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Abstract

Multi-Agent Data Mining (MADM) seeks to harness the general advantages offered by

Multi-Agent System (MAS) with respect to the domain of data mining. The research

described in this thesis is concerned with Multi-Agent Based Clustering (MABC), thus

MADM to support clustering. To investigate the use of MAS technology with respect

to data mining, and specifically data clustering, two approaches are proposed in this

thesis. The first approach is a multi-agent based approach to clustering using a generic

MADM framework whereby a collection of agents with different capabilities are allowed

to collaborate to produce a “best” set of clusters. The framework supports three clus-

tering paradigms: K-means, K-NN and divisive hierarchical clustering. A number of

experiments were conducted using benchmark UCI data sets and designed to demon-

strate that the proposed MADM approach can identify a best set of clusters using the

following clustering metrics: F-measure, Within Group Average Distance (WGAD)

and Between Group Average Distance (BGAD). The results demonstrated that the

MADM framework could successfully be used to find a best cluster configuration. The

second approach is an extension of the proposed initial MADM framework whereby a

“best” cluster configuration could be found using cooperation and negotiation among

agents. The novel feature of the extended framework is that it adopts a two-phase

approach to clustering. Phase one is similar to the established centralised clustering

approach (except that it is conducted in a decentralised manner). Phase two comprises

a negotiation phase where agents “swap” unwanted records so as to improve a cluster

configuration. A set of performatives is proposed as part of a negotiation protocol to

facilitate intra-agent negotiation. It is this negotiation capability which is the central

contribution of the work described in this thesis. An extensive evaluation of the ex-

tended framework was conducted using: (i) benchmark UCI data sets and (ii) a welfare

benefits data set that provides an exemplar application. Evaluation of the framework

clearly demonstrates that, in the majority of cases, this negotiation phase serves to

produce a better cluster configuration (in terms of cohesion and separation) than that

produced using a simple centralised approach.
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Chapter 1

Introduction

An agent is a software entity located in some environment where it is able to operate in

an autonomous manner to achieve some specific end goal [89]. By combining a number

of such agents to interact with each other, the problem-solving power of agents can be

significantly enhanced. Such a system is referred to as a Multi-Agent System (MAS).

An important aspect of MASs is the necessary communication between agents so that

they can cooperate and negotiate in order to carry out collectively some allotted task.

MASs are seen to offer a number of advantages over more conventional distributed and

parallel systems. These include:

• Decentralise control

• Autonomy

• Expertise sharing

• Resource sharing

• Scalability

• Enhance performance

Knowledge Discovery in Databases (KDD) and Data Mining play an important role

in the information industry and society because of the availability of large amounts of

data [44]. For many commercial and civic institutions the quantity of data that has

been collected is substantial. KDD is concerned with the discovery of hidden but worth-

while knowledge in data. The term describes a process that includes data warehousing

(cleaning) and interpretation and/or visualisation of results. Data mining is the central

phase within the overall KDD process concerned with the discovery of hidden knowl-

edge. Knowledge in this context can be patterns, rules or relationships. The field of

data mining can be divided into two subfields: supervised learning and unsupervised

learning. In supervised learning, labelled data is used to inform the learning process.

A typical example is the generation of classifiers using pre-labelled data. The need for
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pre-labelled data imposes limitations on the use of supervised techniques. Unsuper-

vised learning, in turn, does not require the provision of pre-labelled data to support

the data mining process. One common example of unsupervised learning is data clus-

tering where the data is grouped into a number of clusters according to some similarity

metrics, similar data objects are placed in the same cluster while the dissimilar objects

are placed in different clusters. It is interesting to note that given a definition of a set

of clusters (for example in terms of a set of prototypes), this definition can be used for

classification purposes.

Over the last twenty years data mining has become a well established field of study

which has found application in many domains [44]. However research challenges still

remain. Current issues include [91]: (i) the ability to deal with high dimensional data,

high speed data streams, complex data, sequence data, time series data and distributed

data; (ii) the maintenance of the security/privacy of data; (iii) data integration and

(iv) scalability.

It is conjectured that data mining and MAS technology have much to offer one

another [23, 22, 24]. There are two main paradigms for this integration:

• Data mining-driven agents: The use of data mining to support the abilities of

agents with respect to (say) adaptation, coordination, learning and/or reasoning.

• Agent-driven data mining (also known as Multi-Agent Data Mining (MADM)

or Agent Assisted Data Mining (AADM)1): The use of collections of agents to

perform collaborative data mining tasks.

This thesis is concerned with MADM, that is the use of MAS technology to support

data mining. More specifically, to act as focus for the work, the research described in

this thesis is directed at Multi-Agent Based Clustering (MABC).

The rest of this chapter is organised as follows. Section 1.1 provides an overview

of the motivation for the research. The research question and associated issues to be

addressed are then described in Section 1.2. The adopted research methodology is

then presented in Section 1.3, followed by an overview of the contribution of the work

described in Section 1.4. The structure of the remainder of the thesis is then described

in Section 1.5. A brief summary is given in Section 1.6.

1.1 Motivation

This section presents the motivation for the described work. In particular this section

seeks to establish the advantages that MASs can offer data mining. In essence MADM

seeks to harness the general advantages offered by MASs with respect to the domain of

1In this thesis the acronym MADM will be adopted
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data mining. In the context of this thesis these advantages are considered with respect

to Multi-Agent Based Clustering (MABC).

Recall the generally accepted advantages offered by MASs with respect to dis-

tributed cooperative computing and resource sharing listed previously. From a high

level viewpoint these advantages all have something to offer data mining of which the

decentralisation property of MAS can be argued to offer the most significant advan-

tages with respect to data mining processes where it is often necessary to process very

large amounts of geographically distributed data. Of course, for many applications

it may be appropriate to move the data to a centralised storage structure (such as a

data warehouse) and perform data mining in a centralised manner. However, in many

cases this can be inefficient and/or result in data security and privacy preserving is-

sues. MADM provides a potential solution. An example of a MABC application that

preserves data privacy and minimise communication between sites can be found in [51];

where an agent based distributed data clustering mechanism is described founded on a

distributed density based clustering algorithm whereby density estimation samples are

transmitted, instead of actual data values.

Autonomy is an important advantage offered by MAS that allows agents to operate

in a self directed manner. This advantage is equally applicable to MADM. There are

three main capabilities that support autonomy; reactive, proactive and social capability

[89]. Reactive capabilities allows agents to perform tasks (such as data mining tasks)

and produce results when requested to do so. Proactive capabilities allow agents to

predict likely requests. Social capabilities allow agents to communicate and negotiate

with one another, exchange information and share expertise (for example expertise

in the context of clustering algorithms) and resources (for example clustering results).

Central to the work described in this thesis is the ability of agents to be able to negotiate

with one another.

The advantages offered by MAS with respect to expertise and resource sharing are

self-evident. The scalability advantage that is a feature of MAS is also of particularly

significant to data mining as the amount of data available for mining increases rapidly

year on year, and new techniques or variations of existing techniques constantly become

available. One solution to the increase in the quantity of data available for mining is to

adopt a parallel or distributed approach. This can also be achieved using a MAS ap-

proach, but with the additional other benefits that MAS has to offer (as noted above).

MASs are well suited to supporting distributed/parallel data mining because of the

“added value” that they provide in terms of mechanisms to support the interchang-

ing of information and coordinating activities. With respect to the evolution of new

data mining techniques MAS architectures readily support the inclusion of additional

agents supporting new technology. MAS architectures provides an extremely versatile

platform.

3



Finally, MASs have the ability to enhance performance in terms of: (i) computa-

tional efficiency because of the concurrency of computation; (ii) reliability in that MASs

can auto-recover, in the event of “crashed” agents, by dynamically finding redundant

agents or appropriate alternative agents; (iii) extensibility, by allowing new agents to

be added to the systems; (iv) maintainability because of the modularity of MASs; and

(v) flexibility, because agents with different abilities can contribute to disparate tasks.

There is no a generic clustering algorithm that suited to every data set, hence dif-

ferent clustering algorithms perform differently and produce different clustering results

depending on the characteristic of a given data set. The clustering results often are

suboptimal. Thus the proposed intra-negotiation mechanism offers the additional ad-

vantage that it can be used to refine an initial clustering result in order to improve

the cluster configuration in terms of cluster cohesion and separation. This intra-agent

negotiation, when incorporated into an MABC framework, such as that proposed in

this thesis, serves to harness the true potential of MASs rather than simply using the

concept of MASs to achieve a form of distributed clustering.

1.2 Research Issues

The aim of the research described in this thesis is to investigate the use of MAS tech-

nology with respect to data mining, and more specifically clustering, so as to establish

the advantages that MAS can offer data mining. The research question to be addressed

is:

“How do we obtain a best cluster configuration using the full power of MAS

to support unsupervised learning and specifically clustering?”

The provision of an answer to this research question, in turn, entails the resolution of

a number of research issues:

1. How can a MAS identify the most appropriate number of clusters with respect

to a given data set?

2. What is the nature of a MAS framework to support data mining and clustering

in particular?

3. How do a group of agents know when they have generated a “best” cluster con-

figuration?

4. What are the specific MAS mechanisms that can usefully be adopted to support

MADM?

5. What are the most appropriate cooperation and negotiation protocols for MABC?
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1.3 Methodology

The broad research methodology that has been adopted was to first investigate and

build a multi-agent platform to support the investigation of MABC. Once this plat-

form was established, the incorporation of a sequence of clustering paradigms was

considered: K-means [57], K-NN [27] and divisive hierarchical clustering [50]. These

paradigms were selected because they are well established, feature extensively in the lit-

erature, and have been used as the foundation for many enhancements and variations.

Two communication mechanisms were considered. The first was an ontology based

communication mechanisms used with respect to simple scenarios to identify a best

cluster configuration. The second was founded on the concept of dialogues as found in,

for example, work on argumentation. It was found that the second mechanism much

more readily supported intra-agent communication and especially negotiation. The

basic idea behind the negotiation was that when a group of agents had established an

initial cluster configuration they could negotiate to improve this cluster configuration

by exchanging records between them. A negotiation protocol was therefore defined and

implemented to support the desired intra-agent communication.

