammySkin
∃isConOf.PathoPhen v PathoPhen

∃hasCon.PathoPhen v PrecipitatingFactor

hasCon v isConOf−.

These imply as a consequence

Hyperhidrosis v PrecipitatingFactor. (1)

Assume that this ontology has to be approximated in the frag-
ment ELH of ELHI that does not admit inverse roles. A
typical ad hoc approach would be to simply drop the role in-
clusion in the fourth line, resulting in an incomplete approx-
imation that no longer has Consequence (1). This, however,
can easily be fixed by further adding the concept inclusion

Hyperhidrosis u ∃hasCon.> v
∃hasCon.∃isConOf.Hyperhidrosis. (2)

as a (partial) substitute of the dropped role inclusion.
The aim of this paper is to systematically study the struc-

ture of complete ontology approximations. There is, however,
a major caveat. As we show, complete approximations must
be infinite even in rather simple cases. Moreover, while fi-
nite approximations exist when the depth of the concept in-
clusions to be preserved is bounded by a constant, the result-
ing approximations are still of non-elementary size. There is
no miraculous way around these facts and thus the approxi-
mations constructed in this paper cannot be directly used in

2http://www.opengalen.org/

https://bioportal.bioontology.org/
https://bioportal.bioontology.org/
http://www.opengalen.org/


applications. However, they provide an important theoretical
foundation that enable and guide informed decisions when
constructing incomplete approximations in practice. In the
above example taken from Galen, for instance, concept in-
clusion (2) is part of the complete approximation proposed in
this paper and thus an explicit candidate for inclusion also in
approximations constructed in practice.

As the source DL LS , we consider the expressive Horn DL
Horn-SRIF and fragments thereof. As the target DLLT , we
consider ELR⊥ and corresponding fragments thereof, where
ELR⊥ denotes the extension of the more widely known DL
ELH⊥ with role inclusions of the form r1 ◦ · · · ◦ rn v r.
Subsumption is EXPTIME-complete in all considered source
DLs and PTIME-complete in all cosidered target DLs [Baader
et al., 2005; Krötzsch et al., 2013]. While our approximations
do not aim at efficient reasoning, we thus support ontology
designers who build an ontology in a tractable DL and want
to import in a well-understood way from an existing ontology
formulated in a computationally more expensive DL.

We provide the following results. In Section 3, we con-
struct ELF-to-EL approximations, thus approximating away
functional roles. We then proceed to ELHI-to-ELH, approx-
imating away inverse roles, where the I typeset in small font
means that inverse roles are admitted only in role inclusions
of the form r v s− but not in concept inclusions. This is
a very common way to use inverse roles in practice, for ex-
ample more than 96% of the ontologies in BioPortal that use
inverse roles at all use them only in this form and this is sim-
ilar for other ontology repositories. We next treat ELHIF⊥-
to-ELH⊥ under a certain syntactic assumption that restricts
the interplay of role inclusions, functional roles, and inverse
roles in OS . This covers also other relevant subcases such
as ELHF-to-ELH, without syntactic restrictions. All ap-
proximations constructed in Section 3 are non-projective and
also provide finite approximations in the depth bounded case.
The completeness proofs are non-trivial and use a version of
the chase that is specifically tailored to our approximation
schemes.

In Section 4, we present ELRIF⊥-to-ELR⊥ approxima-
tions. The presented approximations are non-projective when
OS is inverse closed, meaning that for every role name r
inOS , there is a role name r̂ that is defined via role inclusions
to be the inverse of r. This also yields projective approxima-
tions for the case where inverse closedness is not assumed
and for the Horn-SRIF-to-ELR⊥ case through a well-
known normalization procedure. The completeness proof is
again non-trivial, but based on a different approach, namely
a novel connection between ontology approximation and the
axiomatizations of quasi-equations valid in classes of semi-
lattices with operators (SLOs) [Sofronie-Stokkermans, 2013;
Sofronie-Stokkermans, 2017; Kikot et al., 2017].

We then proceed to study ELI⊥-to-EL⊥ approximations
in Section 5. In contrast to the cases considered before, where
(after normalization) both LS and LT are based on the con-
cept language EL⊥, here the concept language of LS is dif-
ferent from the one of LT . We present non-projective ap-
proximations for unrestricted ontologies OS and for ontolo-
gies OS which are in the well-known normal form for ELI⊥
ontologies that avoids syntactic nesting of concepts. The two

approximation schemes are remarkably different.
In Section 6, we show that finite approximations are not

guaranteed to exist and that there are cases where depth
bounded approximations must be non-elementary in size.

Proof details are available in the appendix, which is avail-
able at http://www.informatik.uni-bremen.de/tdki/.

Related Work. Approximation in a DL context was first
studied in [Selman and Kautz, 1996] where FL concepts
are approximated by FL− concepts and in [Brandt et al.,
2002] where ALC concepts are approximated by ALE con-
cepts. In both cases, the approximation always exists, but on-
tologies are not considered. An incomplete approach to ap-
proximating SHOIN ontologies in DL-LiteF is presented
in [Pan and Thomas, 2007] and complete (projective) ap-
proximations of SROIQ ontologies in DL-LiteA are given
in [Botoeva et al., 2010]. Such approximations are guaran-
teed to exist due to the limited expressive power of DL-LiteA.
In [Lutz et al., 2012], approximation of ELU ontologies in
terms of EL ontologies is studied, the main result being that
it is EXPTIME-hard and in 2EXPTIME to decide whether
a finite complete approximation exists. An incomplete ap-
proach to approximating SROIQ ontologies in EL++ is
in [Ren et al., 2010]. There are also approaches towards
efficient DL reasoning that involve computing approxima-
tions which are intentionally incomplete to avoid compromis-
ing efficiency [Schaerf and Cadoli, 1995; Groot et al., 2005;
Carral et al., 2014]. Related to approximation is the problem
whether a given LS ontology can be equivalently rewritten
into the fragment LT of LS , either non-projectively [Lutz et
al., 2011] or projectively [Konev et al., 2016]; note that this
asks whether we have to approximate at all.

2 Preliminaries
Let NC and NR be disjoint and countably infinite sets of con-
cept and role names. A role is a role name r or an inverse
role r−, with r a role name. A Horn-SRIF concept inclu-
sion (CI) is of the form L v R, where L and R are concepts
defined by the syntax rules

R,R′ ::= > | ⊥ | A | ¬A | R uR′ | ¬L tR | ∃ρ.R | ∀ρ.R
L,L′ ::= > | ⊥ | A | L u L′ | L t L′ | ∃ρ.L

with A ranging over concept names and ρ over roles. The
depth of a conceptR or L is the nesting depth of the construc-
tors ∃ρ and ∀ρ. For example, the concept ∃r.B u ∃r.∃s.A is
of depth 2. A Horn-SRIF ontology O is a set of
• Horn-SRIF concept inclusions,
• functionality assertions func(ρ), and
• role inclusions (RIs) ρ1 ◦ · · · ◦ ρn v ρ.

We adopt the standard restriction that if n ≥ 2, then nei-
ther O |= func(ρ) nor O |= func(ρ−). The semantics of
Horn-SRIF is standard, see [Baader et al., 2017]. While
ontologies used in practice have to be finite, in this paper we
shall frequently consider also infinite ontologies. W.l.o.g,, we
generally assume that the⊥ concept occurs only in CIs of the
form C v ⊥, where C does not contain ⊥.

We briefly introduce the relevant fragments of Horn-
SRIF , for details see [Baader et al., 2017]. An ELI⊥
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concept is built according to the syntax rule for L above,
but omitting disjunction. An ELRIF⊥ ontology is a Horn-
SRIF ontology in which both the left- and right-hand sides
of CIs are ELI⊥ concepts. ELHIF⊥ is defined likewise,
but admitting only role hierarchies instead of role inclusions,
which take the form r v s. Fragments of ELRIF⊥ and
ELHIF⊥ can obtained by dropping expressive means that
are identified by a standard naming scheme: H indicates role
hierarchies, R role inclusions, I inverse roles, F functional-
ity assertions, and ·⊥ the bottom concept. It should thus be
understood, for example, what an ELI⊥ ontology is and what
an EL concept is. Among these DLs, ELR⊥ is maximal with
a tractable subsumption problem. In all of the above DLs
not contained in ELR⊥, subsumption is EXPTIME-complete
[Baader et al., 2005; Baader et al., 2008].

A signature Σ is a set of concept and role names, uniformly
referred to as symbols. When speaking of EL(Σ) concept,
we mean EL concepts that only use symbols from Σ, and
likewise for other DLs. We use sig(O) to denote the set of
symbols used in ontology O.

We now define the central notions of this paper.
Definition 1 Let OS be a Horn-SRIF ontology with
sig(OS) = Σ and let LT be any of the fragments of Horn-
SRIF introduced above. A (potentially infinite) LT ontol-
ogy OT is an LT approximation of OS if

OS |= α iff OT |= α

for all concept inclusions, role inclusions, and functionality
assertions α that fall within LT and use only symbols from Σ.
We say that OT is non-projective if sig(OT ) ⊆ Σ and pro-
jective otherwise.

For ` ∈ N ∪ {ω}, (non-projective and projective) `-
bounded LT approximations are defined in the same way ex-
cept that only concept inclusions α = C v D are considered
where C and D are of depth bounded by `.
Note that ω-bounded approximations are identical to un-
bounded approximations, we use the term only for unifor-
mity. Trivially, infinite (non-projective and projective) ap-
proximations always exist: take as OT the set of all inclu-
sions and assertions from LT that are entailed by OS . One
can show that there are ELI ontologies OS that have a finite
projective EL approximation, but no finite non-projective EL
approximation; details are in the appendix.
Example 1 Consider the ELF ontology

OS = {∃hasSupervisor.> v Employee,

func(reportsTo)}.
There is no finite EL approximation since for all n,m ≥ 1,
OS entails the EL concept inclusion

∃reportsTo.∃hasSupervisorn.> u ∃reportsTom.>
v ∃reportsTo.(∃hasSupervisorn.>

u ∃reportsTom−1.>).

In practice, it clearly does not make sense to include all these
CIs in the approximation. Similarly to the example in the
introduction, though, it may pay off to include some of them.
Choosing the right ones requires a careful inspection of the
ontology and application at hand.

With LS-to-LT approximation, LS an ontology language and
LT a fragment thereof, we mean the task of approximating an
LS ontology in LT . We call LS the source DL and LT the
target DL.

An alternative definition of approximations is obained by
dropping the restriction that α can use only symbols from
Σ. We do not use that definition because then even in the
1-bounded case, finite approximations might not exist.
Example 2 Take the ELI ontology OS = {∃r−.A v B}.
Then O |= Au ∃r.X v ∃r.(B uX) for each of the infinitely
many concept names X ∈ NC. Thus, every (projective or
non-projective) 1-bounded EL approximation of OS must be
infinite under the alternative definition of approximation.
We now make some basic observations regarding approxima-
tions. The proof is straightforward.
Lemma 1 Let OS be a Horn-SRIF ontology with
sig(OS) = Σ and LT a fragment of Horn-SRIF . Then

1. OT is an LT approximation ofOS iffOS |= OT and for
every LT ontology O with OS |= O and sig(O) ⊆ Σ,
OT |= O;

2.
⋃
i≥0O` is an LT approximation of OS if for all ` ≥ 0,
O` is an `-bounded LT approximation of OS; the same
is true for projective LT approximations provided that
sig(O`) ∩ sig(O`′) ⊆ Σ when ` 6= `′.

Point 1 may be viewed as an alternative definition of (non-
projective) approximations. Point 2 is important because it
sometimes allows us to concentrate on bounded approxima-
tions in proofs. The following is well-known, see for exam-
ple [Bienvenu et al., 2016].
Lemma 2 Given a Horn-SRIF ontology OS with
sig(O) = Σ, one can construct in polynomial time an
ELRIF⊥ ontology O′S with sig(O′S) ⊇ Σ that entails the
same Horn-SRIF(Σ) concept inclusions, role inclusions,
and functionality assertions.

The construction of the ontology O′S from Lemma 2 re-
quires the introduction of fresh concept names. Still, every `-
bounded LT approximation of O′S is a projective `-bounded
LT approximation of OS .

3 Depth Bounded Approximation
The goal of this section is to study non-projective approxi-
mations in various DLs, both in the unbounded case and in
the depth bounded case. We start with approximating away
functionality assertions, then inverse roles, and finally their
combination (assuming a certain syntactic restriction), also
admitting role hierarchies and the bottom concept. This step-
by-step approach aims to facilitate presentation and in fact the
final theorem in this section subsumes the earlier ones and is
the only one that we prove explicitly.

We start with ELF-to-EL approximation. Let C be an EL
concept and k ≥ 0. A leaf occurrence of a concept name
A in C means an occurrence of A inside a conjunction that
does not contain conjuncts of the form ∃r.D. For example,
all occurrences of A in A u B and in B u ∃r.(A u B) are
leaf occurrences, but the occurrence of A in A uB u ∃r.> is
not. By decoratingC with subconcepts fromOS at leaves, we



mean to replace any number of leaf occurrences of a concept
name A by a concept A uD1 u · · · uDk where D1, . . . , Dk

are concepts that occur in OS , possibly as subconcepts.

