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Motivation

* Analytical instruments routinely quantify many metals and some non-
metals at high speeds in liquids.

But.... How does an analyst know that these
readings are correct?



http://en.wikipedia.org/wiki/Non-metals

Methods to Detect Instrument Errors

* Declining Instrument Sensitivity

* Inconsistent results for Analytical Standards

e System Suitability



Inconsistent Results for Analytical Standards

* The most effective way of monitoring an instrument’s performance is
to regularly use control samples with independently verified results

s
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Initial Summary

* The paper describes a model that can predict instrument failure so
that some mitigation can be invoked so as to prevent failure.

* Specifically: This paper presents a probabilistic time-series analysis
technique applied to data stream subsequences to predict instrument
failure, where significant attributes in the data stream are separated
from noise attributes using a probabilistic learning approach



Challenges

e Streamed data * Unbalanced data
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' How to pick out the significant
attrlbute? I




System Setup

0101100 ¢
0100101
l . .
— 0101100 _
0100101
Data packet

0101100 Dendrite |
0100101

Sample data

' Two classes of data packets: |
Fallure and non-failure I

E A Data packet contains: :
| A set of attributes ,
1 A set of values |
I (1 to-1 mapping) l

. Principle challenge here: :
I
. I
| Data is potentially infinite yet
' only a fixed proportion can be
:_stored |




System Setup (2)

0101100 & 0101100 & 0101100 & seee = d a ta St re a m
0100101 0100101 0100101

The data packets are processed to produce continuous time series

One continuous time series for every attribute on every instrument

Note:

e Allinstruments are assumed to have the same attributes

* The length of the time series may not be the same across all the
instruments

* The time series can be broken up into subsequences



Failure Prediction

Instrument Failure

* Given a subsequence / prediction Engine

* A learning phase is required.

* We can learn the nature (shape) of subsequences that are good
predictors of failure from observing the subsequences associated with
the instruments that have failed



Instrument Failure Prediction Engine

Knowledge Instryrr'\ent Fai!ure Cata
base Prediction Engine atabase

* The database stores subsequences of length p for all possible
attributes of each instrument.

* The knowledge base stores subsequences also of length p that are
associated with instrument failure.

* Both the database and the knowledge base are empty on startup.



Simulation Environment (Diagram)

A multi-agent based simulation environment was used:

Dendrite

Step 1: predict
instrument
failure

Instr 3

pendric 1B

Instrument Failure

maintenance

o fl. |
mameemme  Dendrite ciorio

Prediction Engine

Step 2: Schedule

Instr k




Main()

If Datapacket = empty then
addSubsequencesToKB()
prunekB()

Else

Update each time series in DB by adding the new attribute
values and removing the last value

If Not in learning phase then
prediction(instr_i)
End If
End If




Adding Subsequences to the KB

AddSubsequenceToKB(instrumentsSubsequence)
For each attribute in the subsequence:
If the attribute’s Subsequence € KB then
increase count of attribute’s subsequence
Else
add attribute’s subsequence to the KB
End If
End For
For each subsequence in the knowledge base:
times the subsequence has been recorded as a result of instrument failure

recalculate weight = | KB
End For




! Selection of the most :

KﬂOWledge Base Prun|ng Eappropriatevalueforwisthus |

. important and discussed later |

pruneKB(instrumentsSubsequence)
For each instruments and instrument’s attribute:
If an attribute’s subsequence’s weight is < w then
remove the subsequence from the KB
End If
End For
If KB has changed:
recalculate weight as described in AddSubsequenceToKB()
End If



Making a prediction: comparing subsequences

* To predict failure, a compassion between subsequences is required

i—=l
Subsequences: dist(M,N) = Z(rrq —n;)?
N = {ny,na,..., ni} i—1

* We compare the subsequences via Euclidean distance



How to predict failure?

prediction(instr_i)
For each attribute subsequence in the database
if dist(attribute subsequence in DB, attribute’s subsequence in KB) < o then
Predict failure for instr_i

End If
End For

E o is a pre-set similarity :
, threshold. Selection of the ,
| most appropriate threshold |
' value is discussed later !



The Simulation Environment

* k instruments with n attributes each

* The simulation operated on a loop

e Each iteration, each instrument may perform a sampling activity

e Two attribute types: (a) activity dependant; and (b) activity independent
* One attribute was chosen as the sentinel attribute, others provided noise

* The sentinel attribute was an activity dependant attribute and was
designated to cause instrument failure once a particular value was reached



Evaluation Metrics

* As we wish to intervene prior to failure, we have no information as to
whether our predictions were correct or not.