Evaluation of the initial framework, the inclusion of the different paradigms and the

negotiation mechanism, was conducted using benchmark data sets and a welfare benefit

data set that was used as the exemplar application. The evaluation was conducted

in terms of the cluster configuration accuracy with respect to known “ground-truth”

configurations.

1.4 Contributions

The main contributions of the research work considered in this thesis can be summarised

as follows:

• A generic approach to multi-agent based clustering to identify a best set of clusters

using a collection of “clustering agents”.

• The design of a MABC framework, a generic MADM environment that uses a

“bespoke” data mining ontology.

• The use of clustering metrics to evaluate the quality of cluster configurations

generated by a MABC and hence identifying the best one.

• A comparison of two measures, Within Group Average Distance (WGAD) and

Between Group Average Distance (BGAD) which are based on cluster cohesion

and cluster separation measures respectively, to identify the most appropriate set

of clusters for a given clustering problem.
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• Mechanisms to determine the most appropriate parameters for a given clustering

algorithm using clustering metrics.

• A versatile multi-agent based clustering framework.

• A set of communication performatives specifically to support negotiation within

multi-agent based clustering.

• A negotiation protocol whereby agents can interact with one another with the

express aim of exchanging records to improve an initial cluster configuration.

The most significant contributions of the work is the negotiation capability, to support

MABC, that has been built into the proposed MADM framework.

1.5 Structure of Thesis

The remainder of this thesis is structured into seven chapters as follows. Chapter 2

presents a literature survey of existing research relevant to the contributions presented

in this thesis. Chapter 3 introduces a generic Multi-Agent Data Mining (MADM)

framework, that can be used for MABC, that allows a collection of agents to collabo-

rate to produce a “best” cluster configuration. Chapter 4 proposes an extension of the

proposed initial MADM framework introduced in Chapter 3 whereby a “best” cluster

configuration could be found using cooperation and negotiation among agents. This

chapter also gives a detailed description of a set of communication performatives which

is proposed as part of a negotiation protocol to facilitate intra-agent negotiation. The

operation of the proposed extended framework is described in terms of both the com-

munication performatives used and from an algorithmic perspective. Some examples of

the operation of the proposed extended framework are also presented in this chapter.

Chapter 5 presents the evaluation of the extended MADM framework, and especially

the negotiation mechanism that is incorporated into the extended framework. Chapter

6 presents a number of conducted experiments to automatically identifying clustering

parameters. A summary of the main findings and a discussion of possible avenues for

future research work are then presented in Chapter 7.

1.6 Summary

This chapter has provided the necessary context and background to the research de-

scribed in this thesis. The motivations for the research, the specific research objectives,

and the methodology for realising these objectives, have been described. A literature

review of the relevant previous work, with respect to this thesis, is presented in the

following chapter.
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Chapter 2

Literature Review

This chapter presents a discussion and a critical review of the current research relating

to Multi-Agent Data Mining (MADM). The organisation of this chapter is as follows.

Section 2.1 presents a general description of agents and MADM systems including a

review of intra-agent communication and the JADE (Java Agent DEvelopment) plat-

form used to implement the two proposed frameworks, MADM, so as to both illustrate

and evaluate the ideas suggested in this thesis. Section 2.2 then gives an overview

of data mining and Distributed Data Mining (DDM). The section also reviews three

specific clustering paradigms: K-means, K-Nearest Neighbour (K-NN) and hierarchical

clustering; which are all used for demonstration purposes later in this thesis. The pre-

vious work concerning MAS for data mining is reviewed in Section 2.3, where recent re-

search in this field is summarised and some established approaches are presented. More

specifically, the section considers the use of MADM for data clustering and presents a

discussion of the use of negotiation in MADM to improve data mining results. This

chapter is concluded, in Section 2.4, with a brief summary.

2.1 Agents and Multi-Agent Systems

Over recent years the computing trend has changed from a focus on individual stan-

dalone computer systems to a situation in which the real power of computers is realised

through distributed, open and dynamic systems. In addition, the trend has been to-

wards ever more intelligent systems which can automatically perform ever more complex

tasks. However, in open, distributed and dynamic environments, the ability to cooper-

ate and reach agreements with other systems is a necessary and overriding requirement.

Agent technology provides an infrastructure that enhances our ability to solve prob-

lems in a collaborative manner by providing a “scaffolding” to support the required

cooperation. At its simplest, a Multi-Agent System (MAS) is a software system that

comprises a collection of software agents. These agents are capable of independent

action, on behalf of their users or owners with some degree of autonomy. In other

words, each agent can “figure out for itself” what it needs to do in order to satisfy its
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design objectives. The agents in MASs can interact with one another by exchanging

messages using network protocols. The agents in a MAS typically have different goals

and motivations thus there is a chance of conflict with regard to the aims of individual

agents. Hence the operational requirement that to successfully interact and resolve

such conflicts agents must have the ability to cooperate, coordinate and negotiate with

each other.

The rest of this section is organised into four subsections. Subsection 2.1.1 gives a

brief overview of agents and their capabilities with respect to data mining activities.

Subsection 2.1.2 presents a general overview of MAS. Subsection 2.1.3 describes intra-

agent communication and includes a discussion about Agent Communication Languages

(ACLs). Finally, JADE (Java Agent DEvelopement platform), the platform used to

implement the MADM frameworks that features the ideas proposed in this thesis, is

presented in Subsection 2.1.4.

2.1.1 Agents

Agents are usually defined as computer entities that are suited to some environment,

and that are able to carry out their tasks in an autonomous manner. The environments

in which agents operate may be dynamic, unpredictable, and uncertain; thus it is

desirable for agents to exhibit some form of computer intelligence in order to interact

with their environment. There are a number of capabilities that intelligent agents are

expected to display [89]:

• Reactivity. Intelligent agents should be able to anticipate tasks, according to their

environment, so that they can respond in a timely fashion.

• Proactiveness. Intelligent agents should be able to explore alternatives to achieve

their design objectives.

• Social ability. Intelligent agents should be capable of interacting with other agents

(and possible humans) in order to satisfy their design objectives.

It is self-evident that the above capabilities can increase the degree of autonomy with

which agents can perform tasks.

2.1.2 Multi-Agent Systems (MASs)

A Multi-Agent System (MAS) is a software system that employs a number of interactive

agents to solve a problem in open and decentralised uncertain environments. A central

feature of MAS is that there is no centralised control mechanism; agents are required

to collaborate to achieve the design objective of a given MAS. A MAS has collective

capabilities that an individual agent does not have. Thus, as listed in [81]:

8



• In a MAS computational resources and capabilities are distributed across a net-

work of interconnected agents to solve problems that are too large for an in-

dividual agent. A centralised system may be plagued by resource limitations,

performance bottlenecks, or critical failures.

• A MAS allows for the interconnection and interaction of multiple existing legacy

systems; by building an agent wrapper around such systems, so that they can be

incorporated into an agent society.

• In a MAS problems are modelled in terms of autonomous interacting component-

agents that allows these agents to operate in self directed manner.

• In a MAS information from sources that are spatially distributed is efficiently

retrieved, filtered, and globally coordinated.

• Use of a MAS provides solutions in situations where expertise is spatially and

temporally distributed. With respect to the social ability of agents, expertise and

resources can be shared.

• Use of MAS enhances overall system performance, especially along the dimensions

of: computational efficiency, reliability, extensibility, robustness, maintainability,

responsiveness, flexibility and reuse due to its distributed nature.

In the introduction to this thesis the advantages that MAS can offer data mining

were listed. The decentralised control and autonomy properties of MAS can be argued

to offer the most significant advantages with respect to the data mining process in that

they allow individual agents to collectively process large amounts of data. Individual

agents can typically process sub-sets of the data and then combine the local results to

produce the desired global result, thus achieving computational efficiency advantages.

This local processing also offers the advantage of privacy preservation in data mining

situations where this is a requirement. The advantages offered by MAS with respect

to expertise and resource sharing are clearly of significance. In the context of the work

described in this thesis the agent interaction capabilities supported by MAS are also

considered to be beneficial. As will be noted in Section 2.3, although there is reported

work on the use of MAS for data mining, to the best knowledge of the author there is

no reported work on using intra-agent negotiation to enhance data mining results as

proposed later in this thesis. For many data mining activities it is well established that

there is no single “best” algorithm suited to all types of data. A data mining MAS where

individual agents are equipped with different data mining algorithms which produce

separate results from which the best can be selected, such as that described in the

following chapter, is therefore clearly also of benefit.
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2.1.3 Intra Agent Communication

An obvious aspect of the interaction within a MAS is the ability for the agents to be able

to communicate effectively. The development of agent communication mechanisms has

been influenced by work from philosophy on speech act theory, most notably Austin’s

work [5] and Searle’ work [78]. Speech act theory conceptualises agent communication

in terms of “performatives” which are derived from the actions which an agent may wish

to “perform” in order to achieve a desired task [5]. Thus performatives were defined

as a class of natural language utterances which have the characteristics of actions. A

number of performative verbs were identified to correspond to different types of speech

act (for example request, inform and promise).

Agent Communication Languages (ACLs) were devised to allow agents to commu-

nicate by exchanging information and knowledge, especially in the form of complex

objects, such as shared plans and goals or even shared experience and long-term strate-

gies. Other means of exchanging information and knowledge among applications are

Remote Procedure Call and Remote Method Invocation (RPC and RMI), and CO-

BRA. Using these methods software modules (objects) are able to communicate with

one another regardless of where they are located in a network. ACLs provide additional

functionality over the above for two reasons: (i) ACLs handle propositions, roles and

actions (which have semantic associations), whereas RPC and RMI or COBRA have

no such semantic association, and (ii) an ACL message describes a desired state in a

declarative rather than a procedural form [55].

There is no definitive agent communication language appropriate to all applications.

There are some notable examples of popular languages that have been developed for

use in multi-agent systems, with two of the most prominent proposals being: (i) the

Knowledge Query and Manipulation Language (KQML) and the associated Knowledge

Interchange Format (KIF) [69] and (ii) the FIPA (Foundation for Intelligent Physical

Agents1) ACL [37].