Theorem 1 Let OS be an ELF ontology, Σ = sig(OS),
and ` ∈ N ∪ {ω} a depth bound. Define OT to be the EL
ontology that contains:

1. all CIs from OS;
2. all CIs ∃r.C1 u ∃r.C2 v ∃r.(C1 u C2) such that

func(r) ∈ OS and C1, C2 are EL(Σ) concepts of depth
bounded by max{0, ` − 1} decorated with subconcepts
of OS at leaves.

Then OT is an `-bounded approximation of OS .

Note that the construction of OT is entirely syntactic, that is,
it involves no reasoning. Due to Point 2, OT is infinite when
` = ω. On the other hand, OT is finite when ` < ω and
thus Theorem 1 proves the existence of finite depth bounded
non-projective approximations in the ELF-to-EL case. It is
interesting to remark that Theorem 1 also reproves the upper
bound for subsumption in ELF : first extend the ontology so
that it suffices to decide subsumption between concept names,
then compute the 0-bounded approximation which is of sin-
gle exponential size, and then decide subsumption in EL in
PTIME [Baader et al., 2005]. Note that for ` = 0, the con-
cepts C1, C2 in Point 2 of Theorem 1 are simply conjunctions
of subconcepts from OS .

We next consider inverse roles. Here, the most basic case
is that inverse roles can occur in role inclusions, but not in
concepts. As noted in the introduction, this case actually oc-
curs rather frequently in practice. To indicate the restricted
use of inverse roles, we typeset the I in a smaller font, as in
ELHIF and ELRIF . The most basic case is now that of
ELHI-to-ELH approximation. We assume w.l.o.g. that role
inclusions only take the two forms r v s and r v s−.

Theorem 2 Let OS be an ELHI ontology, Σ = sig(OS),
and ` ∈ N ∪ {ω} a depth bound. Define OT to be the ELH
ontology that contains, for `′ = max{0, `− 1}:

1. all CIs from OS;
2. all RIs r v s such that OS |= r v s and role names r, s

occur in OS;
3. all CIs C1 u ∃r.C2 v ∃r.(C2 u ∃s.C1) such that OS |=
r v s−, ∃s.C1 is a subconcept of OS or an EL(Σ) con-
cept of depth bounded by `, and C2 is an EL(Σ) con-
cept of depth bounded by `′ decorated with subconcepts
of OS at leaves.

Then OT is an `-bounded approximation of OS .

Note that Point 2 is not entirely syntactic, but involves reason-
ing. It is easy to see and well-known, however, that in ELI
deciding whether OS |= r v s is in PTIME.

We now consider the ELHIF⊥-to-ELH⊥ case which
combines functional and inverse roles. It turns out that there
are subtle interactions between functional, inverse roles, and
role hierarchies which we tame by making the following as-
sumption:

(♥) OS |= r v s− implies that neither func(s) ∈ OS nor
func(s−) ∈ OS .

The next theorem is the main result of this section.

Theorem 3 Let OS be an ELHIF⊥ ontology that satis-
fies (♥), Σ = sig(OS), and ` ∈ N ∪ {ω} a depth bound.
Define OT to be the ELH⊥ ontology that contains, for `′ =
max{0, `− 1}:

1. all CIs from OS;
2. all r v s such that OS |= r v s, r, s role names that

occur in OS;
3. all CIs C1 u ∃r.C2 v ∃r.(C2 u ∃s.C1) such that OS |=
r v s−, ∃s.C1 is a subconcept of OS or an EL(Σ) con-
cept of depth bounded by `, and C2 is an EL(Σ) con-
cept of depth bounded by `′ decorated with subconcepts
of OS at leaves;

4. all CIs ∃r1.C1u∃r2.C2 v ∃r1.(C1uC2) such that there
is a role name s with OS |= r1 v s, OS |= r2 v s,
and func(s) ∈ OS , and C1, C2 are EL(Σ) concepts of
depth bounded by `′ decorated with subconcepts of OS
at leaves.

Then OT is an `-bounded approximation of OS .

It is not hard to see that Theorem 3 implies Theorems 1
and 2. It also settles additional approximation cases such as
ELHF⊥-to-ELH⊥, without syntactic assumptions. Points 2
to 4 require deciding whether OS |= r v s(−), which is
EXPTIME-complete in ELHIF⊥ as can be proved by mutual
reduction with subsumption.

It is straightforward to verify that the ontology OT con-
structed in Theorem 3 is sound as an approximation, that is,
OS |= OT . Completeness is non-trivial. It is established
by first introducing a version of the chase that is closely tai-
lored towards the construction of OT given in Theorem 3,
then showing that the chase is sound and complete regard-
ing the derivation of EL(Σ) CIs of depth bounded by `, and
finally proving that the CIs in OT can simulate derivations
of the chase. With chase, we mean a rule based approach to
constructing (infinite) ‘canonical models’ [Kontchakov and
Zakharyaschev, 2014].

An interesting observation about the proof of Theorem 3 is
that it actually yields a more general result than stated in that
theorem. Instead of `-bounded approximations, one could de-
fine Γ-bounded approximations for any set of EL⊥-concepts
Γ closed under subconcepts, that is, only concepts from Γ are
considered in concept inclusions α in Definition 1. We then
obtain a version of Theorem 3 in which “concept of depth
bounded by ` or `′” is replaced with “concept from Γ” (deco-
rated with subconcepts ofOS at leaves as needed). While one
could choose for Γ the set of all concepts of depth bounded by
some `, other choices of Γ might be natural, too. For example,
if one wants to decide subsumption between compound EL
concepts C and D relative to an ELHI ontology OS without
resorting to concept names, then one can approximate OS in
EL relative to the set Γ of subconcepts of C and D and then
check whether OT entails C v D. While this is clearly not
efficient in practice, it raises the interesting question of how to
identify sets Γ that are tailored towards the actual application
of an ontology.

We now briefly discuss the case in which the restric-
tion (♥) is dropped. One can prove that we then need to



extend Points 1 to 4 of Theorem 3 with the following:
5. all CIs ∃r.∃s.C v C such that OS |= r v s−,

func(s) ∈ OS , and C is a subconcept of OS or an
EL(Σ) concept of depth bounded by `;

6. all CIs ∃s.∃r.C v C such that OS |= r v s−,
func(s−) ∈ OS , and C is a subconcept of OS or an
EL(Σ) concept of depth bounded by `.

However, this is still not sufficient to obtain a complete ap-
proximation. Consider the ELHI ontology

OS = {A v ∃r1.∃r2.(B u ∃s.>),

s v r1, s v r−2 , func(r−1 ), func(r−2 )}.

It can be verified that OS |= A v B. However, it can also
be proved that even whenOT is the set of all statements from
Points 1 to 6 with ` = 0, OT 6|= A v B. It remains open
whether a transparent (non-projective) approximation is pos-
sible when (♥) is dropped.

4 Unbounded Approximation
We provide a significant extensions of Theorem 3 for the
case of unbounded approximations, using an entirely differ-
ent strategy for the completeness proof. In particular, we do
not assume the (♥) restriction adopted in Theorem 3, ad-
mit inverse roles also in concepts, and add general role in-
lusions both to the source and target DL, that is, we consider
ELRIF⊥-to-ELR⊥ approximation. There is a small price
that we have to pay for this generality: the approximations
constructed here are projective as for every role name from
the original ontology, they contain a (potentially fresh) role
name that represents its inverse. It is remarkable that this
rather mild form of projectiveness overcomes several prob-
lems from the purely non-projective case.

An ELRIF⊥ ontology O is inverse closed, that is, for ev-
ery role name r in O, there is a role name r̂ such that O
contains r v r̂− and r̂ v r−. We provide non-projective ap-
proximations under the assumption that the source ontology
is inverse closed. This also yields projective approximations
for source ontologies that are not inverse closed because we
can first extend OS with the required role names r̂ and then
approximate. Note that in practice, there are relevant exam-
ples of ontologies that are inverse closed such as Galen. If our
source is inverse closed, we can further assume that there are
no other occurrences of inverse roles in OS , neither in con-
cept inclusions nor in other role inclusions. In other words,
our source ontology is formulated in ELRIF⊥.
Theorem 4 Let OS be an inverse closed ELRIF⊥ ontology
and Σ = sig(OS). Define OT to be the ELR⊥ ontology that
contains for all EL(Σ) concepts C,D:

1. all CIs in OS;
2. all RIs r v s with OS |= r v s, r, s ∈ Σ role names;
3. all RIs r1 ◦ · · · ◦ rn v r and r̂n ◦ · · · ◦ r̂1 v r̂ such that
r1 ◦ · · · ◦ rn v r ∈ OS with n ≥ 2;

4. all CIs C u ∃r.D v ∃r.(D u ∃r̂.C);
5. all CIs ∃r.C u ∃r.D v ∃r.(C u D) such that

func(r) ∈ OS;
6. all CIs ∃r.∃r̂.C v C such that func(r̂) ∈ OS .

Then OT is an ELR⊥ approximation of OS .

Note that Points 1 to 3 essentially take over the part of OS
that is expressible in ELR⊥, Point 4 aims at capturing the
consequences of inverse roles, Point 5 at functional roles, and
Point 6 at the interaction between functional roles and inverse
roles. Points 4 to 6 all introduce infinitely many CIs. Via
Lemma 2, Theorem 4 also yields projective approximations
for the Horn-SRIF-to-ELR⊥ case.

The following example shows that the CIs in Point 5 of
Theorem 3, which unlike Point 5 of Theorem 4 mix functional
roles and role inclusions, are implied by the ontology OT
constructed in Theorem 4. The example also illustrates the
strength of the ‘inverse closed’ property.

Example 3 Let r1 v s, r2 v s, func(s) ∈ OS , and let
C1, C2 be EL-concepts. We aim to show that

OT |= ∃r1.C1 u ∃r2.C2 v ∃r1.(C1 u C2).

Due to Points 2 and 5 in Theorem 4, it suffices to show that

OT |= ∃s.Ci u ∃ri.> v ∃ri.Ci for i ∈ {1, 2}.

This CI, in turn, can be proved from OT as follows:

OT |= ∃s.Ci u ∃ri.>
v ∃ri.(> u ∃r̂i.∃s.Ci) (Point 4)
v ∃ri.(> u ∃ŝ.∃s.Ci) (r̂i v ŝi ∈ OT by Point 2)
v ∃ri.(> u Ci) (Point 6).

It is straightforward to show that the ontology OT from
Theorem 4 is sound as an approximation. To prove complete-
ness, we establish a novel connection between EL⊥ approx-
imations and axiomatizations of the quasi-equations that are
valid in classes of semilattices with operators (SLOs) [Jack-
son, 2004; Sofronie-Stokkermans, 2017; Kikot et al., 2017].
Roughly speaking, an approximation is obtained from such
an axiomatization by instantiating its equations, which corre-
spond (in the sense of modal correspondence theory) to the
role inclusions in the original ontology, with EL concepts.

5 Inverse Roles in Concept Inclusions
As discussed before Theorem 4, the approximations provided
by that theorem also cover the case where inverse roles are
admitted in concept inclusions. This is achieved, however,
by first making the ontology inverse closed and then drop-
ping inverse roles from CIs. Here, we investigate alterna-
tive approaches in the basic case of ELI⊥-to-EL⊥, both non-
projectively and projectively, in the latter case using a well-
known normal form for ELI⊥ ontologies that avoids syntac-
tic nesting [Baader et al., 2017].

A key to constructing non-projective approximations is the
observation that concepts of the form ∃r−.C can be used as a
marker that is invisible to EL⊥.

Example 4 Let OS = {A v ∃s−.>,∃r−.∃s−.> v
∃s−.>,∃s−.> v B}. Then OS |= C v C ′ for all EL con-
cepts C,C ′ where C ′ is obtained from C by decorating with
B any node that is reachable inC from a node decorated with
A along an r-path (we view an EL concept as a tree in the
standard way, see for example [Konev et al., 2018]).



We now give a non-projective approximation that captures
the effect demonstrated in Example 4. For an ELI⊥ ontol-
ogy OS , let clEL(OS) denote the set of all EL concepts that
can be obtained by starting with a subconcept of a concept
from OS and then replacing every subconcept of the form
∃r−.D with >. Let C be an EL concept. An EL concept C ′
is a clEL(OS) decoration of C if it can be obtained from C
by conjunctively adding concepts from clEL(OS) to a single
occurrence of a subconcept in C.

Theorem 5 Let OS be an ELI⊥ ontology and Σ =
sig(OS). Define OT to be the EL⊥ ontology OT that con-
tains for all EL(Σ) concepts C:

1. all CIs C v C ′ such that OS |= C v C ′, C ′ a
clEL(OS) decoration of C;

2. all CIs C v ⊥ such that OS |= C v ⊥.

Then OT is an EL⊥ approximation of OS .

