Description Logics: background

What are Description Logics?

There is no precise definition of what a description logic is. They form a huge family of logic-based knowledge representation formalisms with a number of common properties:

- They are descendants of semantic networks and KL-ONE from the 1960- 70s.
- They describe a domain of interest in terms of
	- concepts (also called classes),
	- roles (also called relations or properties),
	- individuals
- Modulo a simple translation, they are subsets of predicate logic.
- Distinction between terminology and data (see next slide).

DL architecture

Reasoning System Reasoning System

A Semantic Network

Example: knowledge concerning persons, parents, etc.

described as a semantic network:

Semantic networks without a semantics!

Description Logics to be discussed

We first discuss the **terminological part** of the description logics

- \mathcal{EL} (the DL underpinning OWL2 EL);
- DL-Lite (the DL underpinning OWL2 QL);
- The DL underpinning Schema.org;
- ALC and some extensions (the DL underpinning OWL2).

We will later discuss how description logics are used to access *instance data*.

The description logic \mathcal{EL} : the terminological part

Language for \mathcal{EL} concepts

The language for \mathcal{EL} concepts consists of:

• concept names $A_0, A_1, ...$

A concept name denotes a set of objects. Typical examples are 'Person' and 'Female'. We also use A, B, B_0, B_1, \ldots etc as concept names.

Concept names are also called class names.

• role names $r_0, r_1, ...$

A role name denotes a set of pairs of objects. Typical examples are 'hasChild' and 'loves'. We also use r, s, s_0, s_1 ... etc as role names.

Role names are also called property names.

• the concept \top (often called "thing")

 $_T$ denotes the set of all objects in the domain.</sub>

- \bullet the concept constructor \Box . It is often called intersection, conjunction, or simply "and".
- the concept constructor ∃. It is often called existential restriction.

Definition of \mathcal{EL} concepts

 \mathcal{EL} concepts are defined inductively as follows:

- all concept names are \mathcal{EL} concepts
- T is a \mathcal{EL} concept
- if C and D are \mathcal{EL} concepts and r is a role name, then

$C \sqcap D$, $\exists r.C$

are \mathcal{EL} concepts.

• nothing else is a \mathcal{EL} concept.

Examples

Assume that Human and Female are concept names and that hasChild, gender, and has Parent are role names. Then we obtain the following \mathcal{EL} concepts:

- ∃hasChild.^T (somebody who has a child),
- Human \sqcap ∃hasChild. \top (a human who has a child),
- Human \Box ∃hasChild.Human (a human who has a child that is human),
- Human \Box ∃gender. Female (a woman),
- Human \Box ∃hasChild. \top \Box ∃hasParent. \top (a human who has a child and has a parent),
- Human \Box ∃hasChild.∃gender.Female (a human who has a daughter),
- Human \Box ∃hasChild.∃hasChild. T (a human who has a grandchild).

Concept definitions in \mathcal{EL}

Let A be a concept name and C a \mathcal{EL} concept. Then

- $A \equiv C$ is called a **concept definition**. C describes necessary and sufficient conditions for being an A. We sometimes read this as "A is equivalent to C'' .
- $A \sqsubset C$ is a **primitive concept definition.** C describes necessary conditions for being an A . We sometimes read this as "A is subsumed by C ".

Examples:

- Father \equiv Person \Box ∃gender.Male \Box ∃hasChild. \top .
- Student \equiv Person \Box \exists is registered at. University.
- Father \Box Person.
- Father $\sqsubset \exists$ hasChild. \top .

\mathcal{EL} terminology

A \mathcal{EL} terminology $\mathcal T$ is a finite set of definitions of the form

 $A \equiv C$, $A \sqsubset C$

such that no concept name occurs more than once on the left hand side of a definition.