Firstly, regarding KQML and KIF, KQML is defined as a message-based “outer”

language for communication; classifying messages into particular groups, called perfor-

matives, to establish a common format for the exchanges. KIF, in turn, is concerned

with providing a representation for “inner” content of the communication, thus the

knowledge applicable in a particular domain. Table 2.1 illustrates an example KQML

message using the tell performative. In the example agent i tells to agent j that agent

i believes the price of pizza is £5. Table 2.2 indicates the semantics of the tell perfor-

mative for sender i and receiver j. The semantics of KQML were described in terms

of preconditions, postconditions and completion conditions for each performative [54].

Preconditions indicate the necessary states for a sender to send the performative and

for a receiver to accept and successfully process the performative. If the preconditions

1the association responsible for multi-agent system protocols to support agent interoperability
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do not hold, an error or sorry performative will be generated to report the unsuccessful

message processing. A completion condition describes the final state that corresponds

to the fulfilment of the intention that starts the conversation. Preconditions, postcon-

ditions and completion conditions describe mental states of agents (belief , knowledge,

desire and intention) and the action description used for sending and processing a

messages.

Table 2.1: An example of the tell performative in a KQML message where agent i
“tells” agent j that the pizza price is £5. [53]

(tell
:sender agent-i
:receiver agent-j
:content

(price pizza 5)
:language kif
:ontology x-auction

)

Table 2.2: KQML semantics for tell [53].

tell(i,j,X) i states to j that i believes the content to be true.
-BEL(i,X)
-Pre(i): BEL(i, X) ∧ KNOW(i, WANT(j, KNOW(j,S)))
Pre(j): INT(j, KNOW(j,S))
where S may be any of BEL(j,X), or ¬(BEL(j,X)).

-Post(i): KNOW(i, KNOW(j, BEL(i,X))
Post(j): KNOW(j, KNOW(i,X))

-Completion: KNOW(j, BEL(i,X))

The notion of conversation, is a sequence of KQML messages in agent interaction

using a set of performatives and the rules that describe permissible conversations among

KQML speaking agents, can be found in [9] and [54]. In [9] the notion of structured

“conversation” amongst agents was proposed to underpin coordination in MASs using

the extended version of KQML language. The conversation was defined as a conver-

sation class and an actual conversation. The conversation class specifies the available

rules, their control mechanism and the local database that maintains the state of the

conversation. The actual conversations are processes that create instances of conversa-

tion classes and are used to maintain: (i) the current state of the conversation, (ii) the

actual values of the conversation’s variable and (iii) the historical information during

conversation execution. Thus, interactions amongst agents can be handled by carrying

out “conversations”. In [54] rules for conversations were defined as conversation policies

using the Definite Clause Grammars (DCGs) formalism which was extended from the

use of Context Free Grammars (CFGs) [70]. The conversation policies describe both
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the sequences of performatives and the constraints. The conversation policies depend

on values of the reserved parameters of the performatives involved in the conversa-

tions. Each KQML message was defined as a terminal in the DCG. A terminal is a

list of the following values: performative name, sender, receiver, in-reply-to, reply-with,

language, ontology, IO, content. The IO is used for setting the type of the message; I

is an incoming message and O is an outgoing message. The content is the performative

itself, thus the content is also a list. The list is closed with “[” and “]”. An example

of a terminal is [[ask − if, A,B, id1, id2, prolog, onto, price(X)]]. A benefit of the use

of conversation policies is that they can be used to devise a software component that

monitors an agent’s incoming and outgoing messages and ensures that it only engages

in valid KQML conversations. Additionally, an agent’s multiple interaction (conversa-

tion) with other agents can be kept track of when it goes wrong, and can be recovered

from unforeseen situations. However, with respect to the work presented in this thesis a

set of performatives was defined to be used as part of the protocol (a set of rules) that

govern the exchange information between agents and to support negotiation within

multi-agent based clustering. Transition diagrams are used to illustrate the state of

agents when receiving a performative.

Although KQML has been influential among agent developers and has formed the

basis of a number of implementations, numerous criticisms have been directed at it on

a number of grounds including [21, 53]: (i) its interoperability, (ii) insufficient seman-

tics support, and (iii) the omission of certain classes of message to handle particular

expressions.

Table 2.3: An example of the inform performative in a FIPA ACL message that agent
i “informs” agent j that the pizza price is £5 [66].

(inform
:sender agent-i
:receiver agent-j
:content

(price pizza 5)
:language sl
:ontology x-auction
:protocol contract-net

)

The criticisms levelled at KQML have led to the development of alternative (al-

though in many ways similar) agent communication languages, such as FIPA ACL,

which were aimed at establishing a standard communication format for use by au-

tonomous agents. FIPA ACL is similar to KQML in terms of syntax (see examples in

Table 2.1 and Table 2.3). FIPA ACL uses an outer language to enable message passing

that is separate from the inner content, which may be expressed in any suitable logical
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language. For the outer language, FIPA ACL provides twenty two performatives to

distinguish between the different kinds of messages that can be passed between agents.

Examples of FIPA ACL performatives are: (i) inform, and (ii)request. The first is used

to pass information from one agent to another; the second to ask for a particular action

to be performed. The full specification of FIPA ACL performatives can be found in

[37]. In order to avoid some of the criticisms that were directed against KQML, the de-

velopers of FIPA ACL provided a comprehensive formal semantics for their language.

These semantics made use of the work on speech act theory, as mentioned earlier,

through the definition of a formal language called Semantic Language (SL). SL enables

the representation of agents’ beliefs, uncertain beliefs, desires, intentions and actions

available for performance. To ensure that agents using the language are conforming

to it, SL contains constraints (pre-conditions), in terms of formulae mapped to each

ACL message, that must be satisfied in order for compliance to hold. For example

agents must be sincere, and they must themselves believe the information they pass

on to others. Additionally, SL enables the rational effects of actions (post-conditions)

to be modelled, which state the intended effect of sending the message. For example,

that one agent wishes another to believe some information passed from the first to the

second.

Although, the FIPA ACL gives a precise and standardised language for inter-agent

communication, as discussed in [61], the FIPA ACL is rather broad and not universally

applicable to all types of dialogue interaction that may take place within different do-

mains. There are some performatives, such as proposal, Calling For Proposals (CFP)

and so on, for general agent negotiation processes, but they are not sufficient for nego-

tiation specific to the data mining domain such as that considered in this thesis. Thus,

instead of using the generic FIPA ACL performatives, a set of “bespoke” communi-

cation performatives designed specifically to support negotiation within multi-agent

based clustering will be proposed later in this thesis (Chapter 4).

Negotiation is a key form of interaction in MAS whereby agents are able to exchange

offers. The agents may accept these offers or respond in some other way to the offers

made to them. With respect to MAS negotiation, a negotiation framework should

specify a negotiation protocol in order to govern the interaction among participants

(agents) [47]. The protocol specifies which an agent is allowed to say what and actions

that an agent can make. It also includes possible communication scenarios among

individual agents. For example, one agent makes a proposal, the other agent may be

able to accept it, reject it or criticise it, but the agent might not be allowed to ignore it

by making a counterproposal. The operation of the protocol rules might be dependent

on the last utterance (or the last message) that has been made or the message series

exchanged between participants.

In the MAS negotiation literature, there are many sets of performatives and pro-
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tocols which have been proposed, for example Persuasive Negotiation (PN) [72] and

the work described in [79, 4, 60, 77]. The specification of negotiation protocols in [79]

was carried out using finite state machines while the work proposed in [4, 60, 77] was

carried out using dialogue games2.

The work in [72] focused on a reasoning mechanism and a protocol for agents to

engage in persuasive negotiation in situations where the agents need to negotiate with

one another repeatedly. The mechanisms allow agents to influence the outcomes of

future negotiations through promises of rewards, rather than exchanging offers and

counter offers that only impact on the outcome of the current a negotiation. Agents try

to give rewards or ask for rewards in order to get their opponent(s) to accept a particular

offer. Rewards are about giving a higher current utility outcome to an opponent or

a higher utility to the agent in the future. The Persuasive Negotiation (PN) protocol

structures the interactions between agents as it allows them to understand messages

exchanged and the commitments that agents make to each other when engaging in

persuasive negotiations using rewards. The protocol was specified using dynamic logic

and provided detail about how commitments arise or get retracted as a result of agents

promising rewards or making offers. The protocol consists a set of illocutionary actions

that agents interchange. A set of axioms was defined to express the constraints and

applied to the protocol.

In [79] an argument-based negotiation was presented for a scenario in business pro-

cess management. The communication language contains locutions in the form of locu-

tion(sender, receiver, content, time). In addition, the locutions express offers, requests,

acceptances, rejections and withdrawals. The communication language expresses three

types of locutions: (i) threats, (ii) rewards, and (iii) appeals. The negotiation protocol

was specified as a finite state machine which terminate when an agent utters an accept

or withdraw locution.

The work proposed in [3] was based on MacKenzie’s system DC [56], a game for two

players applying the same rules. DC allowed the participants to argue about the truth

of a proposition. A subset of the moves from DC which was useful in agent dialogues,

was taken and augmented with some new moves. Each move was defined in terms of

arguments that agents can build, and defined the moves that an agent is allowed to

make at a given point in time (determining from the set of acceptable arguments). A

system enabling persuasion, inquiry and information-seeking dialogues was proposed.

The agent interaction protocol of [3] was based on four locutions allowed by DC: assert,

accept, question and challenge. Three additional locutions: request, promise and refuse

for negotiation were proposed in [4].

In [77], the work focused on one-to-one agent negotiation for achieving goals in a

2Dialogue games are interactions between two or more players, where each player “moves” by making
utterances in a common communication language, according to certain rules [59].
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system with limited resources, thus the negotiation was used for exchanging resources.

Agents were equipped with a planner including a given goal. The agents were able to

generate a sequence of actions and an associated set of needed resources required to

carry out a plan. A single dialogue was used to obtain a resource. An agent dialogue

cycle was used to trigger a new dialogue after one dialogue was terminated in order to

collect all the needed resources to achieve some goal. A similar protocol to that giving

in [4] was proposed but with fewer locutions. The proposed locutions for negotiation

are: request, accept, refuse, challenge, justify and promise. The content of request

and promise are resources, while the content for the other locutions were any of the

defined six locutions. The justify locution allows for the utterance of some support by

means of a reason for a previous locution. Because the proposed framework is based on

declarative logic programming, the protocol was presented in the form of if-then rules,

called a set of dialogue constraints. Each protocol rule was represented in the form

p(T )
∧
C ⇒ p′(T + 1); which meant that if the agent received the performative p at

a certain time t, and condition C was satisfied at that time then the agent (receiver)

must use the performative p′ on the next occasions.

