Data Stream Mining with Limited Validation Opportunity: Towards Instrument Failure Prediction

Atkinson, K.¹, Coenen, F.¹, Goddard, P.², Payne, T¹ and Riley, L^{1,2}.

Knowledge Transfer Partnerships

Motivation

 Analytical instruments routinely quantify many <u>metals</u> and some <u>non-</u> <u>metals</u> at high speeds in liquids.

But.... How does an analyst know that these readings are correct?

Methods to Detect Instrument Errors

• Declining Instrument Sensitivity

• Inconsistent results for Analytical Standards

• System Suitability

Inconsistent Results for Analytical Standards

• The most effective way of monitoring an instrument's performance is to regularly use control samples with independently verified results

Initial Summary

• The paper describes a model that can predict instrument failure so that some mitigation can be invoked so as to prevent failure.

• Specifically: This paper presents a probabilistic time-series analysis technique applied to data stream subsequences to predict instrument failure, where significant attributes in the data stream are separated from noise attributes using a probabilistic learning approach

How to pick out the significant attribute?

Unbalanced data

• Also cannot confirm the instrument failed

A Data packet contains: A set of attributes A set of values (1-to-1 mapping)

Principle challenge here:
Data is potentially infinite yet only a fixed proportion can be

System Setup (2)

The data packets are processed to produce continuous time series

One continuous time series for every attribute on every instrument

Note:

- All instruments are assumed to have the same attributes
- The length of the time series may not be the same across all the instruments
- The time series can be broken up into subsequences

- A learning phase is required.
- We can learn the nature (shape) of subsequences that are good predictors of failure from observing the subsequences associated with the instruments that have failed

Instrument Failure Prediction Engine

- The database stores subsequences of length p for all possible attributes of each instrument.
- The knowledge base stores subsequences also of length p that are associated with instrument failure.
- Both the database and the knowledge base are empty on startup.

Simulation Environment (Diagram)

A multi-agent based simulation environment was used:

Instrument Failure Prediction Engine

Main()

If Datapacket = empty then
 addSubsequencesToKB()
 pruneKB()

Else

Update each time series in DB by adding the new attribute values and removing the last value

If Not in learning phase then prediction(instr_i)

End If

End If

Adding Subsequences to the KB AddSubsequenceToKB(instrumentsSubsequence) For each attribute in the subsequence: If the attribute's Subsequence ∈ KB then increase count of attribute's subsequence Else add attribute's subsequence to the KB End If End For For each subsequence in the knowledge base: times the subsequence has been recorded as a result of instrument failure recalculate weight = |KB| **End For**

Knowledge Base Pruning pruneKB(instrumentsSubsequence)

Selection of the most appropriate value for ω is thus important and discussed later

For each instruments and instrument's attribute:

If an attribute's subsequence's weight is < ω then remove the subsequence from the KB

End If

End For

If KB has changed:

recalculate weight as described in AddSubsequenceToKB() End If

Making a prediction: comparing subsequences

• To predict failure, a compassion between subsequences is required

$$M = \{m_1, m_2, \dots, m_l\}$$

$$M = \{n_1, n_2, \dots, n_l\}$$

$$dist(M, N) = \sum_{i=1}^{i=l} (m_i - n_i)^2$$

• We compare the subsequences via Euclidean distance

Subsequences:

How to predict failure?

prediction(instr_i)

For each attribute subsequence in the database

if dist(attribute subsequence in DB, attribute's subsequence in KB) $\leq \sigma$ then Predict failure for instr_i

End If

End For

o is a pre-set similarity threshold. Selection of the most appropriate threshold value is discussed later

The Simulation Environment

- *k* instruments with *n* attributes each
- The simulation operated on a loop
- Each iteration, each instrument may perform a sampling activity
- Two attribute types: (a) activity dependant; and (b) activity independent
- One attribute was chosen as the sentinel attribute, others provided noise
- The sentinel attribute was an activity dependent attribute and was designated to cause instrument failure once a particular value was reached

Evaluation Metrics

- As we wish to intervene prior to failure, we have no information as to whether our predictions were correct or not.
- Instead we use an accumulated gross profit measure.
- When a sample is completed, a profit of g_{sample} is made.
- When instrument maintenance occurs, a cost of g_{maint}. is incurred.
- When instrument replacement occurs, a cost of g_{replace}. Is incurred.

g_{sample} < g_{maint} < g_{replace}

Single Sentinel Attribute Evaluation

- The aim of these experiments was to determine the effect of different:
- Similarity thresholds (σ)
- Subsequence lengths (p)

Clear correlation between σ and p: A larger p value requires a larger σ for best results.