So, in a terminology it is **impossible** to have two distinct definitions:

- University \equiv Institution \Box \exists grants.academicdegree
- University \equiv Institution \Box Examplies.higher education

However, we can have cyclic definitions such as

Human being $\equiv \exists$ has parent.Human being

A acyclic \mathcal{EL} terminology $\mathcal T$ is a \mathcal{EL} terminology that does not contain (even indirect) cyclic definitions.

Ontology Languages 11

Example: SNOMED CT (see http://www.ihtsdo.org/)

- Comprehensive healthcare terminology with approximately 400 000 definitions (400 000 concept names and 60 role names)
- Almost (except inclusions between role names) an acyclic \mathcal{EL} terminology
- Property rights owned by not-for-profit organisation IHSTDO (International Health terminology Standards Development Organisation).
- IHSTDO founded in 2007. Currently owned and governed by 27 nations.
- Aim: enabling clinicians, researchers and patients to share and exchange healthcare and clinical knowledge worldwide.
- In the NHS, SNOMED CT is specified as the single terminology to be used across the health system by 2020.

SNOMED CT Snippet

SNOMED CT most general concept names

- Clinical finding
- Procedure
- Observable Entity
- Body structure
- Organism
- Substance
- Biological product
- Specimen
- Physical object

Typical roles in SNOMED CT

• Finding Site. Example

Kidney_disease ≡ Disorder n ∃Finding_Site.Kidney_Structure

• Associated Morphology. Example

Bone marrow hyperplasia \Box ∃Associated Morphology.Hyperplasia

• Due to. Example

Acute pancreatitis due to infection \Box Acute pancreatitis \Box \exists Due to Infection

\mathcal{EL} concept inclusion (CI)

We generalise \mathcal{EL} concept definitions and primitive \mathcal{EL} concept definitions. Let C and D be \mathcal{EL} concepts. Then

- $C \sqsubset D$ is called a \mathcal{EL} concept inclusion. It states that every C is-a D. We also say that C is subsumed by D or that D subsumes C. Sometimes we also say that C is included in D .
- $C \equiv D$ is is called a \mathcal{EL} concept equation. We regard this as an abbreviation for the two concept inclusions $C \sqsubseteq D$ and $D \sqsubseteq C$. We sometimes read this as " C and D are equivalent".

Examples:

- Disease $\sqcap \exists$ has location.Heart \sqsubset NeedsTreatment
- ∃student_of.ComputerScience \Box Human_being \Box knows.Programming Language

Observations

- Every \mathcal{EL} concept definition is a \mathcal{EL} concept equation, but not every \mathcal{EL} concept equation is a \mathcal{EL} concept definition.
- Every primitive \mathcal{EL} concept definition is a \mathcal{EL} concept inclusion, but not every \mathcal{EL} concept inclusion is a primitive \mathcal{EL} concept definition.

\mathcal{EL} TBox

A \mathcal{EL} TBox is a finite set T of \mathcal{EL} concept inclusions and \mathcal{EL} concept equations. Observe:

- Every acyclic \mathcal{EL} terminology is a \mathcal{EL} terminology;
- every \mathcal{EL} terminology is a \mathcal{EL} TBox.

Example:

- Pericardium \square Tissue \square ∃cont in. Heart
- Pericarditis $□$ Inflammation $□$ ∃has loc. Pericardium
- Inflammation \Box Disease \Box ∃acts on. Tissue

Disease \Box ∃has loc.∃cont in.Heart \Box Heartdisease \Box NeedsTreatment

How are TBoxes (eg, SNOMED CT) used?

The **concept hierarchy** induced by a TBox T is defined as

 ${A \sqsubset B \mid A, B \text{ concept names in }\mathcal{T} \text{ and }\mathcal{T} \text{ implies } A \sqsubset B}$

Eg, the concept hierarchy induced by the SNOMED CT snippet above is EntireDistalEpiphysisOfFemur

> \sqsubseteq StructureOfDistalEpiphysisOfFemur

> > \Box

DistalFemurPart

 \Box

BoneStructureOfDistalFemur

 \Box

FemurPart

Standard application of SNOMED CT based on concept hierarchy

- SNOMED CT is used to produce a hierarchy of medical terms (concept names). Each term is annotated with a numerical code and an axiom defining its meaning.
- This hierachy is used by physicians to
	- generate,
	- process
	- and store

electronic medical records (EMRs) containing diagnoses, treatments, medication, lab records, etc.

