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Protégé – What and Where

What is Protégé? (from their webpage)

A free, open-source ontology editor and framework for building
intelligent systems

Protégé is supported by a strong community of academic,
government, and corporate users, who use Protégé to build
knowledge-based solutions in areas as diverse as biomedicine,
e-commerce, and organisational modelling.

Where to get it: http://protege.stanford.edu/

Useful resources

I http:
//mowl-power.cs.man.ac.uk/protegeowltutorial/
resources/ProtegeOWLTutorialP4_v1_3.pdf

NOTE: the manual is for version 4, but the current version is 5.1

I http://protegewiki.stanford.edu/wiki/Main_Page
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http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
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Protégé – What and Where (cont’d)

Specifically, Protégé is

I a java-based application (multi-platform)

I thought for a variety of people (more than 300 thousands users)

I a GUI to help the editing of ontologies

creation, modification, reasoning, debugging, . . .



Syntax – DL, OWL, Manchester

Protégé uses the Manchester syntax

DL OWL Manchester

> owl:Thing owl:Thing
⊥ owl:Nothing owl:Nothing
Concept name Class Class
Role name Object property Object property
¬C ObjectComplementOf(C) not C
C t D ObjectUnionOf(C D) C or D
C u D ObjectIntersectionOf(C D) C and D
∃r .C ObjectSomeValuesFrom(r C) r some C
∀r .C ObjectAllValuesFrom(r C) r only C
(≥ n r .C) ObjectMinCardinality(n r C) r min n C
(≤ n r .C) ObjectMaxCardinality(n r C) r max n C
(= n r .C) ObjectExactCardinality(n r C) r exactly n C

https://www.w3.org/TR/owl2-manchester-syntax/

https://www.w3.org/TR/owl2-manchester-syntax/


Syntax – DL, OWL, Manchester – Example
DL

Person u ∃hasGender .Male

(= 2 hasWheel .FrontWheel) u (= 2 hasWheel .RearWheel)

OWL (omitting “Object” for succinctness)

IntersectionOf(Person SomeValuesFrom(hasGender Male))

IntersectionOf(ExactCardinality(2 hasWheel FrontWheel)
ExactCardinality(2 hasWheel RearWheel))

Manchester

Person and (hasGender some Male)

(hasWheel exactly 2 FrontWheel) and (hasWheel exactly 2
RearWheel)

Convention
I concept names begin with an uppercase letter
I role names begin with a lowercase letter
I CamelBack notation for both concept and role names



An Ontology about Video Games

Assume we want to build an ontology about video games as follows.

self-standing modifiers relations definable
- Game - Genre hasDifficulty MultiPlatform

- NamedGame - SinglePlayer hasPlatform PuzzleGame
- LoL - MultiPlayer hasGenre HardGame
- Chess - Puzzle NormalGame
- Sudoku - RolePlayGame EasyGame
- WoW - Online LinuxGame

- Platform - Difficulty WindowsGame
- Windows - Hard MacOSXGame
- MacOSX - Normal . . .
- Linux - Easy



Adding Classes
Make sure to have the “Classes” tab open

Window→ Tabs→ Classes

Add Subclass

Add Sibling

Delete Class
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Adding Class Hierarchies
It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom
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It allows us to speed up the process of adding classes.

Tools→ Create class hierarchy. . .

Axioms involving “Game”

Description of the class “Game”

Game v >
Game u ValuePartition v ⊥

Game u Genre v ⊥
Game u Platform v ⊥

Delete axiom

Edit axiom



What Now?

What we have. . .

I all non-definable classes

I an initial class hierarchy

I basic (among siblings) disjoint axioms

What we need to add. . .

I object properties

I relations between classes

I definable classes



Object Properties (Domain and Range)
Make sure to have the “Object Properties” tab open

Window→ Tabs→ Object Properties

∃hasPlatform.> v Game

Autocompletion using “tab”

> v ∀hasPlatform.Platform
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Adding Axioms

Which axioms?

I only axioms of the following forms

I A v C (necessary condition for A)
I A ≡ C (sufficient and necessary condition for A – definition)

I for each subclass of NamedGame we need to insert axioms
expressing something like

I Chess can be installed on any platform
I League of Legends is an online game

I DifficultyValuePartition need to be properly defined

(i.e., its values can only be Hard, Normal, or Easy)

I adding definable classes



A v C – Example

I Natural language specification

Chess can be installed on any platform

I Rephrase the specification using the ontology vocabulary

Chess has platform Windows, has platform MacOSX, and
has platform Linux

I Write it in description logic syntax (optional)

Chess v ∃hasPlatform.WindowsPlatform
Chess v ∃hasPlatform.MacOSXPlatform
Chess v ∃hasPlatform.LinuxPlatform

I Write it in Manchester syntax (the right-hand side is enough)

hasPlatform some WindowsPlatform
hasPlatform some MacOSXPlatform
hasPlatform some LinuxPlatform



Adding Axioms to the Class “Chess”
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Adding Axioms to the Class “Chess”



Improving DifficultyValuePartition Definition

What needs to be done?

I add DifficultyValuePartition ≡ Hard t Normal t Easy

Note that Hard, Normal and Easy are already disjoint

I add domain and range of hasDifficulty

I make hasDifficulty functional



Improving DifficultyValuePartition Definition (cont’d)



Improving DifficultyValuePartition Definition (cont’d)



Improving DifficultyValuePartition Definition (cont’d)



Improving DifficultyValuePartition Definition (cont’d)



Adding Definable Class “MultiPlayerGame”

MultiPlayerGame ≡ Game u ∃hasGenre.MultiPlayer
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Adding Definable Class “MultiPlayerGame”

MultiPlayerGame ≡ Game u ∃hasGenre.MultiPlayer



Reasoning

Protégé can be used for reasoning tasks such as classification

I configure the reasoner

Reasoner→ Configure. . . (for this tutorial, check everything
under Class inferences and Object property inferences)

I select a reasoner

for example, Reasoner→ HermiT (other reasoners can be
added, which one to use depends on several factors such
as the expressivity of the ontology)

I finally, Reasoner→ Start reasoner



Reasoning Example

Inferred



Reasoning Example

Inferred



Reasoning – Visually (Asserted)



Reasoning – Visually (Inferred)



Resources Summary

Download from http://protege.stanford.edu/

Guide, Slides, Wiki

I Official Tutorial (for version 4, small differences here and there)
http:
//mowl-power.cs.man.ac.uk/protegeowltutorial/
resources/ProtegeOWLTutorialP4_v1_3.pdf

I Wiki
http://protegewiki.stanford.edu/wiki/Main_Page

I extended version of this presentation at the module site
http://cgi.csc.liv.ac.uk/˜frank/teaching/
comp08/comp321.html

Game Ontology http://cgi.csc.liv.ac.uk/˜frank/
teaching/comp08/videogame.owl
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