The work in [60] presented an overview of agent interaction protocols based on

formal dialogue games. A dialogue game is an interaction among two or more par-

ticipants who make “moves” by uttering locutions according to some predefined rules.

Dialogue game rules are specified in terms of a dialogue game protocol. The protocol

consists of a number of different type of rule: commencements, locutions, combina-

tions, commitments and terminations. Commencement and termination rules spec-

ified when a dialogue commenced and ended. Locutions indicated what utterances

were permitted in the construction of dialogue moves. Commitment rules specify how

agents’commitments should be managed. Finally, combination rules defined the per-

mitted sequences of the dialogue moves.

The negotiation protocol presented in this thesis, Chapter 4, is defined in terms of a

set of performatives. This set of performatives includes the name of the performatives,

pre-conditions and post-conditions. The pre-conditions describe the necessary state for

an agent to send a given performative. The post-conditions indicate the state of the

sender after successful utterance of a performative and the state of the receiver after

obtaining and processing a performative. Transition diagrams are used to represent the

dialogue moves (performatives that can be uttered) by the agents and the subsequent

choice of moves which are then available in the new state.

2.1.4 JADE (Java Agent DEvelopment framework)

To facilitate the rapid development of MASs using FIPA ACL, several platforms have

been developed that support FIPA messaging. One of these is the JADE (Java Agent

Development Environment) platform [11], a software framework to develop agent appli-
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cations in compliance with the FIPA specifications for interoperable intelligent multi-

agent systems. The JADE framework is based on middleware that provides a set of

generic services for the development of multi-agent systems based on the Peer-to-Peer

(P2P) communication architecture. In P2P systems, the system is required to provide

suitable services that allow “peers” to enter, join, or leave the network at any time,

and search for or discover other peers. These services are implemented in the form of

a set of virtual “yellow pages” that allow for the publishing and discovering of services

provided by peers. In JADE, a peer is an agent. The services provided by agents can

be registered and modified through the yellow page service. JADE allows agents to

communicate by exchanging synchronous messages using the FIPA ACL.

JADE includes software packages and tools to allow Java developers to construct

and deploy FIPA agent systems. JADE also includes a run-time environment that

provides the services that are required to support the operation of MASs. Figure 2.1

illustrates the relationship between the main architecture elements in a JADE platform.

Each instance of JADE runtime is called a container and a set of containers is called

a platform. A JADE platform includes a main container. The main container is the

“bootstrap” container and all containers in the system must register with the main

container. The main container holds a number of agents providing basic services. These

include: (i) the AMS (Agent Management System) agent responsible for managing

and controlling the life cycle of other agents in the platform, (ii) the DF (Directory

Facilitator) agent that provides the “yellow pages” service to allow agents to register

their capabilities, and (iii) the RMA (Remote Management Agent) which provides the

general (GUI) management console for the JADE agent platform. Functions provided

by the RMA include: new agent creation, agent removing and container terminating.

The RMA obtains the information about the platform by interacting with the AMS.

 

Figure 2.1: Relationship between the main elements in the JADE architecture [12].

There are three main services that an agent platform is required, according to the

FIPA specification, to provide: (i) an Agent Management Service (AMS), (ii) Direc-
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tory Facilitator (DF) service and (iii) a Message Transport Service (MTS). As noted

above, in JADE, the agent management service and the directory facilitator service are

provided by the AMS agent and the DF agent respectively. The MTS is intended to

manage all messages exchanged within and between platforms. In the case of JADE, to

support interoperability between platforms (including, none-JADE platforms), JADE

implements all the standard Message Transport Protocols (MTPs) defined by FIPA.

Each MTP includes the definition of a particular transport protocol and a standard

encoding of the message envelope. HTTP (HyperText Transfer Protocol) is the default

MTP. JADE always starts a HTTP-based MTP when the main container is initialised,

as a result a server socket is created on the main container host. The HTTP-based

MTP listens for incoming HTTP connections at the URL specified. When an incoming

connection is established and a valid message received over the connection, the MTP

routes the messages to its destination agent. A “single-hop routing” table, which pro-

vides direct IP visibility among the containers, is used when JADE performs message

routing for both incoming and outgoing messages.

Agents apply an asynchronous message passing mechanism, ACL message, to ex-

change messages through the computer infrastructure. Through the content language

a particular expression is communicated from a sender to a recipient. The content

expression might be encoded in several ways; JADE provides three types of content

language encoding as follows [12]:

1. SL. The SL (Semantic Language) is a human-readable string encoded content

language, suitable for open-based applications where agents provided by different

developers, and running on different platforms, are required to communicate.

2. LEAP. The LEAP (Lightweight Extensible Agent Platform) is a non-human read-

able byte-code content language. Therefore, LEAP is “lighter” than SL and typ-

ically adopted for agent-based applications that have a memory constraint.

3. User Defined. Any user-defined content language that is consistent with the

languages handled by the resources, for example SQL, XML, RDF, etc.

FIPA does not define a specific content language but recommends using the SL lan-

guage when communicating with the AMS and DF agents. JADE creates and manages

a queue of incoming ACL messages which is private to each agent. This provides a com-

munication architecture which is flexible and efficient. Agents can access their queues

via a combination of several modes: blocking, polling, timeout and pattern matching.

The full FIPA communication model has been fully incorporated into JADE. JADE

also provides features to facilitate the automatic conversion of message content into a

suitable exchange content format such as XML, RDF or Java objects.

With respect to the work described in this thesis, the JADE framework was selected

as the agent development toolkit with which to construct an MADM system to act as
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an evaluation medium to support the analysis of the ideas concerning MADM proposed

in this thesis. The reasons for choosing JADE were as follows [13]:

• Standard compliance. JADE complies with the FIPA specifications that enable

end-to-end interoperability between agents in different platforms.

• Well known and widely used. JADE is the best-known and widely used toolkit

for developing MAS applications. JADE is used by a various communities of

users both with respect to research activity and commercial applications. There

is evidence for the use of JADE in many research papers, such as in [2, 25, 71].

• Mature software framework. The JADE framework was released in 2003 and has

been in use (although sometimes updated and maintained) ever since. There

has been a continual improvement in JADE; while other development tools were

created as part of short-time research activity, their further development and

maintenance has thus typically ended after two or three years.

• Extensibility. The JADE framework is distributed under an Open Source License,

therefore JADE code can be extended to enhance the platform with respect to

some specific application or requirement. For example, the jade.mtp API allows

the users to add new message transport protocols.

• User support and documentation. JADE code is distributed together with a pro-

gramming guide and an administrator guide, a number examples and tutorials,

and the javadocs for all the APIs.

• Versatility. JADE provides APIs which are independent from underlying net-

works. With respect to JAVA technology, JADE also provides multi-platform

support; the agent platform can be distributed across machines regardless of the

operating system used.

• Information hidding. Each JADE API is independent and provides some specific

purpose-functionality, therefore developers need to understand only the required

functionalities used with respect to some specific implementation.

• Transparent communication. The communication in the JADE framework is han-

dled by the JADE run-time environment, thus programmers need not be con-

cerned with the mechanism used to actually deliver messages. A number of GUI

based tools are also provided in order to allow users to monitor and control run-

time system activity.

A further reason why JADE was selected with respect to the work described in

this thesis, is the extensibility property of the FIPA ACL that allows the definition of

user-defined performaitves in order to support intra-agent communication in specific
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domains. User defined performatives can makes the syntax of the communication used

by the agents more specific and descriptive of the particular task that the agents are

communicating about (as will be demonstrated in Chapter 4).

2.2 Data Mining

Data mining refers to the process of discovering hidden but interesting patterns and

knowledge from large amounts of data. The data sources are typically held in databases

or data warehouses, however the Web and other information repositories can be used,

or data that is streamed into the system dynamically or distributed across many sites.

Data mining methods may be classified into three categories:

1. Association Rule Mining (ARM) or frequent pattern mining is concerned

with the discovery of interesting associations and correlations between itemsets

in transactional and relational databases. A popular frequent pattern mining

application is market basket analysis, which is the process of analysing the buying

habits of customers by finding associations between items that are frequently

purchased together.

2. Classification is the process of finding a model (a classifier) that can be used to

predict (classify) objects according to some set of predefined labels. The classifi-

cation process comprises two major steps: (i) the learning step (or training phase)

where the training data is used to generate a classifier using some classification

algorithm, and (ii) the classification step where the classifier is applied to unseen

data. Usually, to obtain some measure of the effectiveness of a generated classifier,

it is first tested prior to the classification step using test data. If the accuracy is

acceptable, the classifier is used to classify new data. Classifiers may be format-

ted in different ways, popular formats include: classification rules, decision trees,

mathematical models and neural networks. Because a pre-labelled training set is

required, classification is sometimes referred to as a type of supervised learning.

3. Clustering is the process of partitioning a set of data into categories (“clusters”)

according to characteristics found in the data. Objects (records) in a cluster are

similar to one another, while dissimilar objects are located in alternative clusters.

Clustering has a long and rich history in a variety of scientific fields. No prior

knowledge concerning which records should belong to which cluster is required,

thus clustering is sometimes referred to as a type of unsupervised learning.

Two approaches to data mining can be identified: (i) centralised processing and (ii)

decentralised processing. Centralised processing involves moving all data to a central

data repository (a data warehouse) and then analysing it with a single data mining
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system. Even though the centralised processing approach tends to be the most straight

forward approach, it might be infeasible in cases where the size of the data is too large

to store at a single location or where the data is naturally distributed and for reasons of

confidentiality cannot be combined (such as in the case of cross border policing appli-

cations). A hybrid form of processing can also be identified where data can be locally

analysed and the results combined at some central site to generate the final result. Sur-

veys of Distributed Data Mining (DDM) techniques can be found in [8, 31, 46, 67]. The

decentralised processing paradigm is clearly of interest with respect to MADM. However

a recognised problem with this approach is the “message passing” overhead. To ad-

dress this weakness, many researchers attempt to achieve the integration of knowledge

discovered from different sites with a minimum amount of network communication and

a maximum amount of local computation. Agent based architectures are well suited

to supporting DDM because of the “added value” that they provide in terms of mech-

anisms to support the interchanging of information and coordinating activities. There

is also evidence to suggest that the use of agent architectures can speed up the data

mining task (see for example [75]).