Problem: we do not yet have a precise definition of what it means that $A \sqsubset B$ follows from $\mathcal T$ (or is implied by $\mathcal T$). So: we do not have a precise definition of the concept hierarchy induced by a TBox.

\mathcal{EL} (semantics)

- \bullet) An **interpretation** is a structure $\mathcal{I}=(\Delta^{\mathcal{I}} ,\cdot^{\mathcal{I}})$ in which
	- $\Delta^{\mathcal{I}}$ is the **domain** (a non-empty set)
	- $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
		- ∗ every concept name A to a subset $A^{\mathcal I}$ of $\Delta^{\mathcal I}$ $(A^{\mathcal{I}}\subseteq \Delta^{\mathcal{I}})$
		- $*$ every role name r to a binary relation $r^\mathcal I$ over $\Delta^\mathcal I$ $(r^\mathcal I\subseteq \Delta^\mathcal I\times \Delta^\mathcal I)$
- The interpretation $C^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$ of an arbitrary \mathcal{EL} concept C in \mathcal{I} is defined inductively:
	- $(\top)^{\mathcal{I}} = \Delta^{\mathcal{I}}$
	- $\quad (C\sqcap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}$
	- $\mathsf{I}=\{x\in \Delta^\mathcal{I}\mid \text{ exists } y\in \Delta^\mathcal{I} \text{ such that } (x,y)\in r^\mathcal{I} \text{ and } y\in C^\mathcal{I}\}$

Example

Let $\mathcal{I}=(\Delta^{\mathcal{I}},\cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}} = \{a, b, c, d, A, B\};$
- Person $\mathcal{I} = \{a, b, c, d\}$, Female $\mathcal{I} = \{A\}$;
- hasChild^{$\mathcal{I} = \{(a, b), (b, c)\}\$, gender $\mathcal{I} = \{(a, A), (b, B), (c, A)\}\$.}

Compute:

- $\bullet \ \ (\mathsf{Person} \sqcap \exists \mathsf{gender}.\top)^\mathcal{I}$,
- (Person \sqcap ∃gender.Female) ${}^\mathcal{I}$,
- (Person \sqcap ∃hasChild.Person) $^\mathcal{I}$,
- (Person \Box ∃hasChild.∃gender.Female))^{$\mathcal I$},
- $\bullet \ \ (\mathsf{Person} \sqcap \exists \mathsf{hasChild} . \exists \mathsf{hasChild} . \top)^\mathcal{I}.$

Semantics: when is a concept inclusion true in an interpretation?

Let $\mathcal I$ be an interpretation, $C \sqsubset D$ a concept inclusion, and $\mathcal T$ a TBox.

- $\bullet\,$ We write $\mathcal{I} \models C \sqsubseteq D$ if $C^\mathcal{I} \subseteq D^\mathcal{I}$. If this is the case, then we say that
	- I satisfies $C \sqsubset D$ or, equivalently,
	- $-C \sqsubset D$ is true in $\mathcal I$ or, equivalently,
	- $-$ I is a model of $C \sqsubset D$.
- We write $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$
- We write $\mathcal{I} \models \mathcal{T}$ if $\mathcal{I} \models E \sqsubseteq F$ for all $E \sqsubseteq F$ in \mathcal{T} . If this is the case, then we say that
	- $\mathcal I$ satisfies $\mathcal T$ or, equivalently,
	- $-$ I is a model of T.

Semantics: when does a concept inclusion follow from a TBox?

