Description Logics: background

What are Description Logics?

There is no precise definition of what a description logic is. They form a **huge family** of logic-based **knowledge representation formalisms** with a number of common properties:

- They are descendants of **semantic networks** and **KL-ONE** from the 1960-70s.
- They describe a domain of interest in terms of
 - concepts (also called classes),
 - roles (also called relations or properties),
 - individuals
- Modulo a simple translation, they are subsets of predicate logic.
- Distinction between terminology and data (see next slide).

DL architecture

Reasoning System

A Semantic Network

Example: knowledge concerning persons, parents, etc.

described as a semantic network:

Semantic networks without a semantics!

Description Logics to be discussed

We first discuss the terminological part of the description logics

- \mathcal{EL} (the DL underpinning OWL2 EL);
- DL-Lite (the DL underpinning OWL2 QL);
- The DL underpinning Schema.org;
- \mathcal{ALC} and some extensions (the DL underpinning OWL2).

We will later discuss how description logics are used to access instance data.

The description logic \mathcal{EL} : the terminological part

Language for \mathcal{EL} concepts

The language for \mathcal{EL} concepts consists of:

• concept names $A_0, A_1, ...$

A concept name denotes a set of objects. Typical examples are 'Person' and 'Female'. We also use A, B, B_0 , B_1 ... etc as concept names.

Concept names are also called class names.

• role names r_0, r_1, \dots

A role name denotes a set of pairs of objects. Typical examples are 'hasChild' and 'loves'. We also use $r, s, s_0, s_1 \dots$ etc as role names.

Role names are also called property names.

• the concept \top (often called "thing")

 \top denotes the set of all objects in the domain.

- the concept constructor □. It is often called intersection, conjunction, or simply "and".
- the concept constructor \exists . It is often called existential restriction.

Definition of \mathcal{EL} concepts

 $\boldsymbol{\mathcal{EL}}$ concepts are defined inductively as follows:

- all concept names are \mathcal{EL} concepts
- \top is a \mathcal{EL} concept
- if C and D are \mathcal{EL} concepts and r is a role name, then

$C \sqcap D, \exists r.C$

are \mathcal{EL} concepts.

• nothing else is a \mathcal{EL} concept.

Examples

Assume that Human and Female are concept names and that hasChild, gender, and hasParent are role names. Then we obtain the following \mathcal{EL} concepts:

- \exists hasChild. \top (somebody who has a child),
- Human $\sqcap \exists$ hasChild. \top (a human who has a child),
- Human □ ∃hasChild.Human (a human who has a child that is human),
- Human □ ∃gender.Female (a woman),
- Human □ ∃hasChild. □ ∃hasParent. □ (a human who has a child and has a parent),
- Human □ ∃hasChild.∃gender.Female (a human who has a daughter),
- Human \sqcap \exists hasChild. \exists hasChild. \top (a human who has a grandchild).

Concept definitions in \mathcal{EL}

Let A be a concept name and C a \mathcal{EL} concept. Then

- $A \equiv C$ is called a concept definition. C describes necessary and sufficient conditions for being an A. We sometimes read this as "A is equivalent to C".
- $A \sqsubseteq C$ is a **primitive concept definition**. C describes necessary conditions for being an A. We sometimes read this as "A is subsumed by C".

Examples:

- Father \equiv Person $\sqcap \exists$ gender.Male $\sqcap \exists$ hasChild. \top .
- Student \equiv Person $\sqcap \exists is_registered_at.University.$
- Father \sqsubseteq Person.
- Father $\sqsubseteq \exists hasChild. \top$.

$\mathcal{EL} \text{ terminology}$

A \mathcal{EL} terminology \mathcal{T} is a finite set of definitions of the form

 $A \equiv C, \quad A \sqsubseteq C$

such that no concept name occurs more than once on the left hand side of a definition.

So, in a terminology it is **impossible** to have two distinct definitions:

- University \equiv Institution $\sqcap \exists$ grants.academicdegree
- University \equiv Institution $\sqcap \exists$ supplies.higher_education

However, we can have cyclic definitions such as

 $Human_being \equiv \exists has_parent.Human_being$

A acyclic \mathcal{EL} terminology \mathcal{T} is a \mathcal{EL} terminology that does not contain (even indirect) cyclic definitions.