The remainder of this section is organised into two subsections. Subsection 2.2.1

gives some background concerning a number of clustering techniques used to investigate

the use of MADM/MABC as reported in this thesis, and to evaluate the proposed

solutions to the research issues identified in Chapter 1. Subsection 2.2.2 then consider

a number of cluster evaluation metrics that may be used for assessing the quality of

cluster configurations.

2.2.1 Clustering

Clustering is one of the most prevalent of data mining activities; as already noted the

aim is to group data into a set of categories (clusters). The grouping is accomplished by

finding similarities between data according to characteristics found in the actual data

without any prior knowledge concerning the nature of the clusters. Thus, data objects

in the same cluster should be similar to each other, while data objects in different

clusters should be dissimilar from one another. Four basic steps can be identified

within the overall clustering process [45]:

• Feature selection. Feature selection is the sub-process of finding a subset of

good features (variable subset) that are likely to form high quality clusters. The

most appropriate subset will contain the least number of dimensions and make

the highest contribution to accuracy; the remaining and unimportant attributes

are discarded. In practice the features with minimum information redundancy,

not affected by noise and easy to extract and interpret, are typically selected.

Feature selection can reduce the amount of computation and simplify the clus-

tering process. To obtain the highest degree of confidence with respect to some
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clustering result, choosing appropriate and meaningful features can greatly reduce

the burden of subsequent design and result evaluation.

• Clustering algorithm application. This step includes the specification of the

necessary parameters and cluster criterion functions and, of course, the selection

of an appropriate clustering algorithm. Recall that many different clustering

algorithms have been developed and there is no single best clustering algorithm

suited to all possible applications.

• Cluster validation. In this third step, various metrics are used to evaluate the

quality of the generated cluster configuration. A review of established metrics

used to evaluate clustering results is given in Subsection 2.2.2 below.

• Result interpretation. In many cases, end users (typically experts in the rele-

vant field) must integrate the clustering result with experimental evidence so as

to analyse the outcomes.

Clustering algorithms may be broadly categorised into two types: (i) partitional

and (ii) hierarchical. Partitional clustering algorithms generate clusters by allocating

them to a “flat” set of clusters, while hierarchical clustering algorithms iteratively

subdivide/combine a given data set into a set of clusters.

Two well-known partitional clustering algorithms are K-means [57] and K-Nearest

Neighbour (K-NN) [27]. The K-means algorithm partitions a given data set into a

user-specified set of K clusters. The algorithm operates as follows: (i) select the K

first records to define K distinct clusters (a cluster is defined according to its centroid,

which in turn is defined by the mean values of the records contained within it, if there

is only one record then that record represents the centroid); (ii) assign each remaining

record to its “closest” cluster centroids (some Euclidean distance measure is usually

used); (iii) when all records have been assigned, recalculate the cluster centroids and

reassign the records; (iv) continue in this manner until the cluster centroids become

“fixed”. The performance of K-means is strongly influenced by the value of K used

and the nature of the first K records used to define the initial centroids.

The K-NN algorithm does not require specification of a predefined number of clus-

ters; instead a user supplied threshold, τ , is used to determine nearest neighbours. The

algorithm starts with one cluster whose centroid is represented by the first record. Fur-

ther records are then added. If the “distance” between a new record and an existing

cluster centroid is less than τ the new record is placed into the appropriate existing

cluster, otherwise a new cluster is created. The chosen value of τ thus greatly influences

the number of clusters.

Hierarchical clustering groups data into a sequence of nested partitions. Hierarchi-

cal clustering can be conducted in a top-down (divisive) or a bottom-up (agglomerative)
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manner [90]. Top-down hierarchical clustering commences with a single cluster repre-

senting the entire data set which is then divided (split) into two sub-clusters. The

cluster with the largest diameter, defined as the largest distance between any pair of

records, is selected for further division. The algorithm continues until an appropriate

cluster configuration is reached (according to some given metrics) or each cluster con-

tains only one record. The bottom-up hierarchical clustering works in the reverse order.

The process starts with a number of clusters equivalent to the number of records. The

two clusters with the largest “similarity” are then combined to form a merged cluster.

The process again continues until an appropriate cluster configuration is arrived at or

all nodes are merged into a single cluster. Hierarchical clustering may involve exces-

sive computational time and storage, because the algorithms used must make many

iterations for each level in the hierarchy.

Three of the above clustering algorithms; K-means, K-NN and divisive hierarchical

clustering, were selected for the proposed of evaluating the work described later in this

thesis. Agglomerative hierarchical clustering was not selected because of its similarity

to divisive hierarchical clustering.

2.2.2 Clustering Metrics

Given a data set, any clustering algorithm can always generate a set of clusters, al-

though the quality may not be as desired. Moreover, different clustering algorithms

will produce different clustering results depending on: (i) the characteristics of the

input data sets, (ii) the presentation and ordering of records in the input data and

(iii) the input parameters used to define the nature of the desired clusters (this in turn

will be dependent on the nature of the adopted clustering algorithm). Thus, given the

above, effective evaluation standards or criteria are important to provide users with a

degree of confidence in the clustering results derived from using a particular clustering

algorithms.

Cluster configuration metrics are typically used to evaluate cluster configurations.

Clearly any such metric should be objective and have no preferences for any specific

algorithm. The available metrics can be divided into three categories: (i) external cri-

teria (supervised metrics), (ii) internal criteria (unsupervised metrics) and (iii) relative

criteria [42, 84]. External criteria metrics require pre-labelled data sets, with “known”

cluster configurations, and measure how well a given clustering technique performs

with respect to these known clusters (often referred to as “a ground-truth partition”).

On the other hand, Internal criteria metrics are used to evaluate the “goodness” of

a cluster configuration without any prior knowledge of the nature of the clusters. In-

ternal criteria metrics use only the quantities and features inherent in the data sets,

and tend to be founded on statistical methods. Relative criteria metrics are used to

compare clustering results, generated by different clustering algorithms, and so as to
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decide which of them is better. Surveys of well established metrics, with respect to the

foregoing characterisation, can be found in [42, 43].

Internal criteria metrics are typically founded on the the concepts of cluster cohe-

sion and separation [83]. Cohesion is used to measure the compactness (“tightness”)

of clusters, whilst separation is a measure of the distinctiveness of a cluster with re-

spect to other clusters. There are a number of different methods whereby cohesion and

separation can be calculated, these include: (i) density-based, (ii) graph-based and (iii)

prototype-based approaches. The density based approach evaluates the density distri-

bution within and between clusters. Using the graph-based approach the cohesion of

clusters is defined as the sum of the weights of the links among points in the cluster.

Separation is then measured by computing the sum of the weights of the links from

all points in one cluster to all points in another cluster. Using the prototype-based

approach the cohesion of a cluster is measured in terms of the sum of the weights of the

links from the prototype to points in the cluster. The separation between two clusters

may then be measured in terms of the sum of the weights of the links among the proto-

types of two clusters. This is illustrated in Figure 2.2 where an asterisk (∗) represents

a centroid of a cluster. In the context of the work described later in this thesis the

prototype (centroid or medoid) based approach has been adopted with respect to the

internal criteria metrics because it has a lower computational overhead associated with

it compared to the other two approaches.

 

Figure 2.2: (a) Prototype-based Cohesion (b) Prototype-based Separation

With respect to the work described in this thesis both external and internal criteria

were used to evaluate the “goodness” of a cluster configuration produced as a result

of the application the proposed MABC mechanisms. More specifically the F-measure,

which is an external metric, was only used with respect to the initial MADM framework

when applied to MABC. While two internal criteria metrics: (i) Within Group Average

Distance (WGAD), and (ii) Between Group Average Distance (BGAD), were used both

with respect to the initial MADM framework and the extended MADM framework

(in the context of MABC). In the context of the operation of the proposed MADM

framework, to allow the system to identify the most appropriate clustering parameter

(as described in Chapter 6), three clustering metrics were considered: (i) the Silhouette
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Coefficient (Sil. Coef.) [76], (ii) the Davies-Bouldin (DB) index [28], and (iii) the

combination of WGAD and BGAD (WGAD-BGAD). Details concerning each of these

metrics are presented in the remainder of this subsection.

The F-measure (F1 measure) is an external criteria metric and is popularly used in

the domain of Information Retrieval [85]. The metric measures how well cluster labels

match externally supplied class labels. The F-measure combines the probability that a

member of a cluster belongs to a specific partition (precision) and the extent to which a

cluster contains all objects of a specific partition (recall) [83]. Let C = {C1, C2, ..., Ck}
be a clustering result, P = {P1, P2, ..., Pk} be the ground-truth partition of the input

data set. The precision of cluster i with respect to partition j is precision(i, j) = |Ci∩
Pj|/|Ci|. The recall for cluster i with respect to partition j is defined as recall(i, j) =

|Ci ∩ Pj|/|Pj|. The F-measure for cluster i with respect to partition j is then defined

as:

Fij =
2× precision(i, j)× recall(i, j)
precision(i, j) + recall(i, j)

. (2.1)

and the overall F-measure of the cluster is calculated using:

F =
m∑
i=1

|Pi|
|P |
×max(Fij) . (2.2)

where m is the number of partitions.

Out of the two internal criteria metrics used for evaluation purposes (and used

with respect to this thesis), WGAD is used to determine cohesion [73] while BGAD

to determine separation [83]. WGAD is the sum of the average distance of a cluster

centroid, ci, to each data point (x) in the cluster. The lower the WGAD the greater the

compactness (cohesiveness) of the cluster. The WGAD of a given cluster configuration

is defined as:

WGAD =
i=K∑
i=1

∑j=Xi
j=1 dist(xj , ci)

|Xi|
. (2.3)

where K is the number of clusters and |Xi| is the number of data points in cluster i.

