Ontology Design: some suggestions
Steps in Developing an Ontology

- Requirement analysis
- Consider reuse
- Enumerate terms
- Define classes (concepts)
- Define properties
- Define constraints

Running example: Animal Ontology
Purpose and scope of the Animal ontology

To provide an ontology for an index of a children’s book of animals including

- where they live
- what they eat
 (carnivores, herbivores and omnivores)
- how dangerous they are
- how big they are
- a bit of basic anatomy
 (number of legs, wings, toes, etc.)
Enumerate terms

Write down in an unstructured list all the relevant terms that are expected to appear in the ontology. For our animal ontology that could look as follows:

<table>
<thead>
<tr>
<th>Dog</th>
<th>Carnivore</th>
<th>Dangerous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat</td>
<td>Plant</td>
<td>Pet</td>
</tr>
<tr>
<td>Cow</td>
<td>Animal</td>
<td>Domestic Animal</td>
</tr>
<tr>
<td>Person</td>
<td>Draught Animal</td>
<td>Farm Animal</td>
</tr>
<tr>
<td>Tree</td>
<td>Child</td>
<td>Food Animal</td>
</tr>
<tr>
<td>Grass</td>
<td>Parent</td>
<td>Fish</td>
</tr>
<tr>
<td>Herbivore</td>
<td>Mother</td>
<td>Carp</td>
</tr>
<tr>
<td>Male</td>
<td>Father</td>
<td>Goldfish</td>
</tr>
<tr>
<td>Female</td>
<td>Pig</td>
<td></td>
</tr>
</tbody>
</table>
Define Classes

Take a group of things and ask what they have **in common** and then what other ‘siblings’ there might be.

For example:

- **Plant, Animal** — **Living Thing** (might add Bacteria, Fungi?)

- **Cat, Dog, Cow, Person** — **Mammal** (might add Goat, Rabbit?)

- **Cow, Goat, Sheep, Horse** — **Ungulate** (hoofed animal)
 (what others are there? do they divide amongst themselves? even/odd-toed?)

- **Wild, Domestic** — **Domestication** (what other states?)
Organise the Concepts

Choose some **main axes**:

- add **abstractions** where needed (e.g., Living Thing, Mammal, Fish)
- identify **relations** (e.g., eats, owns, parent of)
- identify **definable things** (e.g., Draught Animal, Father, Herbivore)

 i.e., things where you can say clearly what it means

 try to define a dog precisely — very difficult (a “natural kind”)

Self-standing things vs. Modifiers

- **self-standing things** can exist on their own (roughly nouns)

 (e.g., people, animals, houses, actions, processes)

- **modifiers** ‘modify’ other things (roughly adjectives and adverbs)

 (e.g., wild/domestic, male/female, healthy/sick, dangerous/safe)
Arrange Concepts/Properties into Hierarchy

Reorganise everything but “definable” things into pure **trees** —
these will be the “primitives”

<table>
<thead>
<tr>
<th>self-standing</th>
<th>modifiers</th>
<th>relations</th>
<th>definable</th>
</tr>
</thead>
<tbody>
<tr>
<td>– LivingThing</td>
<td></td>
<td></td>
<td>Carnivore</td>
</tr>
<tr>
<td>– Animal</td>
<td></td>
<td></td>
<td>Herbivore</td>
</tr>
<tr>
<td>– Mammal</td>
<td>Domestication</td>
<td>eats</td>
<td>Child</td>
</tr>
<tr>
<td>– Cat</td>
<td>– Domestic</td>
<td>owns</td>
<td>Parent</td>
</tr>
<tr>
<td>– Dog</td>
<td>– Wild</td>
<td>parentOf</td>
<td>Mother</td>
</tr>
<tr>
<td>– Cow</td>
<td>Use</td>
<td></td>
<td>Father</td>
</tr>
<tr>
<td>– Person</td>
<td>– Pet</td>
<td></td>
<td>FoodAnimal</td>
</tr>
<tr>
<td>– Pig</td>
<td>– Food</td>
<td></td>
<td>DraughtAnimal</td>
</tr>
<tr>
<td>– Fish</td>
<td>– Draught</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Carp</td>
<td>Dangerousness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Goldfish</td>
<td>– Dangerous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Plant</td>
<td>– Safe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Tree</td>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Grass</td>
<td>– Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Adult</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Child</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Defining Classes and a Class Hierarchy

- All the siblings in the class hierarchy must be at the same level of generality (compare to section and subsections in a book)

- If a class has more than a dozen direct subclasses, additional subcategories may be necessary (compare to bullets in a list)

 However, if no natural classification exists, the long list may be more natural

- Class names should be either all singular or all plural

 (Animal is not a kind-of Animals)
Properties

Identify the **domain** and **range** constraints for properties

- **Animal** eats **LivingThing**
 - domain: Animal
 - range: LivingThing

- **Person** owns **LivingThing** except Person
 - domain: Person
 - range: LivingThing and not Person

- **Animal** parentOf **Animal**
 - domain: Animal
 - range: Animal

Identify **property restrictions**: what can we say about **all instances** of a class?

