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Motivation

• Analytical instruments routinely quantify many metals and some non-
metals at high speeds in liquids.

But…. How does an analyst know that these 
readings are correct?

http://en.wikipedia.org/wiki/Non-metals


Methods to Detect Instrument Errors

• Declining Instrument Sensitivity

• Inconsistent results for Analytical Standards

• System Suitability



Inconsistent Results for Analytical Standards

• The most effective way of monitoring an instrument’s performance is 
to regularly use control samples with independently verified results



Initial Summary

• The paper describes a model that can predict instrument failure so 
that some mitigation can be invoked so as to prevent failure.

• Specifically: This paper presents a probabilistic time-series analysis 
technique applied to data stream subsequences to predict instrument 
failure, where significant attributes in the data stream are separated 
from noise attributes using a probabilistic learning approach



Challenges

• Streamed data

• Noisy data

• Unbalanced data

• Also cannot confirm the instrument failed

How to pick out the significant 
attribute?

54
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System Setup

Dendrite
Sample data

Data packet

Two classes of data packets:
Failure and non-failure

….

….

….

Principle challenge here:

Data is potentially infinite yet 
only a fixed proportion can be 
stored

A Data packet contains:
A set of attributes
A set of values
(1-to-1 mapping)

Cloud



System Setup (2)

…. =  data stream

One continuous time series for every attribute on every instrument

The data packets are processed to produce continuous time series

Note:
• All instruments are assumed to have the same attributes
• The length of the time series may not be the same across all the 

instruments
• The time series can be broken up into subsequences



Failure Prediction

• Given a subsequence

• A learning phase is required.

• We can learn the nature (shape) of subsequences that are good 
predictors of failure from observing the subsequences associated with 
the instruments that have failed

Instrument Failure 
Prediction Engine



Instrument Failure Prediction Engine

Instrument Failure 
Prediction Engine Database

Knowledge 
base

• The database stores subsequences of length p for all possible 
attributes of each instrument.

• The knowledge base stores subsequences also of length p that are 
associated with instrument failure.

• Both the database and the knowledge base are empty on startup.



Simulation Environment (Diagram)

A multi-agent based simulation environment was used:

Instr 1 Instr 2

Instr 3 Instr k

Instrument Failure 
Prediction Engine

DendriteDendrite

Dendrite Dendrite

Step 2: Schedule 
maintenance

Step 1: predict 
instrument 

failure



because

Instrument Failure Prediction Engine
Main()

If Datapacket = empty then 

addSubsequencesToKB()

pruneKB()

Else

Update each time series in DB by adding the new attribute 
values and removing the last value

If Not in learning phase then

prediction(instr_i)

End If

End If

= ⌀



Adding Subsequences to the KB
AddSubsequenceToKB(instrumentsSubsequence)

For each attribute in the subsequence:

If the attribute’s Subsequence ∈ KB then

increase count of attribute’s subsequence

Else

add attribute’s subsequence to the KB

End If

End For

For each subsequence in the knowledge base:

recalculate weight = 

End For

times the subsequence has been recorded as a result of instrument failure
|KB|



Knowledge Base Pruning
pruneKB(instrumentsSubsequence)

For each instruments and instrument’s attribute:

If an attribute’s subsequence’s weight is < ω then

remove the subsequence from the KB

End If

End For

If KB has changed:

recalculate weight as described in AddSubsequenceToKB()

End If

Selection of the most 
appropriate value for ω is thus 
important and discussed later



Making a prediction: comparing subsequences

• To predict failure, a compassion between subsequences is required

• We compare the subsequences via Euclidean distance

Subsequences:



How to predict failure?

prediction(instr_i)

For each attribute subsequence in the database

if dist(attribute subsequence in DB, attribute’s subsequence in KB) ≤ σ then

Predict failure for instr_i

End If

End For
σ is a pre-set similarity 
threshold.  Selection of the 
most appropriate threshold 
value is discussed later



The Simulation Environment

• k instruments with n attributes each

• The simulation operated on a loop

• Each iteration, each instrument may perform a sampling activity

• Two attribute types: (a) activity dependant; and (b) activity independent

• One attribute was chosen as the sentinel attribute, others provided noise

• The sentinel attribute was an activity dependant attribute and was 
designated to cause instrument failure once a particular value was reached



Evaluation Metrics

• As we wish to intervene prior to failure, we have no information as to 
whether our predictions were correct or not.

• Instead we use an accumulated gross profit measure.

• When a sample is completed, a profit of gsample is made.

• When instrument maintenance occurs, a cost of gmaint. is incurred.

• When instrument replacement occurs, a cost of greplace. Is incurred.

gsample < gmaint < greplace



Single Sentinel Attribute Evaluation

• The aim of these experiments was to determine the effect of different:

• Similarity thresholds (σ)

• Subsequence lengths (p)

Clear correlation between σ and p: A larger p 
value requires a larger σ for best results.

Best overall result had the lowest σ and p values

Each parameter 
combination had: 

1000 simulations.
200 iterations in 
each.



Maintained/Failed Instruments

The higher the σ, the least 
precise the prediction, resulting 
in maintenance frequently 
being conducted when it was 
not necessary. 

This is why the lower σ, the 
more likely that an instrument 
will fail.

Note – the average number of failed 
instruments when maintenance was not 
scheduled (with 1000 simulations and 200 
iterations), was as follows:
54 (when k = 20)
109 (when k = 40)



Knowledge base size
• The number of 

subsequences in KB 
decreases as the σ value 
increases. This is because as 
σ is increased the prediction 
becomes less precise so the 
KB requires fewer 
subsequences.

• The number of 
subsequences in the KB also 
decreases as p decreases; 
this is because as the p value 
is reduced the number of 
possible value combinations 
making up a time series 
subsequence also decreases



Finding the best parameter settings for 
different number of attributes

Note – the average number of failed 
instruments when maintenance was not 
scheduled (with 1000 simulations and 1000 
iterations), was 281 and the average GP 
was -140.

As n was increased, the number of 
noise attributes were increased and 
it became harder to predict 
instrument failure, hence the value 
of λ (learning window size) increases 
with n.



learning window and weighting threshold value

For the experiments, ω = 1 and p = 2 
were used as these setting had 
produced the best results.

Experiments show that the choice of 
ω is important, either side of the 
optimum value, GP quickly starts to 
fall.

Yet the size of λ can still influence the 
results.

Reminder: ω is the threshold for pruning a 
subsequence from the KB



Conclusions

• A mechanism, founded on time series analysis, for predicting 
instrument failure using data stream mining has been proposed.

• The presented evaluation indicated that best results are obtained 
when the similarity threshold σ = 1 (almost exact matching between 
current time series subsequences associated with individual 
instruments and subsequences in KB) and the size of the 
subsequences are p = 2.

• The optimum value for the learning window size λ increases with n.



Future work

• Lowering the sensitivity associated with the KB pruning threshold value ω.

• Investigate scenarios where we have several sentinel/significant attributes

• Investigate alternative prediction mechanisms, e.g.: dynamic classification, 
association rule or decision tree based techniques.

• Predict non-failure and well as failure.

• Implement this functionality into a real world app via CSols Dendrite 
instrument interfaces.

• Finding more accurate valuations for the profit of a sample, the cost of 
maintenance and the cost of replacement.



Any questions?


