COMP321 (Ontology Languages): Test 1

Lecturer: F. Wolter
Time: 50 minutes

This test makes up 10 percent of the final mark for this module. You can achieve 100 marks.

1. Consider the following \mathcal{EL}-TBox \mathcal{T}:

```
SmallProject $\sqsubseteq$ Project
\exists manages.Project $\sqsubseteq$ Manager
JuniorManager $\sqsubseteq$ \exists manages.SmallProject
JuniorManager $\sqcap$ Manager $\sqsubseteq$ Employee
```

- Apply the \mathcal{EL}-subsumption algorithm from the Comp321-Slides to compute $S(A)$ for every concept name A in \mathcal{T} and $R(r)$ for every role name r of \mathcal{T}. In your answer, show how the rules (simpleR), (conjR), (rightR) and (leftR) are applied step-by-step in the computation of S and R.

- Using S, determine whether Manager $\sqsubseteq_\mathcal{T}$ Employee (i.e., whether Manager is subsumed by Employee w.r.t. \mathcal{T}).

- Using S, determine whether JuniorManager $\sqsubseteq_\mathcal{T}$ Manager (i.e., whether JuniorManager is subsumed by Manager w.r.t. \mathcal{T}).

- Using S, determine whether JuniorManager $\sqsubseteq_\mathcal{T}$ Employee (i.e., whether JuniorManager is subsumed by Employee w.r.t. \mathcal{T}). (30 marks)

2. Consider the interpretation \mathcal{I} defined by

- $\Delta^\mathcal{I} = \{a, b, c\}$;
- $A^\mathcal{I} = \{a, b\}$, $B^\mathcal{I} = \{c\}$, $r^\mathcal{I} = \{(a, b), (a, c), (b, b)\}$.

Determine the following sets:

- $(\exists r.A)^\mathcal{I}$;
- $(\forall r.A)^\mathcal{I}$;
- $(\exists r.B)^\mathcal{I}$;
- $(\forall r.B)^\mathcal{I}$. (20 marks)
3. Consider the \(\mathcal{ALC} \)-TBox \(\mathcal{T} \):

\[
\text{Manager} \subseteq \exists \text{works_for.Employer} \\
\text{Manager} \subseteq \exists \text{manages.Unit} \\
\text{Manager} \subseteq \forall \text{manages.Department} \\
\text{Employer} \subseteq \exists \text{registered_at.TaxOffice}
\]

- Translate \(\mathcal{T} \) into natural language (English).
- Define a model \(\mathcal{I} \) of \(\mathcal{T} \) in which Manager is satisfied. (In other words, define an interpretation \(\mathcal{I} \) such that \(\mathcal{I} \models \mathcal{T} \) and \(\text{Manager}^\mathcal{I} \neq \emptyset \).)
- Add \(\text{Unit} \sqcap \text{Department} \subseteq \bot \) to \(\mathcal{T} \). Is the resulting TBox satisfiable? Provide an (informal!) argument for your answer. \(\text{(20 marks)} \)

4. Consider the \(\mathcal{ALC} \)-concept

\[
C = (\neg A) \sqcap (\exists r.\exists r.A) \sqcap (\forall r.\neg A)
\]

Apply the \(\mathcal{ALC} \)-tableau algorithm from the Comp321-Slides to the concept \(C \) to determine whether \(C \) is satisfiable or not. In your answer, show how the rules \(\rightarrow \sqcap, \rightarrow \sqcup, \rightarrow \exists \), and \(\rightarrow \forall \) are applied step-by-step to the constraint system \(x : C \). If \(C \) is satisfiable, construct an interpretation \(\mathcal{I} \) satisfying \(C \) (i.e., with \(C^\mathcal{I} \neq \emptyset \)). \(\text{(30 marks)} \)

Solution for 1.

The initial assignment is given by

\[
\begin{align*}
S(\text{SmallProject}) &= \{\text{SmallProject}\} \\
S(\text{Project}) &= \{\text{Project}\} \\
S(\text{Manager}) &= \{\text{Manager}\} \\
S(\text{Employee}) &= \{\text{Employee}\} \\
S(\text{JuniorManager}) &= \{\text{JuniorManager}\} \\
R(\text{manages}) &= \emptyset
\end{align*}
\]

Now applications of (simpleR), (conjR), (rightR), (leftR) are step-by-step as follows:

- Update \(S \) using (simpleR):
 \[
 S(\text{SmallProject}) = \{\text{Project, Smallproject}\}
 \]

