
Protégé Tutorial

Fabio Papacchini



Protégé – What and Where

What is Protégé? (from their webpage)

A free, open-source ontology editor and framework for building
intelligent systems

Protégé is supported by a strong community of academic,
government, and corporate users, who use Protégé to build
knowledge-based solutions in areas as diverse as biomedicine,
e-commerce, and organisational modelling.

Where to get it: http://protege.stanford.edu/

Useful resources

I http:
//mowl-power.cs.man.ac.uk/protegeowltutorial/
resources/ProtegeOWLTutorialP4_v1_3.pdf

NOTE: the manual is for version 4, but the current version is 5.1

I http://protegewiki.stanford.edu/wiki/Main_Page

http://protege.stanford.edu/
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://protegewiki.stanford.edu/wiki/Main_Page


Protégé – What and Where (cont’d)

Specifically, Protégé is

I a java-based application (multi-platform)

I thought for a variety of people (more than 300 thousands users)

I a GUI to help the editing of ontologies

creation, modification, reasoning, debugging, . . .



Syntax – DL, OWL, Manchester

Protégé uses the Manchester syntax

DL OWL Manchester

> owl:Thing owl:Thing
⊥ owl:Nothing owl:Nothing
Concept name Class Class
Role name Object property Object property
¬C ObjectComplementOf(C) not C
C t D ObjectUnionOf(C D) C or D
C u D ObjectIntersectionOf(C D) C and D
∃r .C ObjectSomeValuesFrom(r C) r some C
∀r .C ObjectAllValuesFrom(r C) r only C
(≥ n r .C) ObjectMinCardinality(n r C) r min n C
(≤ n r .C) ObjectMaxCardinality(n r C) r max n C
(= n r .C) ObjectExactCardinality(n r C) r exactly n C

https://www.w3.org/TR/owl2-manchester-syntax/

https://www.w3.org/TR/owl2-manchester-syntax/


Syntax – DL, OWL, Manchester – Example
DL

Person u ∃hasGender .Male

(= 2 hasWheel .FrontWheel) u (= 2 hasWheel .RearWheel)

OWL (omitting “Object” for succinctness)

IntersectionOf(Person SomeValuesFrom(hasGender Male))

IntersectionOf(ExactCardinality(2 hasWheel FrontWheel)
ExactCardinality(2 hasWheel RearWheel))

Manchester

Person and (hasGender some Male)

(hasWheel exactly 2 FrontWheel) and (hasWheel exactly 2
RearWheel)

Convention
I concept names begin with an uppercase letter
I role names begin with a lowercase letter
I CamelBack notation for both concept and role names



An Ontology about Video Games

Assume we want to build an ontology about video games as follows.

self-standing modifiers relations definable
- Game - Genre hasDifficulty MultiPlatform

- NamedGame - SinglePlayer hasPlatform PuzzleGame
- LoL - MultiPlayer hasGenre HardGame
- Chess - Puzzle NormalGame
- Sudoku - RolePlayGame EasyGame
- WoW - Online LinuxGame

- Platform - Difficulty WindowsGame
- Windows - Hard MacOSXGame
- MacOSX - Normal . . .
- Linux - Easy



Adding Classes
Make sure to have the “Classes” tab open

Window→ Tabs→ Classes

Add Subclass

Add Sibling

Delete Class



Adding Classes
Make sure to have the “Classes” tab open

Window→ Tabs→ Classes

Add Subclass

Add Sibling

Delete Class



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >

Game u ValuePartition v ⊥
Game u Genre v ⊥

Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >

Game u ValuePartition v ⊥
Game u Genre v ⊥

Game u Platform v ⊥

Delete axiom

Edit axiom



Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



What Now?

What we have. . .

I all non-definable classes

I an initial class hierarchy

I basic (among siblings) disjoint axioms

What we need to add. . .