We prove completeness by a chase based approach. The
CIs in Theorem 5 are rather different from those that we have
used in Sections 3 and 4 to deal with inverse roles. In a sense,
they provides less guidance for constructing approximations
in practice because the CIs that need to be considered are less
constrained than those in Sections 3 and 4. We do not know
whether it is possible to non-projectively approximate away
inverse roles in concept constructors using more constrained
CIs. Instead, we observe that we can get back to the same
CI scheme for inverse roles by assuming the source ontology
OS to be in normal form, that is, all CIs in OS have one of
the forms > v A1, A1 v ⊥, A1 v ∃ρ.A2, ∃ρ.A1 v B, and
A1 u · · · uAn v B where A1, . . . , An, B range over concept
names and ρ ranges over roles. Every ELI⊥ ontologyOS can
be converted into an ELI⊥ ontology O′S in normal form in
linear time such that O′S is a conservative extension of O : S
[Baader et al., 2017]. Clearly, any approximation of O′S is
then a projective approximation of OS .
Theorem 6 Let OS be an ELI⊥ ontology in normal form,
Σ = sig(OS), and ` ∈ N ∪ {ω} a depth bound. Define OT
to be the EL⊥ ontology OT that contains:

1. all CIs from OS that are of the form > v A, A v ⊥,
∃r.A v B, or A v ∃r.B,;

2. all CIs A1 u · · · u An v B such that OS |= A1 u · · · u
An v B, A1, . . . , An, B ∈ NC occur in OS;

3. all CIs A u ∃r.C v ∃r.(C u B) such that ∃r−.A v
B ∈ OS and C is an EL(Σ) concept of depth bounded
by `− 1.

Then OT is an `-bounded EL⊥ appoximation of OS .

It is straightforward to verify that OT is sound. To prove
completeness, we again use a chase based strategy.

6 Size of Approximations
We prove that finite (unbounded) approximations are not
guaranteed to exist and that depth bounded approximations
can be non-elementary in size. These results hold both
for projective and non-projective approximations and for all
combinations of source and target DL considered in this pa-
per. The ontologies used to prove these results are simple and

show that also for most ontologies that occur in practical ap-
plications, neither finite (complete) approximations nor depth
bounded (complete) approximations of elementary size can
be expected. We focus on the cases ELIH-to-ELH, ELHF-
to-ELH, and ELHI-to-ELH, starting with unbounded ap-
proximations.
Theorem 7 None of the ontologies

{∃r−.A v B}, {func(r), A v A}, {r v s−, A v A}
has finite projective ELH approximations.

To get an idea of the proof, consider OS = {∃r−.A v B}
and let OT be a projective ELH approximation of OS . For
all n ≥ 0, letCn = ∃rn.>, where ∃rn denotes n-fold nesting
of an existential restriction, and observe that

OS |= A u ∃r.Cn v ∃r.(B u Cn).

To establish the desired result, we prove that for every n ≥ 0,
there is a subconcept Mn of OT such that OT |= Mn v Cn
and OT 6|= Mn v Cm for any m > n.

We next show that bounded depth approximations can be
non-elementary in size. The function tower : N ×N → N

is defined as tower(0, n) := n and tower(k + 1, n) :=
2tower(k,n). The size of a (finite) ontology is the number
of symbols needed to write it, with concept and role names
counting as one. We use Γn to denote a fixed finite tautolog-
ical set of EL concept inclusions that contains the symbols
Σn = {r1, r2, A1, Â1, . . . , An, Ân}.
Theorem 8 Let n ≥ 0 and let On be the union of Γn with
any of the following sets:

{∃r−.A v B}, {func(r), A v A}, {r v s−, A v A}
For every ` ≥ 1, any `-bounded projective ELH approxima-
tion OT of On must be of size at least tower(`, n).

7 Conclusion
It remains an open problem to develop informative non-
projective approximations for (unrestricted) ELHIF⊥-to-
ELH⊥ or even for Horn-SHIF-to-ELH⊥ and Horn-
SRIF-to-ELR⊥. It would also be interesting to further ex-
tend the expressive power of both the source and target DLs.
For example, nominals and range restrictions could be added
even without compromising tractability of the latter [Baader
et al., 2005]. We remark that Theorem 4 can be adapted to the
extension ELRdr⊥ of ELR⊥ with range restrictions as the tar-
get DL by additionally including in OT the range restriction
ran(r) v ∃r̂.> for every role name r in OS . Once more, in-
verse closedness pays off here, and a corresponding extension
of Theorem 3 is much more challenging.

There are many other relevant approximation cases that we
did not touch upon, including the approximation of non-Horn
DLs such as ALC, SHIQ, and SROIQ in (tractable and
intractable) Horn DLs. It would further be of interest to un-
derstand how approximations can be better tailored towards
relevant applications, for example in the spirit of choosing a
set Γ of relevant concepts as discussed in Section 3.
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A Details for Section 2
We give an example of a ELI ontology with a finite projec-
tive EL approximation but no finite non-projective EL ap-
proximation.
Example 5 Consider the ELI ontology

OS = O ∪ {A v ∃r.∃s−.>,∃s−.> v ∃r.∃s−.>}
where

O = {∃s.> v ∃s.(AuX), X v ∃r.(AuX), X v ∃s.(AuX)}.
Then an infinite non-projective EL approximation of OS is
OT = O ∪ {A v ∃ri.> | i ≥ 0}, there is no finite non-
projective approximation, and a finite projective EL approxi-
mation for OS is OT = O ∪ {A v Y, Y v ∃r.Y }.

B Details for Section 3
Theorem 9 Given an ELHF-ontology O and roles r, s, it is
EXPTIME-complete to decide whether OS |= r v s.
Proof. The theorem is proved by mutual reduction with sub-
sumption between concept namesA,B relative to an ELHF-
ontology O. Such reductions are easy since we have that

1. O |= A v B iff O ∪O′ |= s1 v s2 where

O′ = {∃s1.> v A,B v ∃s2.>, s1 v r, s2 v r, func(r)},
s1, s2, r fresh role names;

2. O |= r v s iff O ∪O′ |= A v B where

O′ = {A v ∃r.>,∃s.> v B},
A,B fresh concept names.

o

B.1 The Chase
We start with introducing ABoxes, which the chase proce-
dure uses as a data structure. Let NI be a countably infi-
nite set of individual names disjoint from NC and NR. An
ABox is a finite set of concept assertions A(a), and role as-
sertions r(a, b) where A ∈ NC, r ∈ NR, and a, b ∈ NI.
We use Ind(A) to denote the set of individual names that
occur in the ABox A. An interpretation I satisfies a con-
cept assertion A(a) if a ∈ AI and a role assertion r(a, b) if
(a, b) ∈ rI . Note that we adopt the standard names assump-
tion here, which implies the unique name assumption. An
interpretation if a model of an ABox if it satisfies all asser-
tions in it. For an ontology O, ABox A, a ∈ Ind(A), and
ELI concept C, we write A,O |= C(a) if a ∈ CI for ev-
ery model I of A and O. Moreover, A is consistent with O
if A and O have common model. We write A |= C(a) if
a ∈ CI where I is A viewed as an interpretation in the ob-
vious way. An ABox A is ditree-shaped if the directed graph
GA = (Ind(A), {(a, b) | r(a, b) ∈ A} is a tree; note that
multi-edges are admitted.

Let O be an ELHIF⊥ ontology. Starting from a ditree-
shaped ABoxA, the chase exhaustively applies the following
rules:
R1 If A |= C(a) and C v D ∈ O with D 6= ⊥, then add

D(a) to A;

R2 If r(a, b) ∈ A and O |= r v s with r, s role names, then
add s(a, b) to A;

R3 If r(a, b) ∈ A,O |= r v s−, andA |= C(a) with ∃s.C a
subconcept ofO or an EL(Σ) concept of depth bounded
by `− 1,3 then add ∃s.C(b) to A;

R4 If r1(a, b1), r2(a, b2) ∈ A, A |= C1(b1), A |= C2(b2),
C1, C2 EL(Σ) concepts of depth bounded by `−1,O |=
r1 v s, O |= r2 v s, and func(s) ∈ O, then add
∃r1.(C1 u C2)(a) to A;

Note that the rule R3 is parameterized by a depth bound `
that is assumed to be identical to the depth bound ` used
in the construction of OT . It can be verified that when the
chase is started on a ditree-shaped ABox, then all ABoxes
produced are ditree-shaped; in particular, ‘backwards edges’
as enforced by role inclusions of the form r v s− are not
made explicit, but only treated implicitly.

The chase applies the above rules exhaustively in a fair
way. We assume that rules are not applied when its post-
condition is already satisfied. For example, R3 is not applied
when A |= ∃s.C(b). Using database theory parlance, one
could say that our chase is not oblivious. This has the (un-
desired) consequence that the result of the chase, obtained in
the limit by exhaustive and fair rule application, is not unique
as it depends on the order in which rules are applies. How-
ever, all possible results are homomorphically equivalent and
for the constructions in this paper, it does not matter which
of the many possible results we use. For simplicity, we thus
pretend that the outcome of the chase is unique and denote
it with chaseO(A). The (desired) consequence of not being
oblivious is that the (infinite) ABox chaseO(A) has finite
outdegree.

The following lemma implies that the chase is (sound and)
complete regarding consequences formulated in terms of EL
concepts of depth bounded by `. It is, however, incomplete
regarding deeper EL concepts and regarding consequences
formulated in ELI.

Lemma 3 Let O be an ELHIF⊥ ontology and A a ditree-
shaped ABox with root a0. Then

1. A is inconsistent with O iff there are C v ⊥ ∈ O and
a ∈ Ind(A) with chaseO(A) |= C(a), and

2. if A is consistent with O, then A,O |= C0(a0) iff
chaseO(A) |= C0(a0) for all EL concepts of depth at
most `.

Proof. We consider both points simultaneously. The “if”
directions are straightforward. In fact, it suffices to show that
whenever an ABoxA′ is obtained from a ditree-shaped ABox
A by application of one of the rules, then every model of A
and O is also a model of A′ and O. This is straightforward
using a case distinction according to which rule is applied and
easy semantic arguments.

For the (contrapositive of the) “only if” directions, assume
that there are no C v ⊥ ∈ O and a ∈ Ind(A) such
that chaseO(A) |= C(a), respectively that chaseO(A) 6|=
C(a0). We show how to construct a model J of A

3If ` = 0, then there are no concepts of the latter form.



and O such that for all a ∈ Ind(A) and EL concepts C,
chaseO(A) 6|= C(a) implies a /∈ CJ . This implies that A
is consistent with O (since ⊥ occurs in O only in the form
C v ⊥), respectively that A,O 6|= C(a0).

Let ∼ be the smallest equivalence relation on the individ-
uals in chaseO(A) such that whenever chaseO(A) contains
r(a, b1) and r(a, b2) with func(r), then b1 ∼ b2. Clearly, for
any equivalence class of ∼, there is an individual a such that
all individuals of the class are successors of a in the ditree
chaseO(A). We call a the predecessor of the class. An indi-
vidual b is maximal if for every b′ with b ∼ b′ and every EL
concept C of depth at most `− 1 with chaseO(A) |= C(b′),
we have chaseO(A) |= C(b).

Claim 1. Every equivalence class of ∼ contains a maximal
individual.

It is clear that the outdegree of the ditree chaseO(A) is fi-
nite and thus each equivalence class {b1, . . . , bk} of ∼ is fi-
nite since all individuals in it have a common predecessor.
Assume that the class does not contain a maximal individ-
ual. Then there must be bi1 , bi2 in the class and EL con-
cepts C1, C2 of depth at most `− 1 such that chaseO(A) |=
C1(bi1), chaseO(A) |= C2(bi2), and there is no bi3 in
the class with chaseO(A) |= C1(bi3) and chaseO(A) |=
C2(bi3). But this situation is impossible since R4 was ap-
plied exhaustively.

Let A1 be obtained by closing chaseO(A) as follows:
(†1) whenever r(a, b) ∈ chaseO(A) and O |= r v s−, then

add s(b, a).
Note that while chaseO(A), A1, and A2 only have down-
wards edges, (†3) only adds upwards edges. Moreover, due to
the assumed syntactic restriction (♥), when (†3) adds s(b, a),
then func(s) /∈ O and func(s−) /∈ O. We say that (†3) does
not add functional edges respectively does not add inverse
functional edges.

Next, let A2 be obtained from A1 as follows:
(†2) whenever b1 and b2 are successors of a with b1 ∼ b2 and

ρ(a, b2) ∈ A1, then add ρ(a, b1) .
Note that (†2) may add both upwards and downwards edges,
but it does not add functional or inverse functional upwards
edges. In fact, let rab2 be the primary role name between a
and b2, that is, t(a, b2) ∈ A0 implies O |= rab2 v t. Such
a role name must exist by definition of the chase: rabi is the
role name from the first edge that the chase has introduced
between a and b2 and all remaining edges were added later by
R2. Now observe that rab2 v ρ and thus if ρ is an inverse role
then by (♥) it can neither be functional nor inverse functional.

Finally, let A3 be obtained from A2 as follows:
(†3) for every individual a and every ∼-equivalence class

{b1, . . . , bk} of which a is the predecessor: choose a
maximum individual bi and remove all edges r(a, bj)
and subtrees rooted at bj , j 6= i.

For brevity, let A0 = chaseO(A). We prove the following
central claim:

Claim 2. For every EL concept C that is a subconcept of O
or of depth bounded by `, every a ∈ ∆I , and i ∈ {0, 1, 2},

Ai |= C(a) iff Ai+1 |= C(a).

We distinguish the cases i ∈ {0, 1, 2}. In all cases, the proof
is by induction on the structure of C and the only interesting
case is that C is of the form ∃s.D.

