
Data Stream Mining with Limited
Validation Opportunity: Towards

Instrument Failure Prediction

Atkinson, K.1,Coenen, F.1, Goddard, P.2, Payne, T1 and Riley, L1,2.

1 2

Motivation

• Analytical instruments routinely quantify many metals and some non-
metals at high speeds in liquids.

But…. How does an analyst know that these
readings are correct?

http://en.wikipedia.org/wiki/Non-metals

Methods to Detect Instrument Errors

• Declining Instrument Sensitivity

• Inconsistent results for Analytical Standards

• System Suitability

Inconsistent Results for Analytical Standards

• The most effective way of monitoring an instrument’s performance is
to regularly use control samples with independently verified results

Initial Summary

• The paper describes a model that can predict instrument failure so
that some mitigation can be invoked so as to prevent failure.

• Specifically: This paper presents a probabilistic time-series analysis
technique applied to data stream subsequences to predict instrument
failure, where significant attributes in the data stream are separated
from noise attributes using a probabilistic learning approach

Challenges

• Streamed data

• Noisy data

• Unbalanced data

• Also cannot confirm the instrument failed

How to pick out the significant
attribute?

54

3946

System Setup

Dendrite
Sample data

Data packet

Two classes of data packets:
Failure and non-failure

….

….

….

Principle challenge here:

Data is potentially infinite yet
only a fixed proportion can be
stored

A Data packet contains:
A set of attributes
A set of values
(1-to-1 mapping)

Cloud

System Setup (2)

…. = data stream

One continuous time series for every attribute on every instrument

The data packets are processed to produce continuous time series

Note:
• All instruments are assumed to have the same attributes
• The length of the time series may not be the same across all the

instruments
• The time series can be broken up into subsequences

Failure Prediction

• Given a subsequence

• A learning phase is required.

• We can learn the nature (shape) of subsequences that are good
predictors of failure from observing the subsequences associated with
the instruments that have failed

Instrument Failure
Prediction Engine

Instrument Failure Prediction Engine

Instrument Failure
Prediction Engine Database

Knowledge
base

• The database stores subsequences of length p for all possible
attributes of each instrument.

• The knowledge base stores subsequences also of length p that are
associated with instrument failure.

• Both the database and the knowledge base are empty on startup.

Simulation Environment (Diagram)

A multi-agent based simulation environment was used:

Instr 1 Instr 2

Instr 3 Instr k

Instrument Failure
Prediction Engine

DendriteDendrite

Dendrite Dendrite

Step 2: Schedule
maintenance

Step 1: predict
instrument

failure

because

Instrument Failure Prediction Engine
Main()

If Datapacket = empty then

addSubsequencesToKB()

pruneKB()

Else

Update each time series in DB by adding the new attribute
values and removing the last value

If Not in learning phase then

prediction(instr_i)

End If

End If

= ⌀

Adding Subsequences to the KB
AddSubsequenceToKB(instrumentsSubsequence)

For each attribute in the subsequence:

If the attribute’s Subsequence ∈ KB then

increase count of attribute’s subsequence

Else

add attribute’s subsequence to the KB

End If

End For

For each subsequence in the knowledge base:

recalculate weight =

End For

times the subsequence has been recorded as a result of instrument failure
|KB|

Knowledge Base Pruning
pruneKB(instrumentsSubsequence)

For each instruments and instrument’s attribute:

If an attribute’s subsequence’s weight is < ω then

remove the subsequence from the KB

End If

End For

If KB has changed:

recalculate weight as described in AddSubsequenceToKB()

End If

Selection of the most
appropriate value for ω is thus
important and discussed later

Making a prediction: comparing subsequences

• To predict failure, a compassion between subsequences is required

• We compare the subsequences via Euclidean distance

Subsequences:

How to predict failure?

prediction(instr_i)

For each attribute subsequence in the database

if dist(attribute subsequence in DB, attribute’s subsequence in KB) ≤ σ then

Predict failure for instr_i

End If

End For
σ is a pre-set similarity
threshold. Selection of the
most appropriate threshold
value is discussed later

The Simulation Environment

• k instruments with n attributes each

• The simulation operated on a loop

• Each iteration, each instrument may perform a sampling activity

• Two attribute types: (a) activity dependant; and (b) activity independent

• One attribute was chosen as the sentinel attribute, others provided noise

• The sentinel attribute was an activity dependant attribute and was
designated to cause instrument failure once a particular value was reached

Evaluation Metrics

• As we wish to intervene prior to failure, we have no information as to
whether our predictions were correct or not.

• Instead we use an accumulated gross profit measure.

• When a sample is completed, a profit of gsample is made.

• When instrument maintenance occurs, a cost of gmaint. is incurred.

• When instrument replacement occurs, a cost of greplace. Is incurred.

gsample < gmaint < greplace

Single Sentinel Attribute Evaluation

• The aim of these experiments was to determine the effect of different:

• Similarity thresholds (σ)

• Subsequence lengths (p)

Clear correlation between σ and p: A larger p
value requires a larger σ for best results.

Best overall result had the lowest σ and p values

Each parameter
combination had:

1000 simulations.
200 iterations in
each.

Maintained/Failed Instruments

The higher the σ, the least
precise the prediction, resulting
in maintenance frequently
being conducted when it was
not necessary.

This is why the lower σ, the
more likely that an instrument
will fail.

Note – the average number of failed
instruments when maintenance was not
scheduled (with 1000 simulations and 200
iterations), was as follows:
54 (when k = 20)
109 (when k = 40)

Knowledge base size
• The number of

subsequences in KB
decreases as the σ value
increases. This is because as
σ is increased the prediction
becomes less precise so the
KB requires fewer
subsequences.

• The number of
subsequences in the KB also
decreases as p decreases;
this is because as the p value
is reduced the number of
possible value combinations
making up a time series
subsequence also decreases

Finding the best parameter settings for
different number of attributes

Note – the average number of failed
instruments when maintenance was not
scheduled (with 1000 simulations and 1000
iterations), was 281 and the average GP
was -140.

As n was increased, the number of
noise attributes were increased and
it became harder to predict
instrument failure, hence the value
of λ (learning window size) increases
with n.

learning window and weighting threshold value

For the experiments, ω = 1 and p = 2
were used as these setting had
produced the best results.

Experiments show that the choice of
ω is important, either side of the
optimum value, GP quickly starts to
fall.

Yet the size of λ can still influence the
results.

Reminder: ω is the threshold for pruning a
subsequence from the KB

Conclusions

• A mechanism, founded on time series analysis, for predicting
instrument failure using data stream mining has been proposed.

• The presented evaluation indicated that best results are obtained
when the similarity threshold σ = 1 (almost exact matching between
current time series subsequences associated with individual
instruments and subsequences in KB) and the size of the
subsequences are p = 2.

• The optimum value for the learning window size λ increases with n.

Future work

• Lowering the sensitivity associated with the KB pruning threshold value ω.

• Investigate scenarios where we have several sentinel/significant attributes

• Investigate alternative prediction mechanisms, e.g.: dynamic classification,
association rule or decision tree based techniques.

• Predict non-failure and well as failure.

• Implement this functionality into a real world app via CSols Dendrite
instrument interfaces.

• Finding more accurate valuations for the profit of a sample, the cost of
maintenance and the cost of replacement.

Any questions?