Let $\mathcal T$ be a TBox and $C \sqsubset D$ a concept inclusion. We say that $C \sqsubset D$ follows **from** $\mathcal T$ if, and only if, every model of $\mathcal T$ is a model of $C \sqsubset D$. Instead of saying that $C \sqsubset D$ follows from $\mathcal T$ we often write

- $\bullet \ \mathcal{T}\models C\sqsubseteq D$ or
- $C \sqsubset_{\mathcal{T}} D$.

Example: let MED be the \mathcal{EL} TBox

- Pericardium \square Tissue \square ∃cont in. Heart
- Pericarditis \Box Inflammation \Box ∃has loc. Pericardium
- Inflammation \square Disease \square ∃acts on. Tissue

Disease \Box ∃has loc.∃cont in.Heart \Box Heartdisease \Box NeedsTreatment

Pericarditis needs treatment if, and only if, Percarditis \Box_{MED} NeedsTreatment.

Examples

Let $\mathcal{T} = \{A \sqsubset \exists r.B\}$. Then

 $\mathcal{T} \not\models A \sqsubseteq B.$

To see this, construct an interpretation $\mathcal I$ such that

- $\mathcal{I} \models \mathcal{T}$;
- \bullet $\mathcal{I} \not\models A \sqsubseteq B$.

Namely, let $\mathcal I$ be defined by

- $\Delta^{\mathcal{I}} = \{a, b\}$;
- $A^{\mathcal{I}} = \{a\};$
- $r^{\mathcal{I}} = \{(a, b)\};$
- $B^{\mathcal{I}} = \{b\}.$

Then $A^\mathcal{I}~=~\{a\}~\subseteq~\{a\}~=~(\exists r.B)^{\mathcal{I}}$ and so $\mathcal{I}~\models~\mathcal{T}$. But $A^\mathcal{I}~\not\subseteq~B^\mathcal{I}$ and so $\mathcal{I} \not\models A \sqsubset B.$ Ontology Languages 25

Examples

Let again $\mathcal{T} = \{A \sqsubset \exists r.B\}$. Then

 $\mathcal{T} \not\models \exists r.B \sqsubset A.$

To see this, construct an interpretation $\mathcal I$ such that

- $\mathcal{I} \models \mathcal{T}$;
- $\mathcal{I} \not\models \exists r.B \sqsubset A$.

Let $\mathcal I$ be defined by

- $\Delta^{\mathcal{I}} = \{a\}$;
- $A^{\mathcal{I}} = \emptyset$:
- $\bullet \ \ r^{\mathcal{I}} = \{(a,a)\};$
- $B^{\mathcal{I}} = \{a\}.$

Then $A^\mathcal{I}=\emptyset\subseteq\{a\}=(\exists r.B)^{\mathcal{I}}$ and so $\mathcal{I}\models\mathcal{T}.$ But $(\exists r.B)^{\mathcal{I}}=\{a\}\not\subseteq\emptyset=A^\mathcal{I}$ and so $\mathcal{I} \not\models \exists r.B \sqsubset A$.

Ontology Languages 26

Deciding whether $C \sqsubset_{\mathcal{T}} D$ for \mathcal{EL} TBoxes $\mathcal T$

We give a polynomial time (tractable) algorithm deciding whether $C \sqsubset_{\mathcal{T}} D$

The algorithm actually decides whether $A \sqsubset_{\mathcal{T}} B$ only for concept names A and B in τ .

This is sufficient because the following two conditions are equivalent:

- $\bullet \ C \sqsubset_{\mathcal{T}} D$
- $A \sqsubset_{\mathcal{T}} B$, where A and B are concept names that do not occur in $\mathcal T$ and the TBox \mathcal{T}' is defined by

$$
\mathcal{T}' = \mathcal{T} \cup \{A \equiv C, B \equiv D\}
$$

Thus, if we want to know whether $C \sqsubseteq_{\mathcal T} D$, we first construct $\mathcal T'$ and then apply the algorithm to \mathcal{T}' , A , and B .