Ontology Languages

Example: SNOMED CT (see http://www.ihtsdo.org/)

- Comprehensive healthcare terminology with approximately 400 000 definitions (400 000 concept names and 60 role names)
- Almost (except inclusions between role names) an acyclic \mathcal{EL} terminology
- Property rights owned by not-for-profit organisation IHSTDO (International Health terminology Standards Development Organisation).
- IHSTDO founded in 2007. Currently owned and governed by 27 nations.
- Aim: enabling clinicians, researchers and patients to share and exchange healthcare and clinical knowledge worldwide.
- In the NHS, SNOMED CT is specified as the single terminology to be used across the health system by 2020.

SNOMED CT Snippet

EntireFemur	\Box	StructureOfFemur
FemurPart		StructureOfFemur ⊓
		∃part_of.EntireFemur
BoneStructureOfDistalFemur	\Box	FemurPart
EntireDistalFemur		BoneStructureOfDistalFemur
DistalFemurPart		BoneStructureOfDistalFemur ⊓
		$\exists part_of.EntireDistalFemur$
StructureofDistalEpiphysisOfFemur		DistalFemurPart
EntireDistalEpiphysisOfFemur		StructureOfDistalEpiphysisOfFemur

SNOMED CT most general concept names

- Clinical finding
- Procedure
- Observable Entity
- Body structure
- Organism
- Substance
- Biological product
- Specimen
- Physical object

Typical roles in SNOMED CT

• Finding Site. Example

$\mathsf{Kidney_disease} \equiv \mathsf{Disorder} \sqcap \exists \mathsf{Finding_Site}.\mathsf{Kidney_Structure}$

• Associated Morphology. Example

 $Bone_marrow_hyperplasia \sqsubseteq \exists Associated_Morphology.Hyperplasia$

• Due to. Example

 $\textbf{Acute_pancreatitis_due_to_infection} \sqsubseteq \textbf{Acute_pancreatitis} \sqcap \exists \textbf{Due_to.Infection}$

\mathcal{EL} concept inclusion (CI)

We generalise \mathcal{EL} concept definitions and primitive \mathcal{EL} concept definitions. Let C and D be \mathcal{EL} concepts. Then

- $C \sqsubseteq D$ is called a \mathcal{EL} concept inclusion. It states that every C is a D. We also say that C is subsumed by D or that D subsumes C. Sometimes we also say that C is included in D.
- $C \equiv D$ is is called a \mathcal{EL} concept equation. We regard this as an abbreviation for the two concept inclusions $C \sqsubseteq D$ and $D \sqsubseteq C$. We sometimes read this as "C and D are equivalent".

Examples:

- Disease $\sqcap \exists has_location.Heart \sqsubseteq NeedsTreatment$
- ∃student_of.ComputerScience ⊑ Human_being⊓∃knows.Programming_Language

Observations

- Every \mathcal{EL} concept definition is a \mathcal{EL} concept equation, but not every \mathcal{EL} concept equation is a \mathcal{EL} concept definition.
- Every primitive \mathcal{EL} concept definition is a \mathcal{EL} concept inclusion, but not every \mathcal{EL} concept inclusion is a primitive \mathcal{EL} concept definition.

$\mathcal{EL} \text{ TBox}$

A \mathcal{EL} TBox is a finite set \mathcal{T} of \mathcal{EL} concept inclusions and \mathcal{EL} concept equations. Observe:

- Every acyclic *EL* terminology is a *EL* terminology;
- every \mathcal{EL} terminology is a \mathcal{EL} TBox.

Example:

- **Pericardium** \sqsubseteq **Tissue** $\sqcap \exists cont_in.Heart$
- Pericarditis \Box Inflammation $\Box \exists has_loc.Pericardium$
- Inflammation \sqsubseteq Disease $\sqcap \exists acts_on.Tissue$

Disease $\sqcap \exists has_loc. \exists cont_in. Heart \sqsubseteq$ Heart disease \sqcap Needs Treatment

How are TBoxes (eg, SNOMED CT) used?