Case i = 0. Since the “only if” direction is clear, we
concentrate on “if”. Assume that A1 |= ∃s.D(a) and let
s(a, b) ∈ A1 with b ∈ A1 |= D(b). The induction hypoth-
esis yields chaseO(A) |= D(b). If s(a, b) ∈ chaseO(A),
then clearly chaseO(A) |= ∃s.D(a). If this is not the case,
then s(a, b) was added by (†1). Then b is a predecessor of a
and there is r(b, a) ∈ chaseO(A) such that O |= r v s−.
Since chaseO(A) |= D(b), R3 was applied resulting in
chaseO(A) |= ∃s.D(a).

Case i = 1. Since the “only if” direction is clear, we
concentrate on “if”. First assume that ρ is a role name s.
Thus assume that A2 |= ∃s.D(a) and let s(a, b) ∈ A2 with
A2 |= D(b). The induction hypothesis and Case i = 0
yield A0 |= D(b). The interesting case is that s(a, b) was
added to A2 by (†2). Then b is a successor of an individual a
and a has another successor b2 such that s(a, b2) ∈ A1 and
b ∼ b2. Since (†1) adds only upwards edges, s(a, b2) ∈ A0.
Since b ∼ b2, there are individuals c1, . . . , ck and role names
r1, . . . , rk−1 such that
• c1 = b and ck = b2

• ri(a, ci), ri(a, ci+1) ∈ A0 for 1 ≤ i < k

• func(r1), . . . , func(rk−1) ∈ O.
For 1 ≤ i ≤ k, let raci be the primary role name between a
and ci. We must have
• O |= raci v ri(a, ci) for 1 ≤ i < k

• O |= raci v ri(a, ci−1) for 1 < i ≤ k.
We can thus apply R4 k − 1 times to obtain an individual
b′ such that rack(a, b′) ∈ A0 and A0 |= D(b′); note in this
context that D is of depth at most ` − 1. We already know
that O |= rack v s and thus R2 yields s(a, b′) ∈ A0 which
implies A0 |= ∃s.D(a) and thus A1 |= ∃s.D(a) as required.
The case where ρ is an inverse role s− is similar. In fact, the
statement “s(a, b2) ∈ A0” is then replaced with “t(a, b2) ∈
A0 for some role name t with t v s−”. We can use the same
argument as above and add at the end that (†1) has added
s(b′, a).

Case i = 2. Here, the “if” direction is clear and we con-
centrate on “only if”. Thus assume that A2 |= ∃s.D(a) and
let s(a, b) ∈ A2 with A2 |= D(b). The interesting case is
when s(a, b) and the subtree below b was removed by (†3).
By Cases i = 0 and i = 1, A0 |= D(b). By Claim 1,
there is a maximal b′ from the equivalence class of b and
thus A0 |= D(b′) implying A2 |= D(b′). Because of (†2),
s(a, b′) ∈ A2 and thus A2 |= ∃s.D(a) as required. This
finishes the proof of Claim 2.

Let I be A3 viewed as an interpretation. We first argue
that I satisfies all role inclusions in O. Thus let r v ρ ∈
I and (a, b) ∈ rI . Then r(a, b) ∈ A3. First assume that
r(a, b) ∈ A0. Then ρ(a, b) ∈ A0 by R2 and (†1) and thus
ρ(a, b) ∈ A3. The case that r(a, b) was added by (†1) also
relies on R2 and (†1), and the semantics. Now assume that



r(a, b) was added by (†2). There are two cases. Either b is a
successor of a and a has another successor b2 such that b ∼ b2
and r(a, b2) ∈ A1. But then ρ(a, b2) ∈ A1 and thus (†2)
adds also s(a, b). Or a is a successor of b and b has another
successor a2 such that a ∼ a2 and r(a, b2) ∈ A1. Again, (†2)
adds also s(a, b).

We next show that I satisfies all functionality assertions
in O. To see this, assume that (a, b1), (a, b2) ∈ ρI and
func(ρ) ∈ O where ρ is a role name or the inverse thereof. If
ρ is an inverse role, we must have b1 = b2 as required: since
chaseO(A) is ditree-shaped, for every individual a there is at
most one b with r(b, a) ∈ chaseO(A) for every role name r.
Since (†1) and (†2) do not add inverse functional edges, the
same is true for A3 when func(r−) ∈ O. Now assume that
ρ is a role name r. Since (†1) and (†2) do not add functional
upwards edges, both edges r(a, b1), r(a, b2) must also be in
A0 and must thus be downwards edges. But then (†3) ensures
that b1 = b2.

It follows from Claim 2 that I satisfies all concept inclu-
sions C v D ∈ O with D 6= ⊥. In fact, let a ∈ CI . Claim 2
yields chaseO(A) |= C(a), rule R1 gives chaseO(A) |=
D(a) and applying Claim 2 once more gives a ∈ DI .

We now finish the proofs of the “only if” directions of
Points 1 and 2 of Lemma 3. For Point 1, by assumption
we have chaseO(A) 6|= C(a) for all a ∈ Ind(A) and
C v ⊥ ∈ O, and thus Claim 2 implies that all concept in-
clusions C v ⊥ ∈ O are satisfied by I. Thus, I is a model
of O, which shows that A is consistent with O, finishing the
argument.

For Point 2, by assumption we have that A is consistent
with O and that chaseO(A) 6|= C(a0). From the former
and the already established “if” direction of Point 1, we get
chaseO(A) 6|= C(a) for all a ∈ Ind(A) and C v ⊥ ∈ O.
Thus, I is again a model of O and Claim 2 yields a0 /∈ CI0 ,
thus A,O 6|= C0(a0) as required. o

B.2 Completeness
We now prove the completeness part of Theorem 3, start-
ing with some preliminaries. For an ABox A and an inter-
pretation I, a function h : Ind(A) → ∆I is a homomor-
phism from A to I if h(a) ∈ AI for every A(a) ∈ A and
(h(a), h(b)) ∈ rI for every r(a, b) ∈ A. For two ABoxes
A1 and A2, a function h : Ind(A1) → Ind(A2) is a ho-
momorphism from A1 to A2 if A(h(a)) ∈ A2 for every
A(a) ∈ A1 and r(h(a), h(b)) ∈ A2 for every r(a, b) ∈ A1.
We recall that every EL concept C can be viewed as a
ditree-shaped ABox AC . By convention, we assume that
the root individual in such an ABox is a0. For example, the
EL concept A u ∃r.B u ∃s.> can be viewed as the ABox
{A(a0), r(a0, b1), B(b1), s(a0, b2)}. The following is widely
known and straightforward to establish.

Lemma 4 Let C be an EL concept, I an interpretation, and
d ∈ ∆I . Then d ∈ CI iff there is a homomorphism h from
AC to I with h(a0) = d.

The next lemma is the central step in the completeness
proof. It says that the chase introduced above can in a sense
be simulated by the statements in the ontology OT .

Lemma 5 Let C be an EL(Σ) concept of depth bounded
by ` decorated with subconcepts ofOS at leaves,A0,A1, . . .
the sequence of ABoxes constructed by chaseOS

(AC), I a
model of OT , and d ∈ CI . Then for every i ≥ 0, there is a
homomorphism hi from Ai to I with hi(a0) = d.

Proof. The proof is by an induction on the number of ap-
plications of the chase rule R3 used to compute the sequence
A0, . . . ,Ai. For the induction start, assume that R3 was not
applied at all. We show that for all j ≤ i, there is a homo-
morphism hj from Aj to I with hj(a0) = d. For j = 0, it
suffices to apply Lemma 4. Now assume that hj has already
been constructed, j < i. We show how to find hj+1, making
a case distinction according to the rule that is applied in order
to obtain Aj+1 from Aj .

R1. Then Aj |= C(a), C v D ∈ OS , and Aj+1 is ob-
tained from Aj by adding D(a). We must have hj(a) ∈ CI .
Since C v D is a CI inOT and I is a model ofOT , a ∈ DI .
Thus hj can be extended to a homomorphism from Aj+1 to
I in a straightforward way.

R2. Then r(a, b) ∈ Aj , OS |= r v s, and Aj+1 is ob-
tained from Aj by adding s(a, b). We have r v s ∈ OT and
thus hj+1 = hj is a homomorphism from Aj+1 to I.

R4. There are r1(a, b1), r2(a, b2) ∈ Aj such that Aj |=
C1(b1), Aj |= C2(b2), C1, C2 EL(Σ) concepts of depth
bounded by ` − 1, OS |= r1 v s, OS |= r1 v s,
func(s) ∈ OS , and Aj+1 is obtained from Aj by adding
∃r1.C1 u C2(a). Clearly, hj(a) ∈ (∃r1.C1 u ∃r2.C2)I . By
construction,OT contains ∃r1.C1u∃r2.C2 v ∃r1.(C1uC2).
Consequently, hj(a) ∈ ∃r1.(C1 u C2)I . We can thus extend
hj to the desired homomorphism hj+1 from Aj+1 to I in a
straightforward way.

Now for the induction step. Assume that there were k > 0
applications of R3 in the sequence A0, . . . ,Ai and that the
last such application was used to obtain Ap+1 from Ap, p <
i. By induction hypothesis, we find a homomorphism hp from
Ap to I with hp(a0) = d. We argue that we also find such a
homomorphism hp+1 from Ap+1 to I. We can then proceed
as in the induction start to obtain the desired homomorphism
from Ai to I.

Since R3 was applied, there are r(a, b) ∈ Ap, a role name
s, and an EL concept C ′ with ∃s.C ′ a subconcept of OS or
of depth bounded by ` such thatAp |= C ′(a),OS |= r v s−,
andAp+1 is obtained fromAp by adding ∃s.C ′(b). SinceAp
is ditree-shaped, a is the predecessor of b. By definition of
the chase, there is a primary role name rab between a and b,
as in the proof of Lemma 3: for every t(a, b) ∈ Ap, we have
OS |= rab v t and thus also OT |= rab v t. It suffices to
show that there is a db ∈ ∆I such that (hp(a), db) ∈ rIab and a
homomorphism hb fromAp+1|b to I with hb(b) = db, where
Ap+1|b is the restriction of Ap+1 to the subtree rooted at b.
In fact, it is then straightforward to combine hp and hb into
the desired homomorphism hp+1: set hp+1(c) = hp(c) if c is
not in Ap+1|b and hp+1(c) = hb(c) otherwise. Observe that
t(a, b) ∈ Ap+1 implies (h(a), db) ∈ tI for all role names
t since (hp(a), db) ∈ rIab, I is a model of OT , and no new



edges between a and b have been added in the construction of
Ap+1 from Ap. In particular, OT |= rab v r.

For brevity, letAb = Ap|b and set Ind = {b}∪(Ind(Ab)∩
Ind(AC)). That is, Ind contains only those individuals from
Ab that were present already in the initial ABox AC , and if
there is no such individual, then Ind = {b}. An individual
c ∈ Ind is a fringe individual if there is some t(c, c′) ∈ Abp
with c′ /∈ Ind. Further, let Ab−p be the restriction of Abp
to assertions that only use individuals from Ind extended by
adding E(c) whenever E is a subconcept of OS and c is a
fringe individual such that Ap |= E(c), and let Cb be this
ABox viewed as an EL concept.

We must have hp(b) ∈ CIb and thus hp(a) ∈ (C ′ u
∃rab.Cb)I . Since ∃s.C ′ is a subconcept of OS or of depth
at most ` and Cb is an EL concept of depth at most `′ (by
construction and because C is of depth bounded by `; recall
that `′ = max{` − 1, 0}) decorated with subconcepts of OS
at leaves, C ′ u ∃rab.Cb v ∃rab.(Cb u ∃s.C ′) ∈ OT . Conse-
quently, there is a db ∈ (Cb u ∃s.C ′)I with (da, db) ∈ rIab.
Let B be obtained fromA−b by adding ∃s.C ′(b), as in the con-
struction of Ap+1. By Lemma 4, there is a homomorphism
hb from B to I with hb(b) = db. It remains to extend hb from
B to Ap+1|b.

To this end, consider each fringe individual c. Let Cc be
the EL concept that is the conjunction of all subconcepts E
of OS with Ab |= E(c). We can extract from the chase
sequence A0, . . . ,Ap a chase sequence that constructs Ap|c
starting fromACc and uses at most k− 1 applications of spe-
cial rules. From the induction hypothesis and since clearly
hb(c) ∈ CIc , we thus obtain a homomorphism hc from Ac to
I with hc(c) = hb(c). It is now straightforward to combine
our initial hb with all the homomorphisms hc into the desired
homomorphism hb from Ap+1|b to I. o

We are now ready to prove completeness of the approxima-
tion constructed in Theorem 3. It is immediate by construc-
tion of OT that OS |= r v s implies OT |= r v s for all role
names r, s ∈ Σ. it thus remains to show the following.

Lemma 6 OS |= C v D implies OT |= C v D for all
EL(Σ) concepts C of depth at most ` and EL⊥ concepts D.