Pre-processing

A $\mathcal{E}\mathcal{L}$ TBox is in *normal form* if it consists of inclusions of the form

(sform) $A \sqsubseteq B$, where A and B are concept names;

(cform) $A_1 \sqcap A_2 \sqsubseteq B$, where A_1, A_2, B are concept names;

(rform) $A \sqsubset \exists r.B$, where A, B are concept names;

(lform) $\exists r.A \sqsubset B$, where A, B are concept names.

Given a \mathcal{EL} Box $\mathcal T$, one can compute in polynomial time a TBox $\mathcal T'$ in normal form such that for all concept names A, B in \mathcal{T} :

$$
A \sqsubseteq_{\mathcal{T}} B \quad \Leftrightarrow \quad A \sqsubseteq_{\mathcal{T}'} B.
$$

Algorithm for Pre-processing

Given a TBox $\mathcal T$, apply the following rules exhaustively:

- Replace each $C_1 \equiv C_2$ by $C_1 \sqsubset C_2$ and $C_2 \sqsubset C_1$;
- Replace each $C \sqsubset C_1 \sqcap C_2$ by $C \sqsubset C_1$ and $C \sqsubset C_2$;
- If $\exists r.C$ occurs in $\mathcal T$ and C is complex, replace C in $\mathcal T$ by a fresh concept name X and add $X \sqsubset C$ and $C \sqsubset X$ to \mathcal{T} ;
- If $C \sqsubset D$ in $\mathcal T$ and $\exists r.B$ occurs in C (but $C \neq \exists r.B$), then remove $C \sqsubset D$, take a fresh concept name X , and add

$$
X \sqsubseteq \exists r.B, \quad \exists r.B \sqsubseteq X, \quad C' \sqsubseteq D
$$

to ${\cal T}$, where C' is the concept obtained from C by replacing ∃ $r.B$ by $X.$

Algorithm for Pre-processing

• If $A_1 \sqcap \cdots \sqcap A_n \sqsubset D$ in $\mathcal T$ and $n > 2$, then remove it, take a fresh concept name X , and add

 $A_2 \sqcap \cdots \sqcap A_n \sqsubset X$, $X \sqsubset A_2 \sqcap \cdots \sqcap A_n$, $A_1 \sqcap X \sqsubset D$

to τ .

• If $\exists r.B \sqsubset \exists s.E$ in $\mathcal T$, then remove it, take a fresh concept name X, and add

 $\exists r.B \sqsubset X, \quad X \sqsubset \exists s.E$

to τ .

Pre-Processing: Example

Pre-Processing applied to Example MED

- Pericardium \Box Tissue
- Pericardium $\sqsubset Y$
- Pericarditis \Box Inflammation
- Pericarditis □ ∃has loc.Pericardium
- Inflammation \Box Disease
- Inflammation \Box ∃acts_on. Tissue
- Disease $\sqcap X \subseteq$ Heartdisease
- Disease $\Box X \subseteq$ NeedsTreatment

∃has loc. $Y \sqsubset X$, $X \sqsubset \exists$ has loc. Y , \exists cont in. Heart $\sqsubset Y$, $Y \sqsubset \exists$ cont in. Heart

Algorithm deciding $A \sqsubset_{\mathcal{T}} B$: Intuition

Given $\mathcal T$ in normal form, we compute functions S and R:

- S maps every concept name A from $\mathcal T$ to a set of concept names B;
- R maps every role name r from T to a set of pairs (B_1, B_2) of concept names.

We will have $A \sqsubset_{\mathcal{T}} B$ if, and only if, $B \in S(A)$.

Intuitively, we construct an interpretation $\mathcal I$ with

- $\bullet \: \Delta^\mathcal{I}$ is the set of concept names in $\mathcal{T}.$
- $A^{\mathcal{I}}$ is the set of all B such that $A\in S(B)$;
- $r^{\mathcal{I}}$ is the set of all $(A, B) \in R(r)$.