BGAD, in turn, is the average distance of each cluster centroid, ci, to the overall

centroid, c. The higher the BGAD of a cluster configuration the greater the separation

of the clusters from one another. The BGAD of a given cluster configuration is defined

as:

BGAD =

∑i=K
i=1 dist(ci, c)

|K|
. (2.4)

Thus, to identify a “best” cluster configuration, WGAD should be minimised and

BGAD should be maximised to achieve a best degree of cohesion and separation.
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The combination of WGAD and BGAD (WGAD-BGAD) is the difference between

a pair of WGAD and BGAD values to express the overall validity of a given cluster

configuration. This metric was derived by the author and used, later in this thesis, to

measure the “goodness” of an obtained cluster configuration.
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Figure 2.3: Derivation of the Silhouette Coefficient (Sil. Coef.)

The Silhouette Coefficient (Sil. Coef.) of a cluster configuration is a measure of both

the cohesiveness and separation of a configuration. It is determined by first calculating

the silhouette (Sil) of each individual point xj within the configuration as follows:

Sil(xj) =
b(xj)− a(xj)

max(a(xj), b(xj))
. (2.5)

where a(xj) is the average intra-cluster distance of the point xj to all other points

within its cluster, and b(xj) is the minimum of the average inter-cluster distances of

xj to all points in each other cluster (see Figure 2.3 for further clarification). The

Sil. Coef. value is then calculated as follows:

Sil. Coef. =

∑i=K
i=1

∑j=|Ci|
j=1

sil(xj)

|Ci|
K

. (2.6)

The resulting value is thus a real number between −1.0 and 1.0. If the silhouette

coefficient is close to −1, it means the cluster configuration is undesirable because the

average distance to points in the clusters, is greater than the minimum average distance

to points in the other cluster(s). The overall silhouette coefficient can thus be used to
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Figure 2.4: Derivation of the Davies-Bouldin (DB) index

measure the goodness of a cluster configuration. The larger the coefficient the better

the cluster configuration.

The Davies-Bouldin (DB) index is the sum of the maximum ratios of the intra-

cluster distances to the inter-cluster distances for each cluster i:

DB =
1

K

i=K∑
i=1

Ri . (2.7)

where Ri is the maximum of the ratios between cluster i and each other cluster j (where

1 ≤ j ≤ K and j 6= i). The lower the DB index value the better the associated cluster

configuration. The individual ratio of the intra-cluster distances to the inter-cluster

distances for cluster i with respect to cluster j is given by:

Rij =
Si − Sj
dij

. (2.8)

where dij is a distance between the centroid of cluster i and the centroid of cluster j,

and Si (Sj) is the average distance between the points within cluster i (j):

Si =
1

|Ci|

n=|Ci|∑
n=1

d(xn, ci) . (2.9)

where ci is the centroid of cluster i, and x is a point (object) within cluster i. The

derivation of DB index is illustrated in Figure 2.4.

With respect to clustering applications, cluster metrics are as important as the clus-

tering algorithms.
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2.3 Multi-Agent Data Mining (MADM)

This section presents a review of some work related to that described in this thesis. The

section commences by first considering data mining driven agents and then continues

with agent driven data mining or Multi-Agent Data Mining (MADM). The discussion

includes consideration of MADM directed at Association Rule Mining (ARM), classi-

fication and clustering; and highlights the distinctions between this previous work and

that proposed in this thesis.

As already noted, MASs provide a powerful technology for distributed, autonomous

problem solving. Given the popularity of MAS the idea of adopting MAS technology for

data mining is an attractive one. Reviews of agent mining interaction and integration

can be found in [17, 18, 19, 20]. As already noted there are two main paradigms with

respect to integration of MAS and data mining:

• Data mining-driven agents. The use within MASs of knowledge models, derived

through data mining, to enhance agent intelligence including learning/reasoning,

coordination, adaptation, planning and behaviour analysis.

• Agent-driven data mining. The utilisation of collections of agents, within some

MAS, to perform collaborative data mining tasks (referred to in this thesis using

the acronym MADM).

From the literature a number of MASs that use data mining driven agents have

been reported ([62, 58, 65]). In [62] the Agent Academy development framework was

described. Agent Academy is a MAS development framework that uses data mining

techniques to mine application specific data from which rules can be generated, which in

turn can be embedded in a rule based reasoning mechanism to drive agent behaviour. In

[58] data clustering was employed to support automated negotiation in an e-commerce

environment. The history of previous negotiations, buyers’ behaviours and strategies

were grouped in order to increase the experience of sellers to handle the negotiation

process between the buyer and the seller. There were two main phases within the

learning process: (i) the learning model generation and (ii) the use of the learning

model for the seller agent to generate an interaction strategy. In the first phase, data

clustering was used to classify buyers into clusters by considering negotiation history

information. Each cluster was then used to define a strategy by using an association

rule based technique. The knowledge generated in the first phase, was then used to

prepare for any future negotiation. In the second phase, the knowledge extracted in

the first phase, was mapped and matched to find an appropriate negotiation strategy

given a new buyer. Using this approach the seller agent was able to revise and adapt

its negotiation strategies in the light of newly gained experience. In [65] data mining

was integrated with an intelligent tutoring agent designed to provide relevant feedback
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to students using CanadarmTutor, a system used to teach astronauts how to operate

a robot manipulator aboard the International Space Station.

MADM is concerned with using MAS technology to enhance data mining processes.

Typically a collection of agents is used to perform a data mining task in an autonomous

manner. As noted earlier in this chapter, MADM allows for distributed data to be mined

effectively without the need to first move the data into a data warehouse. This offers

advantages where it is not easy or not possible for data to be first collated; for example

because of security and privacy reserving issues or because of technical issues. MADM

also supports the creation of frameworks that can be allowed to grow in an anarchic

manner such that additional agents can be easily incorporated as long as they comply

with whatever protocols have been specified [2]. However, the true power of agents

is their ability to behave in an autonomous manner and interact (negotiate) in order

to provide a solution to a problem. The proposed MADM approach described in this

thesis seeks to harness this power in the context of clustering problems. In this thesis

the acronym MABC (Multi-Agent Based Clustering) is used to refer to the application

of MADM to clustering.

From the literature there have been a number of MADM systems reported. Many of

these can be considered to be simply distributed systems founded on agent architecture

(they do not make full use of the capabilities offered by MASs). To use MAS for

Distributed Data Mining (DDM), where data sources are located at different sites, it

is necessary to develop mechanisms to achieve acceptable time and space performance.

DDM offers a way of dealing with data sets regardless of their physical locations. The

“standard” approach is to process the data at each site to produce local results which

are then combined to generate a global result. MAS technology “dovetails” nicely with

DDM because MAS is well suited to distributed problem solving. Surveys of agent-

based DDM can be found in [26, 39, 52, 63, 74]. In many of these reported cases, unlike

the approach reported in this thesis, the reported MADM systems do not use MASs to

their full potential, control tends to be centralised and very little “negotiation” (agent

interaction) takes place between agents.

An early MADM is described in [29, 30] in which a collection of agents was used

to enhanced the Knowledge Discovery in Databases (KDD) process. The system epit-

omised the high level concept of MADM whereby communities of data mining agents

perform data mining tasks. In this early system, Inductive Logic Programming (ILP)

was adopted in order to find first-order relations in data. The MADM in this case

comprised a coordinator agent designed to support coordination between agents and

provide an end user interface to allow users to interact with the system and assigning

data sources to mining agents. At the final stage, individual knowledge was generated

and integrated into a “globally coherent theory”.

Other MADM systems with similar purpose are described in [6, 71]. In [6] a MADM
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directed at geographically dispersed data, that used pattern mining technique to popu-

late a Knowledge Based (KB), is described. This KB was then used to support decision

making by end users. In [71] the AgentDiscovery system is described which comprises

a collection of agents, each associated with a phase in the KDD process including busi-

ness understanding, data understanding, data preparation, modelling, evaluation and

deployment. The added feature of the system was the ability to provide a suggestion

for the best knowledge model or the best algorithm(s) to solve a problem depending on

user preference (such as the quickest, the most accurate, the most scalable etc.). How-

ever, the above proposed approach view of MADM was that individual agents should

perform specific data mining tasks, not that a collection of agents should collaboratively

undertake such a task.

Fatta et al. [32] proposed an agent-based distributed computing system intended

for large-scale, non-dedicated and heterogeneous computing environments like Grids.

The proposed system used a load balancing policy for distributing subtasks among

the agents to reduce the communication cost and the computational overhead. More

specifically the MADM deployed frequent subgraph mining techniques, in a distributed

manner, to identified molecular structures. Two types of agents were involved in the

process: mining agents and coordinator agents. The coordinator agent, as in the case of

similar systems, is responsible for: (i) coordinating the processing of tasks, (ii) collecting

the results and (iii) providing a user interface.

Although there has been a significant amount of reported work on distributed/parallel

clustering ([8, 31, 46, 67]) there are few reported examples of MABC. What systems

there are tend to be very much founded on the established distributed or parallel ap-

proaches to clustering. Examples of early (c1990) reported MABC systems include

[49] and [8]. In [49] the PADMA (PArallel Data Mining Agents) system is described.

PADMA was broadly directed at the integration of knowledge discovery from differ-

ent sites with a minimum amount of network communication and a maximum amount

of local computation. PADMA adopted a “standard” approach to achieving MABC

founded on a hierarchical clustering model in the context of document categorisation.

The clustering was aided by what the authors term a “relevance feedback-based super-

vised learning technique”. However, the focus of their work was to present the benefits

of agent based parallel data mining (rather than MABC). In [8] a MABC system, called

Papyrus, was described that used mobile agents. The system was intended for DDM,

handling clusters and meta-clusters distributed over heterogeneous sites. In this sys-

tem mobile data mining agents were used to transport data and intermediate results

between clusters for local processing or from local sites to a central site which produced

the final result with the aim of reducing the network communication load.

In [52] two schemes for MABC, founded on the concept of kernel density estimation

based clustering (a clustering mechanism directed at the identification of dense regions
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in a given feature space) were described. The first MABC scheme adopted a “standard”

agent based approach and the second a mobile agent approach. The claimed advantage

was that by estimating the global densities from local data the communication between

agents can be minimised.