Proof. By Point 2 of Lemma 1 and construction of OT , it
suffices to consider the case ` < ω. Assume OS |= C v D
with C,D as in Lemma 6 and let I be a model of OT with
d ∈ CI . We have to show that d ∈ DI . First assume that
the ABoxAC is consistent withOS . By Point 2 of Lemma 3,
chaseOS

(AC) |= D(a0). Let AC = A0,A1, . . . be the
sequence of ABoxes generated by the chase when started
on AC . Then chaseOS

(AC) |= D(a0) implies that there
is an Ai with Ai |= D(a0). An analogue of Lemma 4 for
homomorphisms into ABoxes thus yields a homomorphism
h from AD to Ai with h(a0) = a0 (defined in the expected
way). By Lemma 5, there further is a homomorphism h′ from
Ai to I with h(a0) = d. Composing these, we obtain a ho-
momorphism from AD to I that maps a0 to d and applying
Lemma 4 yields d ∈ DI , as required. Now assume thatAC is
inconsistent withOS . Then by Point 1 of Lemma 3, there are
C ′ v ⊥ ∈ OS and a ∈ Ind(A) with chaseOS

(A) |= C ′(a).
We can argue as above that there is a homomorphism from

AC′ to I, and thus C ′I 6= ∅ in contradiction to the facts that
I is a model of OT and C ′ v ⊥ ∈ OT . o

C Details for Section 4
We show that one can obtain approximations from axioma-
tizations of the quasi-equations valid in classes of bounded
semilattices with operators (SLOs). Theorem 4 is an instance
of a general result stating that, under certain conditions, by
identifying CIs with equations in the theory of SLOs, the
substitution instances of the equations used in an axiomati-
zation provide the additional CIs needed to approximate on-
tologies. This link between approximation and algebra can
be used in a number of different ways: (1) existing axioma-
tization results can be used directly, as a black box, to obtain
approximations; (2) if no axiomatization is available yet for
the conditions on roles expressed in a DL of interest, the alge-
braic machinery can be used to determine a new axiomatiza-
tion and, thereby, the corresponding approximation; (3) ‘neg-
ative’ results from algebra can be used to show that certain
natural candidates for approximations do not work.(4) con-
versely, one can use approximation results to obtain axioma-
tizations of classes of SLOs. In fact, the direct approximation
proofs presented above provide a novel technique for obtain-
ing axiomatizations of classes of SLOs. Note that the link to
algebra does not provide any depth bounded approximations
from axiomatizations.

This section is structured as follows. After introducing the
relevant algebraic notation, we prove a general result link-
ing approximations to complex equational theories of SLOs,
where an equational theory Ax of SLOs is complex if ev-
ery SLO validating Ax can be respresented by subsets (com-
plexes) of an interpretation validating Ax. This link is proved
for equational theories of SLOs corresponding to arbitrary
first-order conditions on roles. We then prove that any set P
of functionality assertions and role inclusions that is inverse
closed corresponds to a complex equational theory and apply
this result to prove Theorem 4.

We introduce the relevant notation for semilattices with
operators. A bounded semilattice with monotone operators
(SLO) is an algebraic structure

A = (A,∧A,⊥A,>A, (♦A
r | r ∈ R))

such that (A,∧A,⊥A,>A) is a bounded semilattice satisfy-
ing the equations

∀x (x ∧A x ≈ x) (3)

∀x ∀y (x ∧A y ≈ y ∧A x) (4)

∀x ∀y ∀z (x ∧A (y ∧A z)) ≈ (x ∧A y) ∧A z) (5)

∀x (x ∧A >A ≈ x), ∀x (x ∧A ⊥A ≈ ⊥A) (6)

andR is a set of role names such that the unary operators ♦A
r ,

r ∈ R, satisfy the equation

∀x ∀y (♦A
r (x ∧A y) ∧A ♦A

r y) ≈ ♦A
r (x ∧A y) (7)

♦A
r ⊥A ≈ ⊥A (8)

In a SLO A, the partial order≤A is defined as usual by taking
a ≤A b iff a ∧A b = a, for all a, b in A. It is readily seen that



♦A
r is monotone with respect to ≤A: if a ≤A b then ♦A

r a ≤A

♦A
r b, for all a, b in A, and that ♦A

r >A = >A. SLO terms τ
over R are constructed from variables using the connectives
∧, ⊥, >, and ♦r, r ∈ R, in the obvious way:

τ, σ := x | ⊥ | > | τ ∧ σ | ♦rτ
where x ranges over a countably infinite set of variables. A
SLO equation takes the form σ ≈ τ , where σ, τ are SLO
terms; a SLO quasi-equation takes the form α1 ∧ · · · ∧αn →
α, where α1, . . . , αn, α are SLO equations. For SLO terms
σ and τ we use σ ≤ τ as a shorthand for the equation σ ∧
τ ≈ σ. A valuation v in a SLO A is a mapping from the set
of variables into A. The value v(τ) of a SLO term τ in A
is defined by induction over the construction of τ by setting
v(⊥) = ⊥A, v(>) = >A, v(σ ∧ τ) = v(σ) ∧ v(τ), and
v(♦rτ) = ♦A

r v(τ), for all role names r ∈ R. An equation
σ ≈ τ is true under v in A if v(σ) = v(τ). An equation σ ≈
τ is valid in A, in symbols A |= σ ≈ τ , if σ ≈ τ is true under
all valuations in A. A quasi-equation ρ = α1 ∧ · · · ∧αn → α
is valid in A if α is true under all valuations under which
α1, . . . , αn are true. Equational theories of SLOs have been
investigated in [Jackson, 2004; Beklemishev, 2014; Sofronie-
Stokkermans, 2017; Kikot et al., 2017].

Every SLO term τ defines an EL⊥ concept τC by replacing
every variable xwith a concept nameAx, and the connectives
∧ and ♦r with u and ∃r, respectively. For example, (♦rx ∧
>)C = ∃r.Ax u >. Then any SLO equation α = (σ ≤ τ)
defines the CI αC = σC v τC . We denote by ·T the obvious
converse of ·S associating with every EL⊥ conceptC (CI α) a
SLO termCT (SLO equation αT , respectively). For example,
(∃r.∃r.Ax v ∃r.Ax)T = ♦r♦rx ≤ ♦rx.

We are in the position now to formulate the fundamental
equivalence of EL⊥ TBox reasoning and the validity of SLO
quasi-equations [Sofronie-Stokkermans, 2017; Kikot et al.,
2017].
Theorem 10 For any EL⊥ ontologyO and CI C v D: O |=
C v D iff

∧
α∈O α

T → (C v D)T is valid in all SLOs.
Theorem 9 and the correspondence between axiomatiza-

tions and approximations we are after are proved by showing
that every SLO (validating a set Ax of equations) can be repre-
sented by the set of subsets of a DL interpretation (satisfying
a role constraint P corresponding to Ax). In detail, every in-
terpretation I defines a SLO I+ over any setR of role names
by setting [Goldblatt, 1989]:

I+ = (2∆I ,∧I
+

,⊥I
+

,>I
+

, (♦I
+

r | r ∈ R)),

where for X,Y ⊆ ∆I :

X ∧I
+

Y = X ∩ Y
>I

+

= ∆I

⊥I
+

= ∅
♦I

+

r X = {d ∈ ∆I | ∃d′ ∈ X (d, d′) ∈ rI}
Observe that the definition of the SLO I+ does not depend
on the interpretation of concept names in I. Therefore, we
mostly define the SLO F+ for frames F , interpretations in
which AF = ∅ for all concept names A. One can apply al-
gebraic notation to interpretations in a straightforward way.

For example, we say that a SLO equation or quasi-equation
is valid in I if it is valid in the algebra I+. It is known that
natural contraints on the interpretation of roles can be cap-
tured by the validity of SLO equations. For example, if r, s
are role names, then r is included in s in an interpretation
I iff the equation ♦rx ≤ ♦sx is valid in I. Formally, call
a set P of first-order sentences using role names as binary
predicates a role constraint. Then we say that a role con-
straint P corresponds to a set Ax of SLO equations if any
interpretation I satisfies P iff I+ |= α, for all α ∈ Ax.
The table below gives a sample set of role constraints and
the corresponding SLO equations. These correspondences
are well known from correspondence theory in modal logic
and are, in particular, instances of the correspondence part of
Sahlqvist’s Theorem [van Benthem, 1984; Blackburn et al.,
2001]. We refer the reader to [Sofronie-Stokkermans, 2017;
Kikot et al., 2017] for more examples.

Role constraint Equation
func(r) ♦rx ∧ ♦ry ≤ ♦r(x ∧ y)
r v s− x ∧ ♦ry ≤ ♦r(y ∧ ♦sx)
r1 ◦ · · · ◦ rn v r ♦r1 · · ·♦rnx ≤ ♦rx

The following example illustrates how we use these corre-
spondences to determine approximations.

Example 6 Consider a ELF⊥ ontologyOS containing as its
only role assertion func(r). Thus,OS = O∪{func(r)}, for a
setO of CIs. Set Σ = sig(OS). To approximateOS by a EL⊥
ontology, we take the equation α = (♦rx∧♦ry ≤ ♦r(x∧y))
corresponding to func(r) and replace inOS the functionality
assertion func(r) by the set of all CIs obtained from αC by
substitutingAx andAy by arbitrary EL⊥(Σ) concepts. Thus,
we form the set αΣ of all CIs ∃r.C u ∃r.D v ∃r.(C u D),
where C,D are EL⊥(Σ) concepts and claim that OT = O ∪
αΣ is an EL⊥ approximation of OS .

It is easy to see that correpondence of func(r) to α entails
that OS |= OT . The converse direction (OS |= C v D
implies OT |= C v D for all EL⊥(Σ) CIs C v D), how-
ever, does not follow from correspondence and requires sig-
nificantly more work - which we discuss next.

We develop a necessary and sufficient condition for when
equations Ax corresponding to a role constraint P provide a
EL⊥ approximation of ontologies of the form O ∪ P , where
O is a set of EL⊥ CIs.

A homomorphism h between SLOs A1 and A2 is a map-
ping h from the domain A1 of A1 to the domain A2 of A2

preserving all operations, for example h(♦A1
r a) = ♦A2

r h(a)
for all a ∈ A1 and r ∈ R. An embedding is an injective
homomorphism. A set Ax of SLO equations is complex if for
every SLO A validating Ax there exists a frame F validating
Ax such that A can be embedded into F+. Thus, if Ax is
complex, then every SLO A validating Ax can be regarded as
a system of sets (aka complexes) over a frame validating Ax.
Call Ax quasi-equation complete if a quasi-equation is valid
in all SLOs validating Ax just in case it is valid in all SLOs
of the form I+ validating Ax. It can be proved that a set
Ax of SLO equations is complex iff it is quasi-equation com-
plete [Kikot et al., 2017]. Theorem 9 can be proved by show-
ing that the empty set of SLO equations is complex. In other



words, the empty role constraint P corresponds to the empty
complex set Ax of equations. For an equation α = (σ ≤ τ)
we denote by αΣ the set of all CIs obtained from αC by uni-
formly substituting every Ax in αC by any EL⊥(Σ) concept
D. Let AxΣ denote the union of all αΣ, α ∈ Ax. We are now
in the position to formulate the announced criterion for ap-
proximations. Observe that the approximations only depend
on the role constraint of the ontology and not on its CIs.
Theorem 11 [Approximation/Axiomatization] Let P be a
role constraint and Ax a set of SLO equations correspond-
ing to P . Then the following conditions are equivalent:

1. O∪AxΣ is a EL⊥ approximation ofO∪P , for all EL⊥
ontologies O with Σ = sig(O);

2. Ax is complex;
3. Ax is quasi-equation complete.
Proof. We first show that (2) implies (1). Assume Ax is

complex and letO be an EL⊥ ontology and with Σ = sig(O∪
P ). We have to show that for all EL⊥(Σ) concepts C,D:
O ∪ P |= C v D iff O ∪ AxΣ |= C v D. The direction
(⇐) follows from the observation that every interpretation
satisfying P validates Ax and, therefore, satisfies all CIs in
AxΣ. Conversely, assume that O ∪ AxΣ 6|= C v D. Take an
interpretation I satisfying O ∪ AxΣ such that I 6|= C v D.
Let R be the set of role names in Σ. Define the SLO A =
(A,∧A,⊥A,>A, (♦A

r | r ∈ R)) as the restriction of the SLO
I+ to {CI | sig(C) ⊆ Σ}. In more detail,

A = {CI | sig(C) ⊆ Σ}
X ∧A Y = X ∩ Y

>A = >I

⊥A = ∅
♦A
r X = {d ∈ ∆I | ∃d′ ∈ X (d, d′) ∈ rI}

Then A validates Ax: to see this let v be a valuation in A.
By definition, for every variables x there exists a EL⊥(Σ)
concept Cx with v(x) = CIx . Let σ ≤ τ ∈ Ax. Obtain σs
and τs from σC and τC by substituting everyAx byCx. Then
σs v τs ∈ AxΣ. Thus I |= σs v τs and so A |=v σ ≤ τ , as
required.

As Ax is complex, there exists a frame G validating Ax such
that there is an embedding h from A into G+. Extend G to an
interpretation J by setting AJ = h(AI) for every concept
name A. Then J is a model of O validating Ax and refuting
C v D. Thus, J is a model ofO and P and refuting C v D.

We now show that (1) implies (3). Assume Ax is not
quasi-equation complete. Take A validating Ax and a quasi-
equation α1 ∧ · · · ∧ αn → α such that
(a) A 6|= α1 ∧ · · · ∧ αn → α;
(b) I |= α1 ∧ · · · ∧ αn → α for all I validating Ax.

We may assume that all variables and ♦r used in α are used
in some αi. Let v be a valuation in A such that α1, . . . , αn
are true in A under v and α is refuted in A under v. Take a
frame F such that A is embedded into F+ via an injective
homomorphism h. Define a model J by expanding F by
setting AJx = h(v(x)), for all variables x in α1, . . . , αn, α.