The **concept hierarchy** induced by a TBox ${\mathcal T}$ is defined as

 $\{A \sqsubseteq B \mid A, B \text{ concept names in } \mathcal{T} \text{ and } \mathcal{T} \text{ implies } A \sqsubseteq B\}$

Eg, the concept hierarchy induced by the SNOMED CT snippet above is EntireDistalEpiphysisOfFemur

StructureOfDistalEpiphysisOfFemur

 \sqsubseteq

DistalFemurPart

 \Box

BoneStructureOfDistalFemur

 \Box

FemurPart

Standard application of SNOMED CT based on concept hierarchy

- SNOMED CT is used to produce a hierarchy of medical terms (concept names). Each term is annotated with a numerical code and an axiom defining its meaning.
- This hierachy is used by physicians to
 - generate,
 - process
 - and store

electronic medical records (EMRs) containing diagnoses, treatments, medication, lab records, etc.

Problem: we do not yet have a precise definition of what it means that $A \sqsubseteq B$ follows from \mathcal{T} (or is implied by \mathcal{T}). So: we do not have a precise definition of the concept hierarchy induced by a TBox.

\mathcal{EL} (semantics)

- An interpretation is a structure $\mathcal{I}=(\Delta^{\mathcal{I}},\, \cdot^{\mathcal{I}})$ in which
 - $\Delta^{\mathcal{I}}$ is the **domain** (a non-empty set)
 - $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - * every concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ $(A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}})$
 - * every role name r to a binary relation $r^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$ $(r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}})$
- The interpretation $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ of an arbitrary \mathcal{EL} concept C in \mathcal{I} is defined inductively:
 - $(\top)^{\mathcal{I}} = \Delta^{\mathcal{I}}$
 - $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
 - $\quad (\exists r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \text{ exists } y \in \Delta^{\mathcal{I}} \text{ such that } (x,y) \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}} \}$

Example

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}} = \{a, b, c, d, A, B\};$
- $\mathsf{Person}^\mathcal{I} = \{a, b, c, d\}$, $\mathsf{Female}^\mathcal{I} = \{A\}$;
- hasChild^{\mathcal{I}} = {(a, b), (b, c)}, gender^{\mathcal{I}} = {(a, A), (b, B), (c, A)}.

Compute:

- (Person $\sqcap \exists gender. \top)^{\mathcal{I}}$,
- (Person $\sqcap \exists$ gender.Female)^{\mathcal{I}},
- (Person $\sqcap \exists$ hasChild.Person)^{\mathcal{I}},
- (Person $\sqcap \exists$ hasChild. \exists gender.Female))^{\mathcal{I}},
- (Person $\sqcap \exists$ hasChild. \exists hasChild. \top)^{\mathcal{I}}.

Semantics: when is a concept inclusion true in an interpretation?

Let \mathcal{I} be an interpretation, $C \sqsubseteq D$ a concept inclusion, and \mathcal{T} a TBox.

- We write $\mathcal{I} \models C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$. If this is the case, then we say that
 - \mathcal{I} satisfies $C \sqsubseteq D$ or, equivalently,
 - $C \sqsubseteq D$ is true in \mathcal{I} or, equivalently,
 - \mathcal{I} is a model of $C \sqsubseteq D$.
- We write $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$
- We write $\mathcal{I} \models \mathcal{T}$ if $\mathcal{I} \models E \sqsubseteq F$ for all $E \sqsubseteq F$ in \mathcal{T} . If this is the case, then we say that
 - \mathcal{I} satisfies \mathcal{T} or, equivalently,
 - \mathcal{I} is a model of \mathcal{T} .

Semantics: when does a concept inclusion follow from a TBox?