* Instead we use an accumulated gross profit measure.

* When a sample is completed, a profit of g, is made.

* When instrument maintenance occurs, a cost of g__.... is incurred.
* When instrument replacement occurs, a cost of g ojace- IS incurred.

gsample < 8maint < greplace



Single Sentinel Attribute Evaluation

* The aim of these experiments was to determine the effect of different:

* Similarity thresholds (o)
* Subsequence lengths (p)
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Each parameter

combination had:

1000 simulations.

200 iterations in
each.

‘able 1. Comparison in terms of gross profit (£ = 20).

! Clear correlation between o and p: A larger p

| value requires a larger o for best results.

. Best overall result had the lowest 6 and p values
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Table 2. Comparison in terms of gross profit (k = 40).




, Note — the average number of failed :
. instruments when maintenance was not ,
; scheduled (with 1000 simulations and 200 ;
| iterations), was as follows: ;
1 54 (when k = 20) ;
, 109 (when k = 40) ;

The higher the o, the least
precise the prediction, resulting
in maintenance frequently
being conducted when it was
not necessary.

This is why the lower o, the
more likely that an instrument

Maintained/Failed Instruments
p|| Similarity threshold o p|| Similarity threshold o
0 [1]2]3]4|5/6]78]9 0 [1]2]3]4/5/6(7|8]9

210 2 [ 1|1 {1{1]{1|1]|1]|1|1 2012 (111|111 {1j11

03 [2]1 (1111111 304 (211111111

40 7 (32 (2]1]1|1|1|1|1 411 7 (3122|111 1|1]|1|1

5112 | 5] 3 |212|2(1|1|11 5013 6|32 |212[1|1(1]1

6| 20 | 9|5 (3]2|2|2|2(1|1 G| 24 (10| 5| 3|2|2]2(2|1|1

T 29 |13]| 7 |4]3]2]2|2|2|2 71 39 |16 8 | 5 |3]3]2]2|2|2

8| 37 [19(10(6]4|3|3|2(2|2 S|| BT [25(12] 7 |54|3(2]2|2

9|| 44 |26(14|9(6/4|4|3(2|2 9|| 74 |36|18|10(7|5|4(3|3|2
Table 3. Comparison in terms of number Table 4. Comparison in terms of number
of failed machines (k = 20). of failed machines (k£ = 40).
P Similarity threshold o P Similarity threshold o

O |1L|2(3[4|5(6|7[8]9 O (1231456 | 78] 9

2|| 60 |62163|66|68|70\73|75|76|78 2([ 122 [125/129(133(138(143|147|151({155|158
3|| 58 |61]62|64|65|66|68|70{71(73 311 120 [125/127|129(132|135|138|141(144|148
4| 55 16062]63]64/65/66|67| 6869 4[] 116 |123]126{129(131(132(134|136|139|141
Sl 48 |57]60|62/63|64|65/66|67|67 511109 (119]124(127(130(131|133|134({136/138
G| 40 |53]58|61]63|64|65/66|67|67 6|l 97 |115/121|125(128|131|133|135(136|137
7|| 30 |47|55|59(61|63|64|65/66|67 7|l 80 [107]118(123(126/129|131|133(135/137
8|l 21 |41|51|56]59/61|63|64|65 |66 8| 60 |97 |112(119({124|127|130(132{134|136
9| 13 |33]46|53|57|60|61]63| 64|65 9| 42 | 84 |106(115(121|125/128|130(132|134
Table 5. Comparison in terms Table 6. Comparison in terms of number of

of number of maintained machines

(k = 20).

maintained machines (k = 40).

will fail.



Knowledge base size

* The number of
subsequences in KB
decreases as the o value

p|| Similarity threshold o p|| Similarity threshold o increases. This is because as
O |12 3145]6/7|819 O | 112]3145/6/7|8)9 o is increased the prediction

20 2 | 11|yt 2002 (1111 becomes less precise so the

3 3 |21 |[1L{1|1|{1|1]1 3| 3 [ 2] 1|1 |1j1/1]1|1]1 KB requires fewer

Al 6 |3]2|2(1]1]1]1|1]1 4l 6 |32 2(1|11]1]L]1 subsequences.