Let O = {αT1 , . . . , αTn} and Σ = sig(O ∪ P ). Then I is a
model of AxΣ (since A validates Ax) and I 6|= αT . It follows
that O ∪ AxΣ 6|= αT . However, by Point (b), O ∪ P |= αT .

The equivalence (2)⇔ (3) is proved in [Kikot et al., 2017].
o

We now exhibit role constraints given by role assertions and
inclusions and corresponding axioms that are complex. An
application of Theorem 10 then provides the desired approx-
imations. Let P be a set of role assertions and inclusions.
Recall that we call P inverse closed if for every role name r
in P there is a role name r̂ such that r v r̂−, r̂ v r− ∈ P
and there are no additional occurrences of inverse roles in
P . Recall that we assume that P is safe in the sense that for
any assertion ρ1 ◦ · · · ◦ ρn v ρ ∈ P with n ≥ 2 neither
P |= func(ρ) nor P |= func(ρ−) holds.

Theorem 12 Let P be an inverse closed and safe set of func-
tionality assertions and RIs and let Ax contain the following
equations, for all role names r, s in P :

1. ♦rx ≤ ♦sx if P |= r v s;
2. ♦rx ∧ ♦ry ≤ ♦r(x ∧ y) if func(r) ∈ P ;
3. x ∧ ♦ry ≤ ♦r(y ∧ ♦r̂x);
4. ♦r♦r̂x ≤ x if func(r̂) ∈ P ;
5. ♦r1 · · ·♦rnx ≤ ♦rx and ♦r̂n · · ·♦r̂1x ≤ ♦r̂x if r1◦· · ·◦
rn v r ∈ P .

Then P corresponds to Ax and Ax is complex.

Proof. Correpondence is straightforward, so we focus on
proving that Ax is complex. We start by introducing some
equations implied by Ax. We set P |=∗ func(r) if there exists
s such that P |= r v s and P |= func(s).
(A) Ax |= ♦rx∧♦s> ≤ ♦sx if P |=∗ func(r) and P |= s v

r. To see this, assume P |= r v u and func(u) ∈ P .
Then

Ax |= ♦rx ∧ ♦s> ≤ ♦ux ∧ ♦s>
by the equations under Point (1.). We have by the equa-
tions under Point (3.)

Ax |= ♦ux ∧ ♦s> ≤ ♦s(> ∧ ♦ŝ♦ux)

Thus,
Ax |= ♦ux ∧ ♦s> ≤ ♦s♦ŝ♦ux

By the equations under Point (1.)

Ax |= ♦ux ∧ ♦s> ≤ ♦s♦û♦ux

By the equations under Point (4.)

Ax |= ♦ux ∧ ♦s> ≤ ♦sx

We obtain

Ax |= ♦rx ∧ ♦s> ≤ ♦sx,

as required.
(B) Ax |= ♦rx ∧ ♦ry ≤ ♦r(x ∧ y) if P |=∗ func(r). To see

this, assume P |= r v u and func(u) ∈ P . Then, by the
equations under Point (1.)

Ax |= ♦rx ∧ ♦ry ≤ ♦ux ∧ ♦uy



By the equations under Point (2.)

Ax |= ♦ux ∧ ♦uy ≤ ♦u(x ∧ y)

Thus, by (A),

Ax |= ♦rx ∧ ♦ry ≤ ♦r(x ∧ y)

(C) Ax |= ♦r♦r̂x ≤ x if P |=∗ func(r̂). This follows from
the equations under Point (1.) and (4.).

We introduce the notion of a filter that is used in the proof.
A filter F in a SLO A is a subset of A such that >A ∈ F ,
⊥A 6∈ F , and for all a, b ∈ A: b ∈ F if a ∈ F and a ≤A b,
and a ∧ b ∈ F if a, b ∈ F .

Now assume A is given. We define a frame F such that
there is an embedding from A to F+. Let ∆F be the set of all
filters in A. For any role name r, the definition of rF depends
on whether r and/or r̂ are functional:

1. if P |=∗ func(r) and P |=∗ func(r̂), then set (F1, F2) ∈
rF if for all a ∈ A the following hold: (i) ♦ra ∈ F1 iff
a ∈ F2 and (ii) ♦r̂a ∈ F2 iff a ∈ F1. r̂F is defined as
the inverse of rF .

2. if P |=∗ func(r) and P 6|=∗ func(r̂), then set (F1, F2) ∈
rF if for all a ∈ A the following hold: (i) ♦ra ∈ F1 iff
a ∈ F2 and (ii) ♦r̂a ∈ F2 if a ∈ F1. r̂F is defined as the
inverse of rF .

3. if P 6|=∗ func(r) and P 6|=∗ func(r̂), then set (F1, F2) ∈
rF if for all a ∈ A the following hold: (i) ♦ra ∈ F1 if
a ∈ F2 and (ii) ♦r̂a ∈ F2 if a ∈ F1. r̂F is defined as the
inverse of rF .

This finishes the definition of F . We first show that F satis-
fies P .

• Assume r v s ∈ P . We have to check that r v s is sat-
isfied in F . If neither P |=∗ func(s) nor P |=∗ func(ŝ),
then rF ⊆ sF follows directly from the definition and
the equations under Point (1.) of Theorem 11.
Now assume that P |=∗ func(s). Then P |=∗ func(r).
Assume (F1, F2) ∈ rF . We have to show (F1, F2) ∈
sF . Thus, we first have to show that ♦sa ∈ F1 iff a ∈
F2. If a ∈ F2, then ♦ra ∈ F1. Then ♦sa ∈ F1 by the
equations under Point (1) of Theorem 11, as required.
If ♦sa ∈ F1, then ♦ra ∈ F1 since ♦r> ∈ F1 (by the
equations under (A)). Then a ∈ F2, as required. Next
we make a case distinction: if P 6|=∗ func(ŝ), then we
have to show that ♦r̂a ∈ F2 if a ∈ F1. But this follows
from P |= r̂ v ŝ and the equations under Point (1). If
P |=∗ func(ŝ), then we have to show that ♦ŝa ∈ F2 iff
a ∈ F1. This can be proved again using the equations
under Point (1) and (A).
The case P |=∗ func(ŝ) is considered in the same way.

• Assume func(r) ∈ P . Then functionality of rF follows
directly from the definition.

• Assume r1 ◦ · · · ◦rn v r ∈ P . Let (F1, F2) ∈ (r1 ◦ · · · ◦
rn)I . As P is safe, we have to show that if ♦ra ∈ F1,
then a ∈ F2 and if ♦r̂a ∈ F2, then a ∈ F1. Both can
be proved in a straightforward way using the equations
under Point (5) of Theorem 11.

It remains to construct an embedding h from A into F+. De-
fine h by setting

h(a) := {F ∈ ∆F | a ∈ F},

for all a ∈ A. It is straightforward to show that h is an injec-
tive mapping with

• h(>A) = ∆F ;

• h(⊥A) = ∅;
• h(a ∧A b) = h(a) ∩ h(b).

It thus remains to prove that

h(♦A
r a) = ♦F

+

r h(a)

for all role names r. We first assume that P |=∗ func(r)
and P |=∗ func(r̂). Assume a filter F is given. Suppose
♦ra0 ∈ F . We have to show the existence of a filter F ′ with
a0 ∈ F ′ such that (F, F ′) ∈ rF . Consider

X = {a | ♦ra ∈ F} ∪ {♦r̂b | b ∈ F}

and
Y = {a | ♦ra 6∈ F} ∪ {♦r̂b | b 6∈ F}

It suffices to show the existence of a filter F ′ containing X
with an empty intersection with Y . To this end it suffices to
prove that there is no finite conjunction c of members of X
such that c ≤ e for some e ∈ Y . Assume an arbitrary such c
is given. It takes the form

c = a1 ∧ · · · ∧ an ∧ ♦r̂b1 ∧ · · ·♦r̂bm
with ♦ra1, . . . ,♦ran ∈ F and b1, . . . , bm ∈ F . Then, by the
axioms under Point (B), we have ♦r(a1 ∧ · · · ∧ an) ∈ F . We
also have b1 ∧ · · · ∧ bm ∈ F . Thus we may assume that

c = a ∧ ♦r̂b

for some a with ♦ra ∈ F and b ∈ F . For a proof by contrac-
tion first assume that

a ∧ ♦r̂b ≤ a′

for some a′ with ♦ra′ 6∈ F . Then

♦r(a ∧ ♦r̂b) ≤ ♦ra
′

by monotonicity of ♦r. But by the equations under Point (3.)
of Theorem 11,

b ∧ ♦ra ≤ ♦r(a ∧ ♦r̂b)

Then from b ∧ ♦ra ∈ F (since b,♦ra ∈ F ) and b ∧ ♦ra ≤
♦ra′ we obtain ♦ra′ ∈ F and we have derived a contradic-
tion.

Now assume
a ∧ ♦r̂b ≤ ♦r̂b

′

for some b′ 6∈ F . Then, by the equations under Point (3.) of
Theorem 11 and Point (C) and monotonicity of ♦r,

b ∧ ♦ra ≤ ♦r(a ∧ ♦r̂b) ≤ ♦r♦r̂b
′ ≤ b′

which contradicts the assumptions that b,♦ra ∈ F and b′ 6∈
F .



Now assume that P |=∗ func(r) and P 6|=∗ func(r̂). As-
sume a filter F is given. Suppose first ♦ra0 ∈ F . We have
to show the existence of a filter F ′ with a0 ∈ F ′ such that
(F, F ′) ∈ rF . Consider

X = {a | ♦ra ∈ F} ∪ {♦r̂b | b ∈ F}

and

Y = {a | ♦ra 6∈ F}

It suffices to show the existence of a filter F ′ containing X
with an empty intersection with Y . To this end it suffices to
prove that there is no finite conjunction c of members of X
such that c ≤ e for some e ∈ Y . Assume an arbitrary such c
is given. As shown above, we may assume that

c = a ∧ ♦r̂b

for some a with ♦ra ∈ F and b ∈ F . Now one can prove that

a ∧ ♦r̂b ≤ a′

for some a′ with ♦ra′ 6∈ F leads to a contradiction in exactly
the same way as above.

Suppose now that ♦r̂a0 ∈ F . We have to show the exis-
tence of a filter F ′ with a0 ∈ F ′ such that (F ′, F ) ∈ rF .
Consider

X = {♦ra | a ∈ F} ∪ {a0}

and

Y = {♦ra | a 6∈ F} ∪ {b | ♦r̂b 6∈ F}

It suffices to show the existence of a filter F ′ containing X
with an empty intersection with Y . To this end it suffices
to prove that there is no finite conjunction c of members of
X such that c ≤ e for some e ∈ Y . We may assume that
c = a0 ∧ ♦ra for some a ∈ F . Assume that

a0 ∧ ♦ra ≤ ♦ra
′

for some a′ 6∈ F . Then by the equations under Point (3.) of
Theorem 11 and (C)

a ∧ ♦r∗a0 ≤ ♦r̂(a0 ∧ ♦ra) ≤ ♦r̂♦ra
′ ≤ a′

which contradicts the assumption that a,♦r̂a ∈ F .
Assume that

a0 ∧ ♦ra ≤ b

for some b with ♦r̂b 6∈ F . Then by the equations under
Point (3.) of Theorem 11

a ∧ ♦r̂a0 ≤ ♦r̂(a0 ∧ ♦ra) ≤ ♦r̂b

which again contradicts the assumption that a,♦r̂a ∈ F .

The remaining case in which P 6|=∗ func(r) and P 6|=∗
func(r̂) is similar and omitted. o

Theorems 11 and 10 provide us with an EL⊥ approximation
OT of any inverse closed ELRIF⊥ ontology OS .

Theorem 13 Let OS be an inverse closed ELRIF⊥ ontol-
ogy and Σ = sig(OS). Define OT as the EL⊥ ontology con-
taining for all EL(Σ) conceptsC,D and role names r, s ∈ Σ:

1. all CIs in OS;

2. ∃r.C v ∃s.C if OS |= r v s;
3. ∃r1. · · · ∃rn.C v ∃r.C and ∃r̂n. · · · ∃r̂1.C v ∃r̂.C, if
r1 ◦ · · · ◦ rn v r ∈ OS with n ≥ 2;

4. C u ∃r.D v ∃r.(D u ∃r̂.C);

5. ∃r.C u ∃r.D v ∃r.(C uD) if func(r) ∈ OS;

6. ∃r.∃r̂.C v C if func(r̂) ∈ OS .

Then OT is an EL⊥ approximation of OS .

Theorem 4 is an immediate consequence of Theorem 12: if
OS is the EL⊥ approximation given by Theorem 12 and O′S
is the ELR⊥ ontology given in Theorem 4, then O′S |= OS
since

{r v s} |= ∃r.C v ∃s.C
and

{r1 ◦ · · · ◦ rn v r} |= ∃r1. · · · ∃rn.C v ∃r.C

and

{r1 ◦ · · · ◦ rn v r} |= ∃r̂n. · · · ∃r̂1.C v ∃r̂.C.

The following examples show that correspondence between
role assertions and SLO axioms alone does not imply that the
axioms are complex and, therefore, cannot be used to obtain
EL⊥ approximations. They also show that approximations
are not compositional.