This will be a model of $\mathcal T$ and $A\sqsubseteq_{\mathcal T} B$ if, and only if, $A\in B^{\mathcal I}.$

Algorithm

Input: $\mathcal T$ in normal form. Initialise: $S(A) = \{A\}$ and $R(r) = \emptyset$ for A and r in $\mathcal T$. Apply the following four rules to S and R exhaustively:

(simpleR) If $A'\in S(A)$ and $A'\sqsubseteq B\in\mathcal{T}$ and $B\not\in S(A)$, then

 $S(A) := S(A) \cup {B}.$

(conjR) If $A_1, A_2 \in S(A)$ and $A_1 \sqcap A_2 \sqsubseteq B \in \mathcal{T}$ and $B \not\in S(A)$, then

 $S(A) := S(A) \cup {B}.$

(rightR) If $A' \in S(A)$ and $A' \sqsubseteq \exists r.B \in \mathcal{T}$ and $(A, B) \not\in R(r)$, then

 $R(r) := R(r) \cup \{(A, B)\}.$

(leftR) If $(A, B) \in R(r)$ and $B' \in S(B)$ and $\exists r.B' \sqsubset A' \in \mathcal{T}$ and $A' \notin S(A)$, then

$$
S(A):=S(A)\cup\{A'\}.
$$

Ontology Languages 34

Example

$$
A_0 \;\sqsubseteq\; \exists r.B \\[.2cm] B \;\sqsubseteq\; E \\[.2cm] E \;\sqsubseteq\; A_1
$$

Initialise: $S(A_0) = \{A_0\}$, $S(A_1) = \{A_1\}$, $S(B) = \{B\}$, $S(E) = \{E\}$, $R(r) = \emptyset$.

- Application of (rightR) and axiom 1 gives: $R(r) = \{(A_0, B)\}\;$
- Application of (simpleR) and axiom 2 gives: $S(B) = \{B, E\}$;
- Application of (leftR) and axiom 3 gives: $S(A_0) = \{A_0, A_1\}$;
- No more rules are applicable.

Thus, $R(r) = \{(A_0, B)\}\$, $S(B) = \{B, E\}$, $S(A_0) = \{A_0, A_1\}$ and no changes for the remaining values. We obtain $A_0 \sqsubseteq_{\mathcal{T}} A_1$.

Fragment of MED

Partial run of the algorithm (showing that Ps \Box_{MED} NeedsTreatment):

- Applications of (simpleR) give: $S(Pm) = \{Y, Pm\}$, $S(Ps) = \{\text{Inf}, \text{Ps}, \text{Dis}\}$;
- Application of (rightR) give: $R(\text{has_loc}) = \{(\text{Ps}, \text{Pm})\}\$
- Application of (leftR) gives: $S(Ps) = \{Inf, Ps, Dis, X\}$
- Application of (conjR) gives: $S(Ps) = \{Inf, Ps, Dis, X, NeedsTreatment\}$

Analysing the output of the algorithm

Let τ be in normal form and S, R the output of the algorithm. Theorem. For all concept names A, B in \mathcal{T} : $A \sqsubset_{\mathcal{T}} B$ if, and only if, $B \in S(A)$. In fact, the following holds: Define an interpretation $\mathcal I$ by

- $\bullet \: \Delta^{\mathcal I}$ is the set of concept names in $\mathcal T.$
- $A^{\mathcal{I}}$ is the set of all B such that $A\in S(B)$;
- $r^{\mathcal{I}}$ is the set of all $(A, B) \in R(r)$.

Then

- τ satisfies τ and
- for all concept names A from T and \mathcal{EL} -concepts C :

$$
A \sqsubseteq_{\mathcal{T}} C \quad \Leftrightarrow \quad A \in C^{\mathcal{I}}.
$$