5 12 5|3 (2(2(2]1[1]1]1 511316 3[2](2(2/1]1]1|1

6| 20 | 9|4 |3]2]2]2]2|1]1 6| 23 |10] 5 | 3 |2[2/2|2|1[1

7|l 29 [13] 7 |4]3]2]2[2]2|2 7|l 39 |16 8| 5 |3]3/2[2|2]2 * The number of

8|| 37 |19]10[64|3|3|2|22 8|| 57 |2512| 7 |5/4|3|2[22 éubsequences in the KB also

0| 44 |26]14)96|4/4|3[2]2 o 74 |36]17|11|7]5]4]3]3)2 ecreases as p decreases;
Table 7 ot LS o R o e o this s because as the p value
(‘lla J ;U). 01N parisoll 111 terims o sSlZze (Il‘a 8 (;310). COINparisolnl 11 teris o sSlZe is reduced the number Of

possible value combinations
making up a time series
subsequence also decreases



Finding the
different nu

# # # | Final | # KB
Atts.|| o | p W A |Fail.|Main.| KB |Values| GP
(n) Inst.| Inst. | Size |Pruned
2 1 2 (0.250( 22 | 23 | 319 1 28 2884
3 1 2 10.225) 25 | 26 | 323 1 60 2727
4 1 2 (0.250| 27 | 28 | 320 1 93 2701
5 1 2 10.175] 31 | 32 | 325 1 137 | 2527
6 1 2 10.150] 29 | 30 | 342 1 160 | 2333
7 1 2 10.125] 30 | 31 | 352 1 194 | 2176
8 1 2 10.125] 35 | 36 | 332 1 261 | 2308
9 1 2 10.100] 36 | 37 | 352 1 300 | 2009
10 2 2 10.100] 33 | 34 | 394 1 313 | 1502

nest parameter settings for
mber of attributes

. Note —the average number of failed
; instruments when maintenance was not

As n was increased, the number of
noise attributes were increased and
it became harder to predict
instrument failure, hence the value
of A (learning window size) increases
with n.

Table 9. Best parameter settings for a range of attribute set sizes, and k& = 20. Average
results obtained from 500 simulation runs per parameter permutation, 1000 iterations

per simulation



learning window and weighting threshold value

w Learning window size (\)

24 26 28 30 32 34 36 38
0.050((-14543|-14492|-13685|-13652|-13360|-13448|-12686|-12774
0.075|| -6801 | -6072 | -5522 | -5010 | -5033 | -4498 | -4460 | -4518
0.100(| -1131 | -1056 | -529 | -637 | -173 | -12 22 12
0.125|| 890 | 1540 | 1174 | 1377 | 1359 | 1306 | 1373 | 1245
0.150(| 1913 | 1788 | 2049 | 2097 | 2194 | 2061 | 2245 | 2125
0.175|| 2251 | 2291 | 2307 | 2355 | 2401 | 2377 | 2393 | 2285
0.200(| 2276 | 2406 | 2364 | 2292 | 2454 | 2428 | 2481 | 2448
0.225|| -138 | -140 | -139 | -138 | -139 | -137 | -139 | -138
0.250|| -139 | =137 | -138 | -137 | -138 | -138 | -139 | -139

Table 10. Learning window size () versus Weighting threshold (w), comparison in

terms of gross profit (

=20, n=>5. 0

=1 *111(1 p=2)

. Reminder: w is the threshold for pruning a

' subsequence from the KB

For the experiments, w =1 and p =2
were used as these setting had
produced the best results.

Experiments show that the choice of
w is important, either side of the
optimum value, GP quickly starts to
fall.

Yet the size of A can still influence the
results.



Conclusions

* A mechanism, founded on time series analysis, for predicting
instrument failure using data stream mining has been proposed.

* The presented evaluation indicated that best results are obtained
when the similarity threshold o = 1 (almost exact matching between
current time series subsequences associated with individual
instruments and subsequences in KB) and the size of the
subsequences are p = 2.

* The optimum value for the learning window size A increases with n.



Future work

* Lowering the sensitivity associated with the KB pruning threshold value w.
* Investigate scenarios where we have several sentinel/significant attributes

* Investigate alternative prediction mechanisms, e.g.: dynamic classification,
association rule or decision tree based techniques.

* Predict non-failure and well as failure.

* Implement this functionality into a real world app via CSols Dendrite
instrument interfaces.

* Finding more accurate valuations for the profit of a sample, the cost of
maintenance and the cost of replacement.



Any questions?