Example 7 Recall that the role assertion P0 = {r v s−}
corresponds to the axiom α0 = (x ∧ ♦ry ≤ ♦r(y ∧ ♦sx)).
Using the technique of the proof of Theorem 11, it is straight-
forward to show that α0 is complex. Thus, Theorem 10 pro-
vides a EL⊥ approximation of any ontologyO∪P0 withO a
set of EL⊥ inclusions. This is not the case if one admits two
such role assertions. To show this, consider

P1 = {r1 v r−2 , r2 v r−3 }

and let
O1 = {A v ∃r1.B} ∪ P1

Then P1 corresponds to

Ax1 = {x∧♦r1y ≤ ♦r1(y∧♦r2x), x∧♦r2y ≤ ♦r2(y∧♦r3x)}

However, O′1 = {A v ∃r1.B} ∪ Ax
{r1,r2,r3,A,B}
1 is not a

EL⊥ approximation of O1. To prove this, observe that

O1 |= A v r3.B.

We show that O′ 6|= A v ∃r3.B. Define an interpretation I
by setting
• ∆I = {a, b, c, d};
• rI1 = {(a, b), (c, d)};
• rI2 = {(b, c), (d, c)};



• rI3 = {(c, d)};
• AI = {a, c}, BI = {b, d}.

Then I is a model of O′1 but a ∈ AI \ (∃r3.B)I .
Observe that one obtains a EL⊥ approximation of O1 by

adding the axiom ♦r1x ≤ ♦r3x corresponding to r1 v r3 to
Ax1.
The next example also refutes compositionality of approxi-
mations. In this case for combinations of RIs with function-
ality assertions.
Example 8 Let

P2 = {r v s−, func(s)}
Both role assertions in P2 correspond to complex axioms,
namely

α2 = (x ∧ ♦ry ≤ ♦r(y ∧ ♦sx))

and
α3 = (♦sx ∧ ♦sy ≤ ♦s(x ∧ y)),

respectively. Ax2 = {α2, α3} is not complex, however, and

O′2 = {> v ∃r.>,> v ∃s.A} ∪ Ax
{r,s,A}
2

is not a EL⊥ approximation of

O2 = {> v ∃r.>,> v ∃s.A} ∪ P2

To show this, first observe that O2 |= > v A. To prove
this, let I be a model of O2 and assume (d, d′) ∈ rI . Then
(d′, d) ∈ sI and from functionality of s and > v ∃s.A we
obtain d ∈ AI . On the other hand, O′2 6|= > v A: consider
the interpretation I with domain ∆I = {d, d′}, rI = sI =
∆I × ∆I and AI = {d}. Then I is a model of O′2 but
d′ 6∈ AI .

One can define a EL⊥ approximation of O2 by adding the
axiom ♦r♦sx ≤ x (corresponding to the equations under
Point (4.) of Theorem 11) to Ax2.
Finally, we give an example illustrating why the equations
under Point (4.) of Theorem 11 are needed.
Example 9 Let

P3 = {t v r, func(r)}
Both role assertions in P2 correspond to complex axioms,
namely

α4 = (♦tx ≤ ♦rx)

and
α5 = (♦rx ∧ ♦ry ≤ ♦r(x ∧ y)),

respectively. Ax3 = {α4, α5} is not complex, however, and

O′3 = {∃r.A u ∃t.> v ∃t.A} ∪ Ax
{t,r,A}
3

is not a EL⊥ approximation of

O3 = {∃r.A u ∃t.> v ∃t.A} ∪ P3

To show this, first observe that O3 |= ∃r.A u ∃t.> v ∃t.A.
On the other hand, O′3 6|= ∃r.A u ∃t.> v ∃t.A. To see this,
consider the interpretation I defined by setting
• ∆I = {a, b, c};
• rI = {(a, b)}, tI = {(a, c)}, AI = {b}.

Then I is a model of O′3 but a 6∈ (∃t.A)I .

D Details for Section 5
In Section 5, we introduced two ELI⊥-to-EL⊥ approxima-
tions. In this section, we deliver further details for both cases.

D.1 The Chase (non-projective)
Let O be an ELI ontology and Σ = sig(O). We again as-
sume that ⊥ occurs only in CIs of the form C v ⊥. Starting
from an ABox A, the chase exhaustively applies the follow-
ing rules:
R1 If A |= C(a) and C v D ∈ OS with D 6= ⊥, then add

D(a) to A.
The chase applies this rule exhaustively in a fair way. When
the resulting sequence of ABoxes is A = A0,A1, . . . , we
use chaseO(A) to denote

⋃
i≥0Ai. For simplicity, we as-

sume here that the chase is oblivious in the sense that the rule
applies even when the consequenceA |= D(a) already holds.
Consequently, chaseO(A) is uniquely defined. The follow-
ing is easy to establish, details are omitted.
Lemma 7 Let O be an ELI ontology and A an ABox. Then

1. A is inconsistent with O iff there are C v ⊥ ∈ O and
a ∈ Ind(A) with chaseO(A) |= C(a);

2. if A is consistent with O, then A,O |= C(a) iff
chaseO(A) |= C(a) for all ELI concepts C and a ∈
Ind(A).

We are going to use the chase on ditree-shaped ABoxes.
When started on such an ABox, all generated ABoxes
are tree-shaped, that is, the undirected graph GuA =
(Ind(A), {{a, b} | r(a, b) ∈ A} is a tree (possibly with
multi-edges); they are not guaranteed to be ditree-shaped.

D.2 Completeness (non-projective)
We prove the completeness part of Theorem 5. It is not diffi-
cult to prove that sinceOS is formulated in ELI, for any role
inclusion r v s, OS |= r v s implies OHS |= r v s where
OHS is the set of role inclusions from OS . Since OHS ⊆ OT ,
we have OS |= r v s iff OT |= r v s and it remains to deal
with concept inclusions.

For a tree-shaped ABoxA, we useA↓ to denote the restric-
tion ofA to assertions in which all individuals a are reachable
from the root of A along a directed role path, that is, A con-
tains assertions r0(a0, a1), . . . , rn−1(an−1, an) where a0 is
the root of A and an = a.
Lemma 8 Let C be an EL(Σ) concept, A0,A1, . . . the se-
quence of ABoxes constructed by chaseOS

(AC), I a model
of OT , and d ∈ CI . Then for every i ≥ 0, there is a homo-
morphism hi from A↓i to I with hi(a0) = d.
Proof. The proof is by induction on i. The induction start is
immediate by Lemma 4 and since A0 = AC . For the induc-
tion step, we make a case distinction according to the chase
rule applied to obtain Ai+1 from Ai.

R1. Assume the rule was applied to individual a ∈
Ind(Ai) and CI E v F ∈ OS . Let F EL be the result of
replacing in F every subconcept ∃r−.G with >. Moreover,
let A↓,−i be A↓i after removal of all role edges that have been
added by an application of rule R2, and likewise for A↓,−i+1.



Further, let C↓,−i beA↓,−i viewed as an EL concept, and like-
wise forC↓,−i+1 . Note thatA↓i+1 is obtained fromA↓i by adding
F EL(a) and thus C↓,−i+1 is a clEL(OS) decoration of C↓,−i .
From Point 2 of Lemma 7, we obtain OS |= C v C↓,−i+1 ; note
that this (trivially) holds also when AC is inconsistent with
OS . Since ∅ |= C↓,−i v C, this impliesOS |= C↓,−i v C↓,−i+1 .
As a consequence and since C↓,−i+1 is a clEL(OS) decora-
tion of C↓,−i , we must have C↓,−i v C↓,−i+1 ∈ OT . Thus,
d ∈ (C↓,−i+1)I and by Lemma 4 we find a homomorphism
hi+1 from A↓,−i+1 to I with h(a0) = d. Since I is a model of
O and OT contains the same role inclusions as OS , hi must
also be a homomorphism from A↓i+1 to I, as required.

o

Lemma 9 Let C be an EL(Σ) concept and D an EL⊥ con-
cept. Then OS |= C v D implies OT |= C v D.
Proof. Let I be a model of OT with d ∈ CI . We have to
show that d ∈ DI . Let A0,A1, . . . be the sequences of
ABoxes constructed by the chase started on AC . First as-
sume that AC is consistent with OS . Then from Point 2 of
Lemma 7, we obtain chaseOS

(AC) |= D(a0). Thus, there
is a k with Ak |= D(a0). Since D is an EL concept, this
implies A↓k |= D(a0). By Lemma 4, there is thus a homo-
morphism h0 from AD to A↓k with h0(a0) = a0. Lemma 8
yields a homomorphism h from A↓k to I with h(a0) = d.
Composing h0 with h and applying Lemma 4 yields d ∈ DI
as required. Now assume that AC is inconsistent with OS .
Then OS |= C v ⊥ and thus C v ⊥ ∈ OT , in contradiction
to I being a model of OT with CI 6= ∅. o

D.3 The Chase (projective)
LetO be an ELI⊥ ontology in normal form. Starting from an
ABox A, the chase exhaustively applies the following rules,
constructing in the limit an extended and potentially infinite
ABox:
R1 If A1(a), . . . , An(a) ∈ A and O |= A1 u · · · uAn v B,

then add B(a) to A;
R2 If r(a, b), A(b) ∈ A and ∃r.A v B ∈ O, then add B(a)

to A;
R3 If r(b, a), A(b) ∈ A and ∃r−.A v B ∈ O, then add

B(a) to A;
R4 If A(a) ∈ A and A v ∃r.B ∈ O, then add r(a, b) and

B(b) to A, with b fresh.
We again use chaseO(A) to denote the result of applying
the chase of ABox A, which is unique since rule application
is oblivious. Note that this chase is the standard chase for
ELI except that no new successors are introduced to witness
existential restrictions on inverse roles. This is compensated
by the semantic entailment in rule R1, which is in line with
Point 1 in Theorem 6. We remark that, when applied to a
ditree-shaped ABox, all ABoxes produced by the chase are
ditree-shaped, possibly with multi-edges. We assume that ⊥
occurs in O only in CIs of the form C v ⊥ with C an EL
concept.

Lemma 10 Let O be an ELI⊥ ontology and A a ditree-
shaped ABox with root a0. Then

1. A is inconsistent with O iff there are C v ⊥ ∈ O and
a ∈ Ind(A) with chaseO(A) |= C(a), and

2. if A is consistent with O, then A,O |= C0(a0) iff
chaseO(A) |= C0(a0) for all EL concepts of depth at
most `.

Proof. We prove both point simultaneously, starting with
the “if” directions. Let A0,A1, . . . be the sequence of
ABoxes produced by the chase and let I be a model of A
and O. We show the following.

Claim For all i ≥ 0, there is a homomorphism from Ai to I
with h(a0) = a0.

This establishes Point 1 because if C v ⊥ ∈ O and
chaseO(A) |= C(a), then there is a k such thatAk |= C(a).
The existence of hk implies that CI 6= ∅ (via Lemma 4), in
contradiction to I being a model of A and O. Thus, A is
inconsistent with O.

It also establishes Point 2. In fact, if chaseO(A) |= C(a0),
then there is a k such that Ak |= C(a0) and hk shows that
d ∈ CI as required.

It thus remains to prove the claim. The case i = 0 is triv-
ial as the desired homomorphism is simply the identity on
Ind(A). For the case i > 0, we make a case distinction ac-
cording the the chase rule applied in order to obtain Ai+1

from Ai.

R1. If this rule was applied to obtain Ai+1 from Ai, then
there are A1(a), . . . , An(a) ∈ Ai such that A1 u . . . uAn v
B ∈ OS . Ai+1 is obtained fromAi by addingB(a). Because
hi is the homomorphism fromAi to I, we must have hi(a) ∈
(A1 u · · · uAn)I . Since I is a model ofA andO, this yields
hi+1(a) ∈ BI . Consequently hi is also a homomorphism
from Ai+1 to I and we can set hi+1 = hi.

R2. Then there are r(a, b), A(b) ∈ Ai and ∃r.A v B ∈ O.
Ai+1 is obtained from Ai by adding B(a). Because hi is the
homomorphism from Ai to I, we must have hi(b) ∈ AI

and (hi(a), hi(b)) ∈ rI . Since I is a model of A and O,
hi+1(a) ∈ BI . Consequently, hi is also a homomorphism
from Ai+1 to I and we can set hi+1 = hi.

R3. If this rule was applied to obtain Ai+1 from Ai, then
there are r(b, a), A(b) ∈ Ai and ∃r−.A v B ∈ O. Ai+1

is obtained from Ai by adding B(a). Because hi is the ho-
momorphism from Ai to I, we must have hi(b) ∈ AI and
(hi(b), hi(a)) ∈ rI . Since I is a model of A and O, this
yields hi+1(a) ∈ BI . Consequently, hi is also a homomor-
phism from Ai+1 to I and we can set hi+1 = hi.

R4. Then there is an A(a) ∈ Ai such that A v ∃r.B ∈ O
and Ai+1 is obtained from Ai by adding B(b) and r(a, b), b
fresh. Because hi is the homomorphism from Ai to I, we
must have hi(a) ∈ AI . Since I is a model of A and O,
there is an e ∈ BI such that (hi(a), e) ∈ rI . Consequently
hi+1 = h1 ∪ {b 7→ e} is a homomorphism from Ai+1 to I.