Best overall result had the lowest σ and p values

p		Similarity threshold σ														
	0	1	2	3	4	5	6	7	8	9	Each par					
2	711	706	687	657	627	593	561	528	504	480	combina					
3	691	696	692	683	666	650	623	601	583	557						
4	650	683	687	677	672	663	654	639	622	605	1000 sim					
5	575	657	677	675	667	660	654	645	640	627	200 itora					
6	470	615	659	668	667	661	650	644	636	633						
$\overline{7}$	351	558	634	657	660	658	651	644	636	632	eacn.					
8	248	479	595	635	650	655	653	646	639	632						
9	167	389	540	606	635	646	648	645	641	634						

Lable 1. Comparison in terms of gross profit (k = 20).

ameter tion had:

> ulations. tions in

p			S.	Simila	rity th	resho	ld σ			
	0	1	2	3	4	5	6	7	8	9
2	1445	1425	1381	1319	1260	1186	1126	1064	1014	967
3	1425	1409	1396	1374	1338	1300	1256	1210	1167	1120
4	1381	1400	1395	1369	1352	1333	1312	1277	1245	1211
5	1299	1374	1387	1368	1343	1330	1310	1299	1285	1259
6	1156	1326	1369	1364	1348	1331	1306	1291	1277	1268
$\overline{7}$	949	1250	1338	1353	1347	1336	1316	1291	1276	1262
8	712	1136	1292	1332	1340	1334	1321	1303	1284	1265
9	501	986	1223	1299	1325	1328	1320	1308	1291	1275
	Table	9 0		inon in	tom	a of m		noft /	$(\mathbf{l}_{\mathbf{l}})$	10)

Table 2. Comparison in terms of gross profit ($\kappa = 40$).

Maintained/Failed Instruments

p	Similarity threshold σ													
	0	1	2	3	4	5	6	7	8	9				
2	2	1	1	1	1	1	1	1	1	1				
3	3	2	1	1	1	1	1	1	1	1				
4	7	3	2	2	1	1	1	1	1	1				
5	12	5	3	2	2	2	1	1	1	1				
6	20	9	5	3	2	2	2	2	1	1				
$\overline{7}$	29	13	7	4	3	2	2	2	2	2				
8	37	19	10	6	4	3	3	2	2	2				
9	44	26	14	9	6	4	4	3	2	2				

Table 3. Comparison in terms of number of failed machines (k = 20).

p		Sir	nila	arit	y t	hre	shc	old	σ	
	0	1	2	3	4	5	6	7	8	9
2	60	62	63	66	68	70	73	75	76	78
3	58	61	62	64	65	66	68	70	71	73
4	55	60	62	63	64	65	66	67	68	69
5	48	57	60	62	63	64	65	66	67	67
6	40	53	58	61	63	64	65	66	67	67
$\overline{7}$	30	47	55	59	61	63	64	65	66	67
8	21	41	51	56	59	61	63	64	65	66
9	13	33	46	53	57	60	61	63	64	65
Table 5. Comparison in terms										

Table 5. Comparison in terms of number of maintained machines (k = 20).

p	Similarity threshold σ														
	0	1	2	3	4	5	6	7	8	9					
2	2	1	1	1	1	1	1	1	1	1					
3	4	2	1	1	1	1	1	1	1	1					
4	7	3	2	2	1	1	1	1	1	1					
5	13	6	3	2	2	2	1	1	1	1					
6	24	10	5	3	2	2	2	2	1	1					
$\overline{7}$	39	16	8	5	3	3	2	2	2	2					
8	57	25	12	$\overline{7}$	5	4	3	2	2	2					
9	74	36	18	10	7	5	4	3	3	2					

Table 4. Comparison in terms of number of failed machines (k = 40).

p			Sin	nilar	ity t	hres	shold	$l \sigma$		
	0	1	2	3	4	5	6	7	8	9
2	122	125	129	133	138	143	147	151	155	158
3	120	125	127	129	132	135	138	141	144	148
4	116	123	126	129	131	132	134	136	139	141
5	109	119	124	127	130	131	133	134	136	138
6	97	115	121	125	128	131	133	135	136	137
$\overline{7}$	80	107	118	123	126	129	131	133	135	137
8	60	97	112	119	124	127	130	132	134	136
9	42	84	106	115	121	125	128	130	132	134
ab	ole 6	. C	omp	arise	on ii	n te	rms	of	num	ber o
ai	ntain	ed n	nach	ines	(k =	$= 40^{\circ}$).			

Note – the average number of failed
instruments when maintenance was not
scheduled (with 1000 simulations and 200
iterations), was as follows:
54 (when k = 20)
109 (when k = 40)

The higher the σ , the least precise the prediction, resulting in maintenance frequently being conducted when it was not necessary.

This is why the lower σ , the more likely that an instrument will fail.