Let \mathcal{T} be a TBox and $C \sqsubseteq D$ a concept inclusion. We say that $C \sqsubseteq D$ follows from \mathcal{T} if, and only if, every model of \mathcal{T} is a model of $C \sqsubseteq D$. Instead of saying that $C \sqsubset D$ follows from \mathcal{T} we often write

- $\mathcal{T} \models C \sqsubseteq D$ or
- $C \sqsubseteq_{\mathcal{T}} D$.

Example: let MED be the \mathcal{EL} TBox

- Pericardium \sqsubseteq Tissue $\sqcap \exists cont_in.Heart$
- Pericarditis \Box Inflammation $\Box \exists has_loc.Pericardium$
- Inflammation \Box Disease $\sqcap \exists acts_on.Tissue$

Disease $\sqcap \exists has_loc. \exists cont_in. Heart \sqsubseteq Heart disease \sqcap Needs Treatment$

Pericarditis needs treatment if, and only if, **Percarditis** \sqsubseteq_{MED} **NeedsTreatment**.

Examples

Let $\mathcal{T} = \{A \sqsubset \exists r.B\}$. Then

 $\mathcal{T} \not\models A \sqsubset B.$

To see this, construct an interpretation $\mathcal I$ such that

- $\mathcal{I} \models \mathcal{T}$;
- $\mathcal{I} \not\models A \sqsubset B$.

Namely, let \mathcal{I} be defined by

- $\Delta^{\mathcal{I}} = \{a, b\};$
- $A^{\mathcal{I}} = \{a\};$
- $r^{\mathcal{I}} = \{(a, b)\};$
- $B^{\mathcal{I}} = \{b\}.$

Then $A^{\mathcal{I}} = \{a\} \subseteq \{a\} = (\exists r.B)^{\mathcal{I}}$ and so $\mathcal{I} \models \mathcal{T}$. But $A^{\mathcal{I}} \not\subseteq B^{\mathcal{I}}$ and so $\mathcal{I} \not\models A \sqsubset B.$ **Ontology Languages**

Examples

Let again $\mathcal{T} = \{A \sqsubseteq \exists r.B\}$. Then

 $\mathcal{T} \not\models \exists r.B \sqsubseteq A.$

To see this, construct an interpretation $\boldsymbol{\mathcal{I}}$ such that

- $\mathcal{I} \models \mathcal{T}$;
- $\mathcal{I} \not\models \exists r.B \sqsubseteq A$.

Let ${\mathcal I}$ be defined by

- $\Delta^{\mathcal{I}} = \{a\};$
- $A^{\mathcal{I}} = \emptyset;$
- $r^{\mathcal{I}} = \{(a,a)\};$
- $B^{\mathcal{I}} = \{a\}.$

Then $A^{\mathcal{I}} = \emptyset \subseteq \{a\} = (\exists r.B)^{\mathcal{I}}$ and so $\mathcal{I} \models \mathcal{T}$. But $(\exists r.B)^{\mathcal{I}} = \{a\} \not\subseteq \emptyset = A^{\mathcal{I}}$ and so $\mathcal{I} \not\models \exists r.B \sqsubseteq A$.

Ontology Languages

Deciding whether $C \sqsubseteq_{\mathcal{T}} D$ for \mathcal{EL} TBoxes \mathcal{T}

We give a polynomial time (tractable) algorithm deciding whether $C \sqsubseteq_{\mathcal{T}} D$

The algorithm actually decides whether $A \sqsubseteq_{\mathcal{T}} B$ only for concept names A and B in \mathcal{T} .

This is sufficient because the following two conditions are equivalent:

- $C \sqsubseteq_{\mathcal{T}} D$
- $A \sqsubseteq_{\mathcal{T}'} B$, where A and B are concept names that do not occur in \mathcal{T} and the TBox \mathcal{T}' is defined by

$$\mathcal{T}' = \mathcal{T} \cup \{A \equiv C, B \equiv D\}$$

Thus, if we want to know whether $C \sqsubseteq_{\mathcal{T}} D$, we first construct \mathcal{T}' and then apply the algorithm to \mathcal{T}' , A, and B.