For the (contrapositive of the) “only if” directions, assume
that there are no C v ⊥ ∈ O and a ∈ Ind(A) such



that chaseO(A) |= C(a), respectively that chaseO(A) 6|=
C(a0). We show how to construct a model J of A
and O such that for all a ∈ Ind(A) and EL concepts C,
chaseO(A) 6|= C(a) implies a /∈ CJ . This implies that A
is consistent with O (since ⊥ occurs in O only in the form
C v ⊥), respectively that A,O 6|= C(a0).

For brevity, let Ind denote the set of individual names in
the (potentially infinite) ABox chaseO(A). Further let I be
chaseO(A) viewed as an interpretation. Because of rule R1,
for each a ∈ Ind we find a model Ia of O and a da ∈ ∆Ia

such that for all concept names A, a ∈ AI iff da ∈ AIa . We
can further assume that the domains of all interpretations Ia
are mutually disjoint, and that they are also disjoint from the
domain of I. Let J be the interpretation obtained as follows:

1. take the disjoint union of I and all the Ia;

2. for every a ∈ Ind, every role name r, and every
(e, da) ∈ rIa , add (e, a) to rJ .

It can be verified that, as required, chaseO(A) 6|= C(a) im-
plies a /∈ CJ for all a ∈ Ind(A) and EL concepts C. In fact,
it suffices to observe that we have only added new incoming
edges to elements from ∆I but no outgoing ones.

By definition, J is a model of A. To show that it is also a
model ofO, we make a case distinction on the types of CIs in
O:

A1 u · · · u An v B ∈ O. Let a ∈ (A1 u · · · u An)J . By
construction of J , A1(a), . . . , An(a) ∈ chaseO(A). Thus,
R1 yields B(a) ∈ chaseO(A) and a ∈ BJ by construction
of J .

∃r.A v B ∈ O. Let b ∈ AJ and (a, b) ∈ rJ . By con-
struction of J , A(b) and r(a, b) ∈ chaseO(A). Thus, R2
yields B(a) ∈ chaseO(A) and a ∈ BJ by construction
of J .

A v ∃r.B ∈ O. Let a ∈ AJ . By construction of J ,
A(a) ∈ chaseO(A). Thus, R4 yields r(a, b) and B(b) ∈
chaseO(A) and b ∈ BJ by construction of J .

∃r−.A v B ∈ O. Let b ∈ AJ and (b, a) ∈ rJ . By
construction of J , A(b) and r(b, a) ∈ chaseO(A). Thus,
R3 yields B(a) ∈ chaseO(A) and a ∈ BJ by construction
of J .

A v ∃r−.B ∈ O. Let a ∈ AJ . Because of R1 we can find
a model Ia with (b, da) ∈ rIa . By point 2 of the construction
of J we get (b, a) ∈ rJ , b ∈ BJ .

o

D.4 Completeness (projective)
We prove the completeness part of Theorem 6, in analogy
with the completeness proof for Theorem 3. Thus the follow-
ing is crucial.

Lemma 11 Let C be an EL(Σ) concept of depth bounded
by `, A0,A1, . . . the sequence of ABoxes constructed by
chaseOS

(AC), I a model of OT , and d ∈ CI . Then for
every i ≥ 0, there is a homomorphism hi from Ai to I with
hi(a0) = d.

Proof. The proof is by an induction on the number of appli-
cations of rule R3 used to compute the sequenceA0, . . . ,Ai.
For the induction start, assume that R3 was not applied at all.
We show that for all j ≤ i, there is a homomorphism hj from
Aj to I with hj(a0) = d. For j = 0, it suffices to apply
Lemma 4. Now assume that hj has already been constructed,
j < i. We show how to find hj+1, making a case distinction
according to the rule that is applied in order to obtain Aj+1

from Aj .

R1. Then there areA1(a), . . . , An(a) ∈ Aj such thatA1u
. . . u An v B ∈ OS and Aj+1 is obtained from Aj by
adding B(a). We must have hj(a) ∈ (A1 u · · · u An)I . By
construction ofOT ,A1u. . .uAn v B is a CI inOT . Since I
is a model of OT , a ∈ BI . Thus hj is also a homomorphism
from Aj+1 to I.

R2. Then there are r(a, b), A(b) ∈ Aj such that ∃r.A v
B ∈ O and and Aj+1 is obtained from Aj by adding B(a).
We must have hj(b) ∈ AI and (hj(a), hj(b)) ∈ rI . By
construction of OT , ∃r.A v B is a CI in OT . Since I is a
model of OT , a ∈ BI . Thus hj is also a homomorphism
from Aj+1 to I.

R4. Then there is an A(a) ∈ Aj such that A v ∃r.B ∈ O
and Aj+1 is obtained from Aj by adding B(b) and r(a, b),
b fresh. We must have hj(a) ∈ AI . By construction of OT ,
A v ∃r.B is a CI inOT . Consequently and since I is a model
ofOT , there is an e ∈ BI such that (hj(a), e) ∈ rI . Let hj+1

be the extension of hj obtained by setting hj+1(b) = e. It can
be verified that hj+1 is a homomorphism from Aj+1 to I.

Now for the induction step. Assume that there were k > 0
applications of R3 in the sequence A0, . . . ,Ai and that the
last such application was used to obtainA`+1 fromA`, ` < i.
By induction hypothesis, we find a homomorphism h` from
A` to I with h`(a0) = d. We argue that we also find such a
homomorphism h`+1 from A`+1 to I. We can then proceed
as in the induction start to obtain the desired homomorphism
from Ai to I.

R3. There are r(b, a), A(b) ∈ A` such that ∃r−.A v B ∈
O and A`+1 is obtained from A` by adding B(a). Since A`
is ditree-shaped, b is the predecessor of a in the tree GAi .
We must have h`(b) ∈ AI and (h`(b), h`(a)) ∈ rI . Let Aa
be the ditree-shaped ABox in A` rooted at a and set Ind =
{a} ∪ (Ind(Aa) ∩ Ind(AC)). That is, Ind contains only
those individuals inAa that were present already in the initial
ABoxAC , and if there is no such individual, then Ind = {a}.
An individual c ∈ Ind is a fringe individual if there is some
r(c, c′) ∈ Ab with c′ /∈ Ind. Further, letA−a be the restriction
ofAa to assertions that only use individuals from Ind and let
Ca be this ABox viewed as an EL concept.

We must have h`(a) ∈ CIa . By construction of OT and
since Ca is of depth at most ` − 1 (because C is of depth
bounded by `), A u ∃r.Ca v ∃r.(Ca u B) ∈ OT . Conse-
quently, there is an e ∈ (Ca u B)I with (h`(b), e) ∈ rI . By
Lemma 4, there is a homomorphism ha from A−a to I with
ha(a) = e.

Now consider each fringe individual c. Let Ac be the
ditree-shaped ABox in Aa rooted at c and let Cc be the EL



concept that is the conjunction of all concept names A with
A(c) ∈ Aa. Since OS is in normal form, we can extract
from the chase sequence A0, . . . ,A` a chase sequence that
constructs Ac starting from ACc

and uses at most k − 1 ap-
plications of R3. From the induction hypothesis and since
clearly ha(c) ∈ CIc , we thus obtain a homomorphism hc
from Ac to I with hc(c) = ha(c). We obtain the desired
homomorphism h`+1 from A`+1 to I by combining all these
homomorphisms, that is,

h`+1(c) =


h`(c) if c /∈ Ind(Aa)

ha(c) if c ∈ Ind(A−a )

hc′(c) if c ∈ Ind(Ac′).

o

The proof of the following lemma is now exactly identical to
the proof of Lemma 6.

Lemma 12 Let C be an EL(Σ) concept of depth bounded
by ` and D an EL concept. Then OS |= C v D implies
OT |= C v D.

E Details for Section 6
We require the following lemma from [Lutz and Wolter,
2010].

Lemma 13 Asssume O is a ELH ontology and O |= C v
∃r.D. Then one of the following holds:

1. there exists a top-level conjunct ∃s.C ′ of C such that
O |= s v r and O |= C ′ v D; or

2. there exists a subconcept M of O such that O |= C v
∃r.M and O |= M v D.

We use Lemma 13 to establish the results on non-finite and
non-elementary approximations.

Theorem 7 None of the ontologies

{∃r−.A v B}, {func(r), A v A}, {r v s−, A v A}

has finite projective ELH approximations.

Proof. We start with OS = {∃r−.A v B}. Let OT be a
projective ELH approximation of OS . For all n ≥ 0, let
Cn = ∃rn.>, where ∃rn denotes n-fold nesting of an exis-
tential restriction, and observe that

OS |= A u ∃r.Cn v ∃r.(B u Cn).

To establish the desired result, it suffices to argue that for
every n ≥ 0, there is a subconcept Mn of OT such that
OT |= Mn v Cn andOT 6|= Mn v Cm for anym > n. First
note that OT 6|= Cn v B for any n ≥ 0 because the same is
true for OS . By Lemma 13, to obtain OT |= A u ∃r.Cn v
∃r.(B u Cn), there must exist a subconcept M of OT such
that

• OT |= A u ∃r.Cn v ∃r.M and

• OT |= M v B u Cn.

We aim to use M as Mn. Assume to the contrary of what
remains to be shown that OT |= M v Cm for some m > n.
Then OT |= A u ∃r.Cn v ∃r.(B u Cm), which contradicts
the fact that this CI is not entailed by OS .

We now consider OS = {func(r), A v A}. Let OT be
a projective ELH approximation of OS . For all n ≥ 0, let
again Cn = ∃rn.>, and observe that

OS |= ∃r.Cn u ∃r.A v ∃r.(Cn uA).

Using Lemma 13, we establish that for every n ≥ 0, there is
a subconcept Mn of OT such that OT |= Mn v (Cn u A)
and OT 6|= Mn v Cm for any m > n. First note that
• OT 6|= Cn v Cn uA for any n ≥ 0 and
• OT 6|= A v Cn uA

because the same is true for OS . To obtain OT |= ∃r.Cn u
∃r.A v ∃r.(CnuA), there must exist a subconceptM ofOT
such that OT |= ∃r.Cn u ∃r.A v ∃r.M and OT |= M v
Cn u A. We use M as Mn. Assume to the contrary of what
remains to be shown that OT |= M v Cm for some m > n.
ThenOT |= ∃r.Cnu∃r.A v ∃r.(CmuA), which contradicts
the fact that this CI is not entailed by OS .

We now consider OS = {r v s−, A v A}. Let OT be
a projective ELH approximation of OS . For all n ≥ 0, let
again Cn = ∃rn.>, and observe that

OS |= A u ∃r.Cn v ∃r.(Cn u ∃s.A).

Using Lemma 13, we establish that for every n ≥ 0, there is
a subconcept Mn of OT such that OT |= Mn v Cn u ∃s.A
and OT 6|= Mn v Cm for any m > n. First note that OT 6|=
Cn v ∃s.A for any n ≥ 0 because the same is true forOS . To
obtainOT |= Au∃r.Cn v ∃r.(Cn u∃s.A), there must exist
a subconcept M of OT such that OT |= A u ∃r.Cn v ∃r.M
and OT |= M v Cn u ∃s.A. We use M as Mn. Assume to
the contrary of what remains to be shown that OT |= M v
Cm for some m > n. Then OT |= A u ∃r.Cn v ∃r.(Cm u
∃s.A), which contradicts the fact that this CI is not entailed
by OS . o

Theorem 8 Let n ≥ 0 and let On be the union of Γn with
any of the following sets:
{∃r−.A v B}, {func(r), A v A}, {r v s−, A v A}

For every ` ≥ 1, any `-bounded projective ELH approxima-
tion OT of On must be of size at least tower(`, n).

Proof. We start with OS = Γn ∪ {∃r−.A v B}. The proof
idea is very similar to the proof of Theorem 7. Assume a
depth bound ` ≥ 1 is given. Take any set Ω of mutually in-
comparable EL(Σn) concepts of depth at most `−1 such that
Ω has size tower(`, n), where concepts C1, C2 are called in-
comparable if neither OS |= C1 v C2 nor OS |= C2 v C1.
It is straightforward to construct such a set Ω. Then it suffices
to show that for every C ∈ Ω there exists a subconcept MC

of OT such that OT |= MC v C and OT 6|= MC v C ′ for
any C ′ ∈ Ω with C ′ 6= C. Assume C ∈ Ω is given. Then

OS |= A u ∃r.C v ∃r.(B u C)

Observe that OT 6|= C v B. Thus, similarly to the proof
above one can show that to obtainOT |= Au∃r.C v ∃r.(Bu
C) there must exist a subconcept MC of OT such that



• OT |= A u ∃r.C v ∃r.MC ;
• OT |= MC v B u C.

Observe thatOT 6|= MC v C ′ for any C ′ ∈ Ω\{C} because
OS 6|= A u ∃s.C v ∃s.(B u C ′) for any such C ′. Thus, MC

is as required.
The proofs for On = Γn ∪ {func(r), A v A} and O′n =

Γn ∪ {r v s−, A v A} combine the sketch presented for
Γn ∪ {∃r−.A v B} with the proof idea from Theorem 7.
Thus, one considers the same set Ω and then shows that any
`-bounded ELH approximation of On entails all CIs

∃r.A u ∃r.C v ∃r.(A u C)

with C ∈ Ω and so is of size at least tower(`, n), and that
any `-bounded ELH approximation of O′n entails all CIs

A u ∃r.C v ∃r.(C u ∃s.A)

with C ∈ Ω and so is of size at least tower(`, n). o
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