Knowledge base size

p	p Similarity threshold σ									г			p	Similarity threshold σ									
	0	1	2	3	4	5	6	7	8	9				0	1	2	3	4	5	6	$\overline{7}$	8	9
2	2	1	1	1	1	1	1	1	1	1			2	2	1	1	1	1	1	1	1	1	1
3	3	2	1	1	1	1	1	1	1	1			3	3	2	1	1	1	1	1	1	1	1
4	6	3	2	2	1	1	1	1	1	1			4	6	3	2	2	1	1	1	1	1	1
5	12	5	3	2	2	2	1	1	1	1			5	13	6	3	2	2	2	1	1	1	1
6	20	9	4	3	2	2	2	2	1	1			6	23	10	5	3	2	2	2	2	1	1
$\overline{7}$	29	13	$\overline{7}$	4	3	2	2	2	2	2			$\overline{7}$	39	16	8	5	3	3	2	2	2	2
8	37	19	10	6	4	3	3	2	2	2			8	57	25	12	7	5	4	3	2	2	2
9	44	26	14	9	6	4	4	3	2	2			9	74	36	17	11	7	5	4	3	3	2
Table 7.	Com	pari	isoi	n i	n	te	err	ns	0	$\overline{\mathbf{f}} KB$ size	\mathbf{T}	able	8.	Com	par	iso	n i	n	te	rn	\mathbf{ns}	of	KB si
(k = 20).	x = 20).										()	k = 40).										

 The number of subsequences in KB decreases as the σ value increases. This is because as σ is increased the prediction becomes less precise so the KB requires fewer subsequences.

 The number of subsequences in the KB also decreases as p decreases; this is because as the p value is reduced the number of possible value combinations making up a time series subsequence also decreases

Finding the best parameter settings for different number of attributes

#					#	#	Final	# KB	
Atts.	σ	p	ω	λ	Fail.	Main.	$K\!B$	Values	GP
(n)					Inst.	Inst.	Size	Pruned	
2	1	2	0.250	22	23	319	1	28	2884
3	1	2	0.225	25	26	323	1	60	2727
4	1	2	0.250	27	28	320	1	93	2701
5	1	2	0.175	31	32	325	1	137	2527
6	1	2	0.150	29	30	342	1	160	2333
7	1	2	0.125	30	31	352	1	194	2176
8	1	2	0.125	35	36	332	1	261	2308
9	1	2	0.100	36	37	352	1	300	2009
10	2	2	0.100	33	34	394	1	313	1502

Note – the average number of failed instruments when maintenance was not scheduled (with 1000 simulations and 1000 iterations), was 281 and the average GP was -140.

As n was increased, the number of noise attributes were increased and it became harder to predict instrument failure, hence the value of λ (learning window size) increases with n.

Table 9. Best parameter settings for a range of attribute set sizes, and k = 20. Average results obtained from 500 simulation runs per parameter permutation, 1000 iterations per simulation

learning window and weighting threshold value

ω		Learning window size (λ)														
	24	26	28	30	32	34	36	38								
0.050	-14543	-14492	-13685	-13652	-13360	-13448	-12686	-12774								
0.075	-6801	-6072	-5522	-5010	-5033	-4498	-4460	-4518								
0.100	-1131	-1056	- 529	-637	-173	-12	22	12								
0.125	890	1540	1174	1377	1359	1306	1373	1245								
0.150	1913	1788	2049	2097	2194	2061	2245	2125								
0.175	2251	2291	2307	2355	2401	2377	2393	2285								
0.200	2276	2406	2364	2292	2454	2428	2481	2448								
0.225	-138	-140	-139	-138	-139	-137	-139	-138								
0.250	-139	-137	-138	-137	-138	-138	-139	-139								

For the experiments, $\omega = 1$ and p = 2were used as these setting had produced the best results.

Experiments show that the choice of ω is important, either side of the optimum value, GP quickly starts to fall.

Yet the size of $\boldsymbol{\lambda}$ can still influence the results.

Table 10. Learning window size (λ) versus Weighting threshold (ω) , comparison in terms of gross profit $(k = 20, n = 5, \sigma = 1 \text{ and } p = 2)$

Conclusions

- A mechanism, founded on time series analysis, for predicting instrument failure using data stream mining has been proposed.
- The presented evaluation indicated that best results are obtained when the similarity threshold $\sigma = 1$ (almost exact matching between current time series subsequences associated with individual instruments and subsequences in KB) and the size of the subsequences are p = 2.
- The optimum value for the learning window size λ increases with n.

Future work

- Lowering the sensitivity associated with the KB pruning threshold value ω .
- Investigate scenarios where we have several sentinel/significant attributes
- Investigate alternative prediction mechanisms, e.g.: dynamic classification, association rule or decision tree based techniques.
- Predict non-failure and well as failure.
- Implement this functionality into a real world app via CSols Dendrite instrument interfaces.
- Finding more accurate valuations for the profit of a sample, the cost of maintenance and the cost of replacement.

Any questions?