In [80] a MABC was presented for clustering environment data by comparing the

geometrical shape of each environment feature with neighbouring features. Agglom-

erative hierarchical clustering was employed to demonstrate the process. The system

incorporated two types of agent: Map Agents and Cluster Agents. A Map Agent was

responsible for controlling the entire process of clustering and managing the life cycle

of all agents and for dictating a plan to be used by the Cluster Agents. A Cluster

Agent represented a cluster of several single geometries. A two phase process was de-

scribed. In the first phase the Map and Cluster Agents were initialised and statistical

constraints concerning the input data set were calculated. In the second phase merging

or dividing of clusters, according to the constraints identified in the first phase, was

undertaken. A “happiness” threshold was used to determine the desired cluster config-

uration. Thus the Map Agent controlled the clustering process by dividing or merging,

while the Cluster Agents were responsible for performing the merging and dividing of

clusters, and calculating statistics concerning the data belonging to each cluster.

The above systems all successfully used agents to facilitate distributed data cluster-

ing (mining). However there is little reported work on agent based clustering systems

that support intra-agent negotiation in order to undertake (or refine) the desired clus-

tering, as proposed in the work described in this thesis. There has been some work

on the implementation of MABC systems that use an ensemble approach to clustering

(the combination of the results from several clustering algorithms to generate a “best”

cluster configuration). Two examples are presented in [1] and [7]. In [1] each agent is

assigned a small subset of the data and votes on which final cluster its records should

belong to. The final clustering is then generated by a global utility, but computed in a

distributed way. In [7] an MABC is proposed where a number of agents (each operating

on a subset of the input data) generated a cluster configuration (where each cluster is

defined by a “prototype”). The results are then combined, by another agent, to pro-

duce the desired best cluster configuration. These “ensemble” based MABC bear some

similarity with the system described in this thesis in that they seek to improve on a

basic cluster configuration of the form that would be generated through application of

a “stand alone” (centralised) clustering algorithm. However, the mechanisms described

in this thesis differ in that they seek to improve on a basic configuration by allowing

agents to negotiate with one another so as to improve on this basic configuration; in

this thesis the decision making concerning improving the basic cluster configurations

is distributed amongst the agents and is not assigned to a single “control” agent. The

approach proposed in this thesis is therefore quite distinct from these other approaches.
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There has been previous work that has adopted a negotiation mechanism with re-

spect to MADM systems. One example is described in [33] with respect to the classifi-

cation of bioinformatics data. Bioinformatics databases tend to be very large, therefore

the aim of this work was to divide the data into several data subsets and allow a col-

lection of agents to negotiate to produce a global classifier. A negotiation process was

used to integrate the local classifiers. There were two main types of agent involved

in the negotiation process: (i) Learning Agents and (ii) Mediator Agents. Learning

Agents were responsible for generating a local classifier and evaluating it, whereas the

Mediator Agent was responsible for controlling the communication among Learning

Agents and finalising a negotiation. The Learning Agents could use different classifica-

tion algorithms to generate their local classifiers. The final classifier was generated on

conclusion of the negotiation process. The negotiation process was described as follows:

1. The Mediator Agent asks the Learning Agents to send their overall accuracies.

2. The Learning Agent who holds the poorest overall accuracy makes a proposal

containing the first classification rule in its classifier.

3. The Mediator Agent distributes the identifies classification rule to other Learning

Agents.

4. Each Learning Agent evaluates the proposal which contains the identified clas-

sification rule and the rule accuracy, and searches for an equivalent rule with

better accuracy. An equivalent rule is one that describes the same concept and

shares at least one attribute with the original rule. If there is no equivalent rule

or no equivalent rule with better accuracy, then the agent accepts the proposal.

Otherwise, other Learning Agents who have rules with better accuracy than the

rule in the proposal, send their rules to the Mediator. The Mediator identifies

the rule that gives the best accuracy and sends the selected rule to all agents in

order to inform them of the newly accepted rule. The new rule will be marked as

an evaluated rule. The accepted rule is added in the global classifier.

5. The negotiation process is repeated until all rules have been evaluated.

Another example of the use of negotiation in MADM for classification is described

in [68]. In this case, the operational process covered two KDD phases: data preparation

and data mining. Classification was applied in the data mining phase. The proposed

framework comprised a collection of KD (Knowledge Discovery) agents. KD agents

used the same input data sets but different classification methods, therefore different

classifiers were produced. A negotiation process was then used with the aim of iden-

tifying the agent who produced the best classification with respect to a given record.

When a new record was presented for classification each agent, using its classifier, pro-

duced a set of “likelihood” values for each potential class. The authors referred to these
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values as confidence values, but these should not be confused with the confidence values

commonly used in association rule mining. If all agents agreed on a classification, no

negotiation was undertaken and this classification was selected as the class for the new

record. If there was no consensus the agents negotiated with the aim of reducing each

others’ confidence values by applying a penalty. The negotiation was conducted ac-

cording to the differences between the sensitivity values associated with each attribute

in the new record and each class, and the training mean sensitivity values associated

with the classifier belonging to an individual agent. Attributes with a high difference

indicated that a particular classification might be inaccurate, and these were used as

reasons for reducing the confidence values between agents that “disagree”. The penalty

applied was calculated according to the difference value. This process continued in a

round by round manner until all agents agreed or no further negotiation could take

place, in which case the classification with the highest confidence value was selected.

There is a clear distinction between the earlier work on MADM that featured nego-

tiation, as described above [33, 68] and the work described in this thesis. The previous

work was directed at supervised learning and it is suggested here that negotiation for

unsupervised learning is more challenging (hence the lack of reports in the literature).

Typically, unsupervised learning is more difficult and challenging problem than su-

pervised learning because in supervised learning labelled data (training patterns with

known category labels) is involved, while in unsupervised learning unlabelled data is in-

volved. In clustering the notion of a “cluster” is not precisely defined, as a consequence

many clustering methods have been developed and there is no best clustering method.

Hence, the use of negotiation in unsupervised learning to improve the quality of cluster

configurations is challenging. To summarise; the main aim of the negotiation described

in [33] was to integrate multi-classifiers, while the aim of the negotiation described in

[68] was to identify a best classifier with respect to a given data set. The negotiation

proposed in this thesis aims to improve cluster configurations.

It should also be noted in this section on MADM that the author’s first experiments

directed at MABC [22, 23], described in Chapter 3, built on some of the ideas featured

in EMADS (Extendible Multi-Agent Data Mining System) [2], a reported example of a

generic MADM system directed at classification and frequent pattern mining. EMADS

was designed to support the “organic” growth of a MADM. However, a disadvantage

of EMADS was that fixed protocols were used to achieve agent communication. Fur-

thermore EMADS did not feature the concept of intra-agent negotiation.

The author’s first MABC experiments used a collection of agents, running different

clustering algorithms to determine a best cluster configuration. Later work, described

in Chapter 4 added a negotiation capability so as to realise the full potential offered

by the use of MAS technology. The work described in this thesis is therefore distinct

from the previous work on MADM and MABC described above.
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2.4 Summary

The literature review presented in this chapter has given the essential background

knowledge underpinning the research work proposed in this thesis. A brief overview of

agents and MASs in relation to data mining activities was first presented. Intra-agent

communication was then discussed in the context of ACLs; some reasons for selecting

the JADE framework as the development toolkit for the work described in this thesis

were also discussed. A brief review of data mining, including the clustering algorithms

used for evaluation purposed later in this thesis, was then presented. The chapter was

concluded with a review of the related research on MADM and MABC that has had

an influence on the work described in this thesis; here it was noted that there have

been only a few MADM systems that used negotiation to improve data mining results

and that these were directed at supervised learning. The literature review presented in

this chapter has shown that there is little reported work on agent based systems that

support intra-agent negotiation in order to enhance data mining results, especially in

the context of MABC, which is what the work reported in the forthcoming chapters

addresses.
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Chapter 3

A Multi-Agent Data Mining
Framework

As described in Chapter 1, the aim of the research presented in this thesis is to in-

vestigate the use of MAS technology with respect to data mining and specifically data

clustering. This chapter presents a multi-agent based approach to clustering using a

generic MADM framework that harnesses the processing power of a collection of “clus-

tering” agents, to produce a “best” set of clusters given a particular clustering problem.

The motivation for the application is that there is no clear, general purpose, best clus-

tering algorithm suited to all data. It is suggested that a Multi-Agent System (MAS)

based approach provides a good solution to the generic problem of finding a best set

of clusters. The approach allows for a collection of clustering agents to collaborate to

produce a “best” cluster configuration. With reference to Chapter 1, Section 1.2, the

establishment of a MADM framework entails the resolution of a number of research

issues. The first is the nature of the operation of the desired MAS based clustering,

i.e. the structure of the MAS environment, and the coordination and communication

mechanisms to be used. The second is how to define what is meant by a “best” cluster

configuration, and how this definition may be used within a MAS framework.

To address the first issue, a Multi-Agent Data Mining (MADM) environment, was

investigated. A full description of the proposed MADM architecture is included in

this chapter. The second issue is more difficult to address. The accuracy of a set of

clusters (a cluster configuration) can of course be evaluated by comparing the derived

results with a set of known results, as in the case of supervised learning. However,

this requires provision of pre-labelled data so that a training set can be presented to

the clustering system, from which labelled clusters can be generated, which can then

be evaluated using a test set. With respect to many applications the pre-labelling of

data entails an unacceptable overhead, unsupervised learning is therefore frequently

deemed to be more desirable. However, in this chapter, for evaluation purposes both

supervised and unsupervised metrics were adopted to determine the appropriateness

of a generated cluster configuration. In the case of supervised metrics, the F-measure

34



was used; while two unsupervised measures, Within Group Average Distance (WGAD)

and Between Group Average Distance (BGAD), were considered and compared. The

main contributions of this chapter are thus as follows:

• The design of a proposed MABC framework, a generic MADM environment.

• A generic approach to multi-agent based clustering to identify a best set of clusters

using a collection of “clustering agents”.

• The use of clustering metrics to evaluate the quality of cluster configurations and

hence identify the best one.

• A comparison of two measures, WGAD and BGAD, to identify the most appro-

priate set of clusters for a given clustering problem.

Note that there are two implementations of the MADM framework used to illustrate

the investigation of the use of MAS technology with respect to MABC in this thesis. The

first implementation of the proposed MADM framework is presented in this chapter. A

second implementation of the proposed MADM framework used to support a proposed

intra-agent negotiation mechanism for cluster configuration refinement, is described in

Chapter 4.

