Description Logics Extending \mathcal{ALC}
Extending \textit{ALC}

We discuss the extension of \textit{ALC} by

- qualified number restrictions;
- inverse roles;
- transitive roles;
- roles inclusions;
- nominals.
Extending \mathcal{ALC} by Qualified Number Restrictions

Qualified number restrictions: if C is a concept, r a role, and n a number, then

$$(\leq n \ r. C), \ (\geq n \ r. C)$$

are concepts. If S is a set, then we denote by $|S|$ the number of its elements. The interpretation of qualified number restrictions is given by

- $(\leq n \ r. C)^I = \{ x \in \Delta^I \mid |\{ y \in \Delta^I \mid (x, y) \in r^I \text{ and } y \in C^I \}| \leq n \}$
- $(\geq n \ r. C)^I = \{ x \in \Delta^I \mid |\{ y \in \Delta^I \mid (x, y) \in r^I \text{ and } y \in C^I \}| \geq n \}$

Examples

- $(\geq 3 \ \text{hasChild. Male})$ is the class of all objects having at least three children who are male.

- $(\leq 2 \ \text{hasChild. Male})$ is the class of all objects having at most two children who are male.
We have seen unqualified number restrictions in DL-Lite. Recall that unqualified number restrictions are of the form

\[\leq n \, r \, T \]

and do not admit qualifications using an arbitrary concept C'. DL-Lite does not admit such qualifications because terminological reasoning would become ExpTime-hard.
Extending \mathcal{ALC} by inverse roles

Inverse roles: If r is a role name, then r^- is a role, called the inverse of r. The interpretation of inverse roles is given by

\[
(r^-)^I = \{(y, x) \in \Delta^I \times \Delta^I \mid (x, y) \in r^I\}.
\]

r^- can occur in all places in which the role name r can occur.

Examples

- $\exists \text{has_child}^- . \text{Gardener}$ is the class of all objects having a parent who is a gardener.

- $(\geq 3 \text{parent}^- . \text{Gardener})$ is the class of all objects having at least three children who are gardeners.

We have seen inverse roles in DL-Lite. There are no inverse roles in \mathcal{EL}. In fact, adding inverse roles to \mathcal{EL} would make reasoning ExpTime-hard.
Extending \mathcal{ALC} by transitive roles and role hierarchies

Transitive roles: One can add $\text{transitive}(r)$ to a TBox to state that the relation r is transitive. Thus,

- $\mathcal{I} \models \text{transitive}(r)$ if, and only if, $r^\mathcal{I}$ is transitive, i.e., for all $x, y, z \in \Delta^\mathcal{I}$ such that $(x, y) \in r^\mathcal{I}$ and $(y, z) \in r^\mathcal{I}$ we have $(x, z) \in r^\mathcal{I}$.

Examples

- The role “is part of” is often regarded as transitive.

Role hierarchies: one can add a role inclusion $r \sqsubseteq s$ to a TBox to state that r is included in s. Thus,

- $\mathcal{I} \models r \sqsubseteq s$ iff $r^\mathcal{I} \subseteq s^\mathcal{I}$.

Example:

- hasSon \sqsubseteq hasChild
Extending \mathcal{ALC} by Nominals

Sometimes we want to use concepts/classes consisting of exactly one object or a finite set of objects. To enable the construction of such concepts, \mathcal{ALC} has been extended by nominals.

Nominals: We use a, b, etc. to denote individual names. Individual names denote elements of the domain of interpretations. They are names for individual objects (not for classes or relations). Thus, we extend interpretations I to interpret individual names by setting $a^I \in \Delta^I, b^I \in \Delta^I$, etc.

For every individual name a, we call $\{a\}$ a nominal. For individual names a_1, \ldots, a_n, we call $\{a_1, \ldots, a_n\}$ a nominal set.

In every interpretation I:

- $\{a\}^I = \{a^I\}$;
- $\{a_1, \ldots, a_n\}^I = \{a_1^I, \ldots, a_n^I\}$.

Ontology Languages
Extending \mathcal{ALC}

In \mathcal{ACC} extended with nominals we can use the expressions $\{a\}$ and $\{a_1, \ldots, a_n\}$ as concepts.

Examples:

- $\exists \text{citizen_of}. \{\text{France}\}$ (citizens of France).

- $\exists \text{citizen_of}. \{\text{France, Ireland}\}$ (citizens of France or Ireland).

- $\exists \text{has_colour}. \{\text{Green}\}$ (all green objects).

- $\exists \text{student_of}. \{\text{Liverpool_University}\}$ (students of Liverpool University).

- One can also define the concept Colour by giving a list of all colours:

 $$\text{Colour} \equiv \{\text{red, yellow, \ldots, green}\}$$

 and give a value restriction for the role has_colour by

 $$\top \sqsubseteq \forall \text{has_colour}. \text{Colour}.$$
The expressive Description Logics SHOIQ

The extension of ALC with the constructors

- qualified number restrictions,
- inverse roles,
- role hierarchies,
- transitive roles,
- and nominals

is called SHOIQ. It is the underlying description logic of the Web Ontology Language OWL-DL we will discuss later. Standard reasoning systems (FACT, RACER, Pellet) for SHOIQ are based on tableau procedures similar to the one discussed for ALC. Similar to ALC, terminological reasoning in SHOIQ is decidable, but not tractable (it is ExpTime hard).