- Update \(R \) using (rightR) for the third inclusion of \(\mathcal{T} \):
 \[
 R(\text{manages}) = \{(\text{JuniorManager, SmallProject})\}.
 \]
• Update S using (leftR) for the second inclusion of T:

$$S(\text{JuniorManager}) = \{\text{JuniorManager, Manager}\}$$

• Update S using (conjR) for the last inclusion:

$$S(\text{JuniorManager}) = \{\text{JuniorManager, Manager, Employee}\}.$$

The final assignment is

$$S(\text{SmallProject}) = \{\text{SmallProject, Project}\}$$
$$S(\text{Project}) = \{\text{Project}\}$$
$$S(\text{Manager}) = \{\text{Manager}\}$$
$$S(\text{Employee}) = \{\text{Employee}\}$$
$$S(\text{JuniorManager}) = \{\text{JuniorManager, Manager, Employee}\}$$
$$R(\text{manages}) = \{(\text{JuniorManager, SmallProject})\}.$$

• Manager $\sqsubseteq_T \text{Employee}$ does not hold since $\text{Employee} \notin S(\text{Manager})$.

• JuniorManager $\sqsubseteq_T \text{Manager}$ holds since $\text{Manager} \in S(\text{JuniorManager})$.

• JuniorManager $\sqsubseteq_T \text{Employee}$ holds since $\text{Employee} \in S(\text{JuniorManager})$.

Solution for 2.

Consider the interpretation I defined by

• $\Delta^I = \{a, b, c\};$

• $A^I = \{a, b\};$

• $B^I = \{c\};$

• $r^I = \{(a, b), (a, c), (b, b)\}.$

We have:

• $(\exists r.A)^I = \{a, b\};$

• $(\forall r.A)^I = \{b, c\};$

• $(\exists r.B)^I = \{a\};$

• $(\forall r.B)^I = \{c\}.$

Solution for 3.

• Every manager works for an employer;

• Every manager manages a unit.
• Every manager only manages departments;
• Every employer is registered at some tax office.

An interpretation \(I \) that is a model of \(T \) with \(\text{Manager}^I \neq \emptyset \) is given by setting \(\Delta^I = \{a, b, c, d\} \) and

- \(\text{Manager}^I = \{a\} \);
- \(\text{Employer}^I = \{b\} \);
- \(\text{Unit}^I = \{c\} \);
- \(\text{Department}^I = \{c\} \);
- \(\text{TaxOffice}^I = \{d\} \);
- \(\text{registered} _ \text{at}^I = \{(b, d)\} \);
- \(\text{manages}^I = \{(a, c)\} \).

The resulting TBox is satisfiable. For example, every \(I \) in which \(\text{Manager}^I = \emptyset \) and \(\text{Employer}^I = \emptyset \) is a model of the extended TBox. Note, however, that \(\text{Manager} \) is not satisfiable anymore because \(\text{Unit} \) and \(\text{Department} \) are disjoint (according to the new inclusion) but every manager manages a unit and any such unit is, by the value restriction in the third inclusion, a department.

Solution for 4.

Let

\[C = (\neg A) \cap (\exists r. \exists r. A) \cap (\forall r. \neg A) \]

As \(C \) is already in negation normal form, the tableaux algorithm starts with

\[S_0 = \{x : (\neg A) \cap (\exists r. \exists r. A) \cap (\forall r. \neg A)\} \]

An application of the rule \(\rightarrow \exists \) gives

\[S_1 = S_0 \cup \{x : \neg A, x : (\exists r. \exists r. A) \cap (\forall r. \neg A)\} \]

An application of the rule \(\rightarrow \forall \) gives

\[S_2 = S_1 \cup \{x : (\exists r. \exists r. A), x : (\forall r. \neg A)\} \]

An application of the rule \(\rightarrow \exists \) gives

\[S_3 = S_2 \cup \{(x, y) : r, y : \exists r. A\} \]

An application of the rule \(\rightarrow \exists \) gives

\[S_4 = S_3 \cup \{(y, z) : r, z : A\} \]

An application of the rule \(\rightarrow \forall \) gives

\[S_5 = S_4 \cup \{y : \neg A\} \]

No rule is applicable to \(S_5 \) and \(S_5 \) does not contain any clash. Thus, \(C \) is satisfiable.

An interpretation \(I \) satisfying \(C \) is given by
• $\Delta^I = \{x, y, z\}$;
• $A^I = \{z\}$;
• $r^I = \{(x, y), (y, z)\}$.