Pre-processing

A *EL* TBox is in *normal form* if it consists of inclusions of the form

(sform) $A \sqsubseteq B$, where A and B are concept names;

(cform) $A_1 \sqcap A_2 \sqsubseteq B$, where A_1, A_2, B are concept names;

(rform) $A \sqsubseteq \exists r.B$, where A, B are concept names;

(lform) $\exists r.A \sqsubseteq B$, where A, B are concept names.

Given a \mathcal{EL} Box \mathcal{T} , one can compute in polynomial time a TBox \mathcal{T}' in normal form such that for all concept names A, B in \mathcal{T} :

$$A \sqsubseteq_{\mathcal{T}} B \quad \Leftrightarrow \quad A \sqsubseteq_{\mathcal{T}'} B.$$

Algorithm for Pre-processing

Given a TBox \mathcal{T} , apply the following rules exhaustively:

- Replace each $C_1 \equiv C_2$ by $C_1 \sqsubseteq C_2$ and $C_2 \sqsubseteq C_1$;
- Replace each $C \sqsubseteq C_1 \sqcap C_2$ by $C \sqsubseteq C_1$ and $C \sqsubseteq C_2$;
- If $\exists r.C$ occurs in \mathcal{T} and C is complex, replace C in \mathcal{T} by a fresh concept name X and add $X \sqsubseteq C$ and $C \sqsubseteq X$ to \mathcal{T} ;
- If $C \sqsubseteq D$ in \mathcal{T} and $\exists r.B$ occurs in C (but $C \neq \exists r.B$), then remove $C \sqsubseteq D$, take a fresh concept name X, and add

$$X \sqsubseteq \exists r.B, \exists r.B \sqsubseteq X, C' \sqsubseteq D$$

to \mathcal{T} , where C' is the concept obtained from C by replacing $\exists r.B$ by X.

Algorithm for Pre-processing

• If $A_1 \sqcap \dots \sqcap A_n \sqsubseteq D$ in \mathcal{T} and n > 2, then remove it, take a fresh concept name X, and add

 $A_2 \sqcap \dots \sqcap A_n \sqsubseteq X, \quad X \sqsubseteq A_2 \sqcap \dots \sqcap A_n, \quad A_1 \sqcap X \sqsubseteq D$

to ${\mathcal T}$.

• If $\exists r.B \sqsubseteq \exists s.E$ in \mathcal{T} , then remove it, take a fresh concept name X, and add

 $\exists r.B \sqsubseteq X, \quad X \sqsubseteq \exists s.E$

to au.

Pre-Processing: Example

Consider au: $A_0 \sqsubset B \sqcap \exists r.B', A_1 \sqcap \exists r.B \sqsubset A_2$ Step 1 gives: $A_0 \sqsubset B, \quad A_0 \sqsubset \exists r.B', \quad A_1 \sqcap \exists r.B \sqsubset A_2$ Step 4 gives: $A_0 \sqsubseteq B$ $A_0 \ \Box \ \exists r.B'$ $A_1 \sqcap X \sqsubseteq A_2$ $\exists r.B \ \Box \ X$ $X \sqsubseteq \exists r.B$

Pre-Processing applied to Example MED

- Pericardium \Box Tissue
- Pericardium $\sqsubseteq Y$
- Pericarditis \Box Inflammation
- Pericarditis **E** ∃has_loc.Pericardium
- Inflammation **_** Disease
- Inflammation $\sqsubseteq \exists acts_on.Tissue$
- Disease $\sqcap X \sqsubseteq$ Heartdisease
- Disease $\sqcap X \sqsubseteq$ NeedsTreatment

 $\exists has_loc.Y \sqsubseteq X, X \sqsubseteq \exists has_loc.Y, \exists cont_in.Heart \sqsubseteq Y, Y \sqsubseteq \exists cont_in.Heart$

Algorithm deciding $A \sqsubseteq_{\mathcal{T}} B$: Intuition

Given \mathcal{T} in normal form, we compute functions S and R:

- S maps every concept name A from $\mathcal T$ to a set of concept names B;
- R maps every role name r from \mathcal{T} to a set of pairs (B_1, B_2) of concept names.

