1. (45 marks) Let S be the signature consisting of the unary predicates $\text{researcher}, \text{teacher}, \text{module}$, the binary predicate symbol teaches and the individual constants John and Comp1. Translate the following sentences into first-order predicate logic:

(a) Comp1 is a module.
(b) Every researcher is a teacher.
(c) No researcher is a teacher.
(d) John teaches Comp1.
(e) Every teacher teaches a module.
(f) John teaches a module.
(g) Everybody who teaches a module is a teacher.
(h) Some researcher are not teachers.

2. (45 marks) Let $S = \{R, Q, w\}$ be a signature, where R is a binary predicate symbol, Q a unary predicate symbol, and w an individual constant. Let

$$\mathcal{F} = (D^F, R^F, Q^F, w^F)$$

be defined by

- $D^F = \{a, b, c, d, e\}$;
- $R^F = \{(a, b), (b, c), (c, d), (d, e), (e, e)\}$;
- $Q^F = \{a, e\}$;
- $w^F = a$.

(a) Does $\mathcal{F} \models Q(w)$ hold? Explain your answer.
(b) Does $\mathcal{F} \models \forall x. Q(x)$ hold? Explain your answer.
(c) Does $\mathcal{F} \models \forall x. R(x, x)$ hold? Explain your answer.
(d) Does $F \models \exists x. R(x, x)$ hold? Explain your answer.

(e) Does $F \models \forall x. \exists y. R(x, y)$ hold? Explain your answer.

(f) Does $F \models \exists x. \forall y. R(x, y)$ hold? Explain your answer.

(g) Does $F \models \forall x. \exists y. R(y, x)$ hold? Explain your answer.

(h) Does $F \models \forall x. (\neg \exists y. R(y, x) \rightarrow Q(x))$ hold? Explain your answer.

3. **(10 marks)** Discuss the difference between the truth (or satisfaction) relation $F \models G$ between a structure F and a sentence G and the logical consequence relation $X \models G$ between a set X of sentences and a sentence G.

Solution for 1.

(a) Comp1 is a module: `module(Comp1)`.

(b) Every researcher is a teacher: $\forall x. (\text{researcher}(x) \rightarrow \text{teacher}(x))$.

(c) No researcher is a teacher: $\forall x. (\text{researcher}(x) \rightarrow \neg \text{teacher}(x))$.

(d) John teaches Comp1: `$\text{teaches}(\text{John}, \text{Comp1})$`.

(e) Every teacher teaches a module:

$$\forall x. (\text{teacher}(x) \rightarrow \exists y. (\text{teaches}(x, y) \land \text{module}(y)))$$

(f) John teaches a module: $\exists x. (\text{teaches}(\text{John}, x) \land \text{module}(x))$.

(g) Everybody who teaches a module is a teacher:

$$\forall x. (\exists y. (\text{teaches}(x, y) \land \text{module}(y)) \rightarrow \text{teacher}(x))$$

(h) Some researchers are not teachers: $\exists x. (\text{researcher}(x) \land \neg \text{teacher}(x))$.

Solution for 2.

(a) $F \models Q(w)$ holds because $w^F = a \in Q^F$.
(b) \(F \models \forall x.Q(x) \) does not hold. To show this take an assignment \(a \) with \(a(x) = b \). Then \(b \notin Q^F \) and so \((F, a) \not\models Q(x)\). Hence \(F \not\models \forall x.Q(x) \).

(c) \(F \models \forall x.R(x, x) \) does not hold. To show this take an assignment \(a \) with \(a(x) = b \). Then \((b, b) \notin R^F \) and so \((F, a) \not\models R(x, x)\). Hence \(F \not\models \forall x.R(x, x) \).

(d) \(F \models \exists x.R(x, x) \) holds. To show this let \(a(x) = e \). Then \((e, e) \in R^F \) and so \((F, a) \models R(x, x)\). Hence \(F \models \exists x.R(x, x) \).

(e) \(F \models \forall x.\exists y.R(x, y) \) holds. To show this let \(a(x) \) be an element of \(D^F \). Then there exists \(a(y) \) such that \((a(x), a(y)) \in R^F \). Intuitively, the sentence says that every element has an \(R \)-successor — which is the case.

(f) \(F \models \exists x.\forall y.R(x, y) \) does not hold since for every domain element \(a(x) \) there exists another domain element \(a(y) \) such that \((a(x), a(y)) \notin R^F \). For \(a \) one can choose \(c \), for \(b \) one can choose \(d \), for \(c \) one can choose \(e \), for \(d \) one can choose \(a \), and for \(e \) one can choose \(a \) as well (in each case there are many other options).

(g) \(F \models \forall x.\exists y.R(y, x) \) does not hold. To show that take an assignment \(a \) with \(a(x) = a \). Then there is no \(g \in D^F \) such that \((g, a(x)) \in R^F \). Intuitively, this means that \(a \) has no \(R \)-predecessor and so the sentence is false.

(h) \(F \models \forall x.(-\exists y.R(y, x) \rightarrow Q(x)) \) holds since \(a \) is the only element of \(D^F \) without a \(R \)-predecessor and \(a \) is a member of \(Q^F \).

Solution for 3. See lecture notes.