- all **Cows** eat some **Plants**
- all **Cats** eat some **Animals**
- all **Pigs** eat some **Animals** and eat some **Plants**
- ...

descriptions of self-standing things
Definable things

Paraphrase and formalise the definitions in terms of the primitives, relations and other definables

- “A Parent is an Animal that is a parent of some other Animal”

 \[\text{Parent} \equiv \text{Animal} \cap \exists \text{parentOf.Animal} \]

- “A Herbivore is an Animal that eats only Plants”
 (NB: all Animals eat some LivingThings)

 \[\text{Herbivore} \equiv \text{Animal} \cap \forall \text{eats.Plant} \]

- “An Omnivore is an Animal that eats both Plants and Animals”

 \[\text{Omnivore} \equiv \text{Animal} \cap \exists \text{eats.Plant} \cap \exists \text{eats.Animal} \]

Without a paraphrase we cannot tell if we disagree on what you meant to represent and how you represented it.
Modifiers

- Identify modifiers that have **mutually exclusive values**
 (Domestication, Dangerousness, Sex, Age)

 NB. Uses are not mutually exclusive
 (can be both Draught and Food)

- Extend and complete lists of values
 (Dangerousness: Dangerous, Risky, Safe)

- Define a **functional property** for every such a modifier

- There are two ways of specifying values for modifiers
 - **value partitions** (classes that partition a quality)
 - **value sets** (individuals that enumerate all states of a quality)

<table>
<thead>
<tr>
<th>Domestication</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Domestic</td>
<td>- Pet</td>
</tr>
<tr>
<td>- Wild</td>
<td>- Food</td>
</tr>
<tr>
<td></td>
<td>- Draught</td>
</tr>
<tr>
<td>Dangerousness</td>
<td></td>
</tr>
<tr>
<td>- Dangerous</td>
<td>- Safe</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>- Male</td>
<td>- Female</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>- Adult</td>
<td>- Child</td>
</tr>
</tbody>
</table>
Specifying Values: Value Partitions

Example: a parent quality — Dangerousness

- Define **subqualities** for each degree: Dangerous, Risky, Safe
 - all subqualities are disjoint
 - subqualities ‘cover’ parent quality, i.e.,
 \[
 \text{Dangerousness} \equiv \text{Dangerous} \sqcup \text{Risky} \sqcup \text{Safe}
 \]

- Define a **functional property** `hasDangerousness`
 - range is the parent quality, i.e., Dangerousness
 - domain must be specified separately

\[
\text{DangerousAnimal} \equiv \text{Animal} \sqcap \exists \text{hasDangerousness. Dangerous}
\]
Specifying Values: Value Sets

Example: a parent quality — SexValue

- Define **individuals** for each value: male, female
 - values are **different** (NOT assumed in OWL)
 - value type is ‘**enumeration**’ of values, i.e.,

 \[
 \text{SexValue} \equiv \{\text{female, male}\}
 \]

- Define a **functional property** hasSex
 - range is the parent quality, i.e., SexValue
 - domain must be specified separately

\[
\text{MaleAnimal} \equiv \text{Animal} \cap \exists \text{hasSex.male}
\]
To keep primitives **disjoint**:
- need to distinguish the **roles** things play in different **situations** from what they **are**: e.g.,
 - pet, farm animal, draught animal
 - professor, student
 - doctor, nurse, patient

- often need to distinguish **qualifications** from **roles**
 - a person may be qualified as a doctor but playing the role of a patient

- **Roles usually summarise** relations
 - “to play the role of pet” is to say that there is somebody for whom the animal is a pet
 - “to play the role of doctor” is to say that there is somebody for whom the person is acting as the “doctor” — or some “situation” in which they play that role

But we often do **not** want to explain the situation or relation **completely**.
Example: DraughtAnimal, FoodAnimal, PetAnimal

- Identify “roles”
 - draught: cow, horse, dog
 - food: cow, horse
 - pet: horse, dog

- Define subclasses of AnimalUseRole:
 - FoodRole
 - PetRole
 - DraughtRole

\[
\text{DraughtAnimal} \equiv \text{Animal} \cap \exists \text{hasRole}.\text{DraughtRole}
\]