I object properties

I relations between classes

I definable classes



Object Properties (Domain and Range)
Make sure to have the “Object Properties” tab open

Window→ Tabs→ Object Properties

∃hasPlatform.> v Game

Autocompletion using “tab”

> v ∀hasPlatform.Platform



Object Properties (Domain and Range)
Make sure to have the “Object Properties” tab open

Window→ Tabs→ Object Properties

∃hasPlatform.> v Game

Autocompletion using “tab”

> v ∀hasPlatform.Platform



Object Properties (Domain and Range)
Make sure to have the “Object Properties” tab open

Window→ Tabs→ Object Properties

∃hasPlatform.> v Game

Autocompletion using “tab”

> v ∀hasPlatform.Platform



Adding Axioms

Which axioms?

I only axioms of the following forms

I A v C (necessary condition for A)
I A ≡ C (sufficient and necessary condition for A – definition)

I for each subclass of NamedGame we need to insert axioms
expressing something like

I Chess can be installed on any platform
I League of Legends is an online game

I DifficultyValuePartition need to be properly defined

(i.e., its values can only be Hard, Normal, or Easy)

I adding definable classes



A v C – Example

I Natural language specification

Chess can be installed on any platform

I Rephrase the specification using the ontology vocabulary

Chess has platform Windows, has platform MacOSX, and
has platform Linux

I Write it in description logic syntax (optional)

Chess v ∃hasPlatform.WindowsPlatform
Chess v ∃hasPlatform.MacOSXPlatform
Chess v ∃hasPlatform.LinuxPlatform

I Write it in Manchester syntax (the right-hand side is enough)

hasPlatform some WindowsPlatform
hasPlatform some MacOSXPlatform
hasPlatform some LinuxPlatform



Adding Axioms to the Class “Chess”



Adding Axioms to the Class “Chess”



Adding Axioms to the Class “Chess”



Improving DifficultyValuePartition Definition

What needs to be done?

I add DifficultyValuePartition ≡ Hard t Normal t Easy

Note that Hard, Normal and Easy are already disjoint

I add domain and range of hasDifficulty

I make hasDifficulty functional



Improving DifficultyValuePartition Definition (cont’d)



Improving DifficultyValuePartition Definition (cont’d)



Improving DifficultyValuePartition Definition (cont’d)



Improving DifficultyValuePartition Definition (cont’d)



Adding Definable Class “MultiPlayerGame”

MultiPlayerGame ≡ Game u ∃hasGenre.MultiPlayer



Adding Definable Class “MultiPlayerGame”

MultiPlayerGame ≡ Game u ∃hasGenre.MultiPlayer



Adding Definable Class “MultiPlayerGame”

MultiPlayerGame ≡ Game u ∃hasGenre.MultiPlayer



Reasoning

Protégé can be used for reasoning tasks such as classification

I configure the reasoner

Reasoner→ Configure. . . (for this tutorial, check everything
under Class inferences and Object property inferences)

I select a reasoner

for example, Reasoner→ HermiT (other reasoners can be
added, which one to use depends on several factors such
as the expressivity of the ontology)

I finally, Reasoner→ Start reasoner



Reasoning Example

Inferred



Reasoning Example

Inferred



Reasoning – Visually (Asserted)



Reasoning – Visually (Inferred)



Resources Summary

Download from http://protege.stanford.edu/

Guide, Slides, Wiki

I Official Tutorial (for version 4, small differences here and there)
http:
//mowl-power.cs.man.ac.uk/protegeowltutorial/
resources/ProtegeOWLTutorialP4_v1_3.pdf

I Wiki
http://protegewiki.stanford.edu/wiki/Main_Page

I extended version of this presentation at the module site
http://cgi.csc.liv.ac.uk/˜frank/teaching/
comp08/comp321.html

Game Ontology http://cgi.csc.liv.ac.uk/˜frank/
teaching/comp08/videogame.owl

http://protege.stanford.edu/
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://protegewiki.stanford.edu/wiki/Main_Page
http://cgi.csc.liv.ac.uk/~frank/teaching/comp08/comp321.html
http://cgi.csc.liv.ac.uk/~frank/teaching/comp08/comp321.html
http://cgi.csc.liv.ac.uk/~frank/teaching/comp08/videogame.owl
http://cgi.csc.liv.ac.uk/~frank/teaching/comp08/videogame.owl