We will have $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $B \in S(A)$.

Intuitively, we construct an interpretation ${\cal I}$ with

- $\Delta^{\mathcal{I}}$ is the set of concept names in \mathcal{T} .
- $A^{\mathcal{I}}$ is the set of all B such that $A \in S(B)$;
- $r^{\mathcal{I}}$ is the set of all $(A, B) \in R(r)$.

This will be a model of \mathcal{T} and $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $A \in B^{\mathcal{I}}$.

Algorithm

Input: \mathcal{T} in normal form. Initialise: $S(A) = \{A\}$ and $R(r) = \emptyset$ for A and r in \mathcal{T} . Apply the following four rules to S and R exhaustively:

(simpleR) If $A' \in S(A)$ and $A' \sqsubseteq B \in \mathcal{T}$ and $B
ot\in S(A)$, then

 $S(A) := S(A) \cup \{B\}.$

(conjR) If $A_1, A_2 \in S(A)$ and $A_1 \sqcap A_2 \sqsubseteq B \in \mathcal{T}$ and $B \notin S(A)$, then

 $S(A) := S(A) \cup \{B\}.$

(rightR) If $A' \in S(A)$ and $A' \sqsubseteq \exists r.B \in \mathcal{T}$ and $(A, B) \notin R(r)$, then

 $R(r) := R(r) \cup \{(A,B)\}.$

(leftR) If $(A, B) \in R(r)$ and $B' \in S(B)$ and $\exists r.B' \sqsubseteq A' \in \mathcal{T}$ and $A' \notin S(A)$, then

$$S(A):=S(A)\cup\{A'\}.$$

Ontology Languages

Example

$$egin{array}{rll} A_0 & \sqsubseteq & \exists r.B \ B & \sqsubseteq & E \ \exists r.E & \sqsubseteq & A_1 \end{array}$$

 $\label{eq:states} \text{ Initialise: } S(A_0) = \{A_0\}, \, S(A_1) = \{A_1\}, \, S(B) = \{B\}, \, S(E) = \{E\}, \, R(r) = \emptyset.$

- Application of (rightR) and axiom 1 gives: $R(r) = \{(A_0, B)\};$
- Application of (simpleR) and axiom 2 gives: $S(B) = \{B, E\}$;
- Application of (leftR) and axiom 3 gives: $S(A_0) = \{A_0, A_1\}$;
- No more rules are applicable.

Thus, $R(r) = \{(A_0, B)\}$, $S(B) = \{B, E\}$, $S(A_0) = \{A_0, A_1\}$ and no changes for the remaining values. We obtain $A_0 \sqsubseteq_{\mathcal{T}} A_1$.

Fragment of MED

Partial run of the algorithm (showing that $Ps \sqsubseteq_{MED} NeedsTreatment$):

- Applications of (simple R) give: $S(Pm) = \{Y, Pm\}, S(Ps) = \{Inf, Ps, Dis\};$
- Application of (rightR) give: $R(has_loc) = \{(Ps, Pm)\},\$
- Application of (leftR) gives: $S(Ps) = {Inf, Ps, Dis, X}$
- Application of (conjR) gives: $S(Ps) = {Inf, Ps, Dis, X, NeedsTreatment}$

Analysing the output of the algorithm

Let \mathcal{T} be in normal form and S, R the output of the algorithm. Theorem. For all concept names A, B in \mathcal{T} : $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $B \in S(A)$. In fact, the following holds: Define an interpretation \mathcal{I} by

- $\Delta^{\mathcal{I}}$ is the set of concept names in \mathcal{T} .
- $A^{\mathcal{I}}$ is the set of all B such that $A \in S(B)$;
- $r^{\mathcal{I}}$ is the set of all $(A,B) \in R(r)$.

Then

- $\bullet \ {\cal I}$ satisfies ${\cal T}$ and
- for all concept names A from \mathcal{T} and \mathcal{EL} -concepts C:

$$A \sqsubseteq_{\mathcal{T}} C \quad \Leftrightarrow \quad A \in C^{\mathcal{I}}.$$