The rest of this chapter is organised as follows. The nature of the proposed generic

framework for MADM is presented in Section 3.1. The proposed OntoDM ontology is

then presented in Subsection 3.1.1. Measures to identify a best cluster configuration for

a given data set, are considered in Section 3.3. Section 3.4 then presents a discussion

of the proposed approach, followed by some conclusions to end this chapter.

3.1 The Proposed Multi-Agent Data Mining Framework

To achieve the desired MADM functionality, the start point for the design of an appro-

priate MADM framework was the identification of the nature of the required agents.

To this end, five basic types of agent, each of which may have several sub-types, were

identified as follows:

1. User Agents: Agents that provide the interface between the end users, who wish

to conduct some data mining activity, and the MADM environment. Typically

there will be one User Agent per end user.

2. Task Agents: Agents that facilitate (manage) the performance of data mining

tasks. Three distinct sub-types of Task Agent are identified corresponding to

the three high level data mining tasks as described in Chapter 2, Section 2.2:

Association Rule Mining (ARM), Classification, and Clustering. Task Agents

are spawned by User Agents in response to an end user data mining request;
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they exist until the data mining task they are directed to coordinate, whatever

this might be, is completed. Task Agents are responsible for coordinating the

response to an end user data mining request by interacting with existing agents

within the MADM environment. Typically Task Agents do not generate a solution

themselves. They identify, using a “yellow pages” service, suitable agents who

may be able to complete a data mining task and consequently provide a solution.

3. Data Mining Agents: Agents that are responsible for performing data mining

activities and generating results to be passed back to a Task Agent. Data Mining

Agents are typically equipped with data mining algorithms. With respect to

this chapter the Data Mining Agents are equipped with various kinds clustering

algorithms.

4. Data Agents: Data Agents are the “owners” of data resources. More specifically,

Data Agents act as communication conduits to and from data resources.

5. Validation Agents: Agents that are responsible for evaluating and assessing

the “validity” of data mining results. Several different sub-types of Validation

Agent are identified, each associated with different generic data mining tasks (in

a similar manner to the sub-types identified for Task Agents): Association Rule

Mining (ARM), Classification, and Clustering. For example, in the case of a

clustering scenario Validation Agents will be able to measure the “goodness” of

a proposed cluster configuration (using, for example, the F-measure, WGAD and

BGAD metrics as described in Chapter 2, Subsection 2.2.2).

In addition to the above listed agents, some “house keeping” agents will also be

required in order to provide various facilities to maintain the operation of the proposed

framework. To evaluate the above suggested agent configuration, a demonstration

framework was implemented using the Java Agent Development Environment (JADE).

It should be noted that JADE comes with a number of house keeping agents; namely:

the AMS (Agent Management System) Agent and the DF (Directory Facilitator) Agent.

The first is used to control and manage the lifecycle of other agents in the platform, the

second provides a “lookup service” to allow agents to register their services. Thus the

lookup service allows a MADM Task Agent to identify the appropriate Data Mining,

Data and Validation Agents required to complete a given data mining task.

A typical agent configuration is given in Figure 3.1. The figure includes a User

Agent, a Task Agent, several Data Mining Agents, a Data Agent, a Validation Agent

and some house keeping agents. The directed arcs indicate communication between

agents; communication can be bidirectional or unidirectional. Note that the MADM

agent configuration given in Figure 3.1 actually describes a clustering scenario.
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Figure 3.1: Architecture of the proposed MADM system

3.1.1 OntoDM

An ontology is a particular conceptualisation of a set of concepts and relationships

between classes, properties and instances in a domain of knowledge. An ontology

consists of terms, their definitions and axioms relating them [40, 41]. Some possible

ways to describe ontologies are as follows [35]:

• A thesaurus describing the relationships between a vocabulary that represents a

set of concepts.

• A taxonomy representing how the concepts of a knowledge domain are related

using a classification based on similarities of structure.

• A detailed database schema describing the concepts (entities and attributes) and

relationships.

• A logical theory, founded on mathematical logic, that specifies the concepts and

relationships.

The benefits of the use of ontologies in the context of MAS are as follows:

• Shared understanding.

• Supporting semantic interoperability among agents.
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• Suitable for open domains.

Ontologies have proven to be a useful mechanism to help in the understanding and

the analysis of information flow among agents when attempting to describe a certain

domain. Typically, each agent in MAS carries out a specific type of tasks and services

with different aims. One agent does not perform all steps in the task. Agents may col-

laborate with different agents, using the content of messages exchanged among agents.

In order for a pair of agents to understand each other, a basic requirement is that they

speak the same language and talk about the same things. Ontologies provide a mecha-

nism for structuring the concepts, relationships and constraints contained in a specific

domain so that the description can be used by, for example, software agents, so that

the agents have a shared understanding of the domain. This shared understanding then

can be used to facilitate communication, negotiation and interaction among agents.

In closed domains, agents are able to interact to achieve their goals according to

fixed protocols with fixed participants. However, in this case, agents are unable to

deviate from expected behaviours. The use of ontologies in open and flexible systems

allow them to adapt to the participation of heterogeneous agents with different agendas.

Thus the use of ontologies provides a more flexible mode of operation for MASs (used

in open domains) than fixed protocols.

Examples of multi-agent systems that used ontologies to achieve a shared under-

standing include Ontolingua [36], InfoSleuth [10] and the work presented in [82]. On-

tolingua was a web-based service that provided a set of tools and services to support

ontology development by different groups so that the ontology could be shared. The

InfoSleuth project aimed at developing technologies to facilitate interoperation among

agent systems in a dynamic and open environment. The project built on KQML and

KIF. A common service ontology was defined in order to match an agent to the re-

quirements of a task. A matchmaking agent used this ontology to reason over agent

capabilities to recommend agents for specific tasks. The ontology provided a dictionary

of meta-information about agent capabilities, and a shared set of prescriptive conver-

sation policies to provide a structure for basic agent dialogue. In [82] the proposed

approach allowed agents to negotiate in any type of marketplace regardless of the nego-

tiation protocol. To support a wide variety of of negotiation mechanisms an ontology

was used to represent the negotiation protocol, rather than using hard-coded in the

agents.

In the context of work presented in this chapter a taxonomy, called OntoDM, was

used rather than a fully operational ontology. Intra agent messaging is conducted using

a sequence of communicative acts. A taxonomy based approach was selected because it

offers several advantages over hard coding. With respect to the Agent Communication

Language (ACL), agents are able to understand the structure of exchanged messages

and the associated performatives. However, the ACL does not support semantic inter-
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operability, hence the requirement for an taxonomy such as OntoDM. The main aim of

the use of a taxonomy based approach is to provide a pragmatic approach to the sharing

of “terms” among agents when passing parameters in agent communications concern-

ing, for example data set information, data mining techniques, required parameters or

clustering metrics.

A sample set of communicative acts, directed at clustering operations, is presented

as a context free grammar in BackusNaur form (BNF) in Table 3.1. In the table the

... notation is used to indicate that there are further alternatives not included in the

table (for ease of understanding). From Table 3.1 it can be seen that, at a high level,

an OntoDM utterance comprises one of the following:

1. A data informative, indicating a data set, coupled with a data mining request

to perform a specific data mining task with respect to that data; typically sent

by a Task Agent to a Data Mining Agent.

2. A validation request, comprising information regarding the nature of the vali-

dation and the data on which the validation is to be performed; typically sent by

a Data Mining Agent to a Validation Agent.

3. A data request typically sent by a Data Mining Agent to a Data Agent.

4. A data response informative, the response from a Data Agent to a successful

data request from a Data Mining Agent.

5. A results informative used to return results to the originating Task Agent.

6. Some form of error informative used to handle situations where agents are

unable to respond to an utterance because of some technical malfunction.

3.2 Multi-Agent Based Clustering Demonstration

The proposed MADM framework introduced above was designed to act as a platform to

support generic data mining. With reference to Figure 3.1, the desired data mining pro-

cess commences with an end user instructing his/her User Agent to perform a specific

data mining task. In the implementation of the MADM framework, this instruction

was facilitated by a GUI included as part of the User Agent. The User Agent then

spawns a specific Task Agent as directed by the end user’s instruction. The framework

is facilitated with a number of kinds of generic Task Agent. The generated Task Agent

then interacts with the house keeping agents to identify those agents that may best

contribute to the resolution of the given data mining task. This generic process is illus-

trated in Figure 3.1 where the directed arcs indicate communications between agents.
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Table 3.1: The OntoDM.

\∗ Top level utterances ∗\

< UTTERANCE > ::= < DATABASE >< TASKTY PE > | < V ALIDATION > |
| < DATA REQ > | < DATA > | < RESULTS > | < ERROR > ;

\∗ Data Informative ∗\

< DATABASE > ::= “Database” URL| “Database” URL < DATA PARAMS >;
< DATA PARAMS > ::= “All” | < FROM REC NO >< TO REC NO > |

< FROM ATT NO >< TO ATT NO > |
< FROM REC NO >< TO REC NO > |
< FROM ATT NO >< TO ATT NO > ;

\∗ Data Mining Request ∗\

< TASKTY PE > ::= < CLUSTERING > |... ;
< CLUSTERING > ::= < NAME OF ALGO >|

< NAME OF ALGO >< CLUSTERING PARAM > ;
< NAME OF ALGO > ::= “K-means”|“K-NN”|“Divisive HC” ;
< CLUSTERING PARAM > ::= int | double | double int ;

\∗ Validation Request ∗\

< V ALIDATION > ::= < UNSUPERV ISED V ALIDATION > |... ;
< UNSUPERV ISED ::= < APPROACH NAME > |
V ALIDATION > < APPROACH NAME >< V ALIDATION PARAM > ;
< APPROACH NAME > ::= “WGAD” | “BGAD” | “F-measure” | ... ;
< V ALIDATION PARAM > ::= < RESULTS > | ... ;

\∗ Data Request or Informative ∗\

< DATA REQ > ::= < DATA PARAMS > ;
< DATA > ::= array of data ;

\∗ Results Informative ∗\

< RESULTS > ::= < CLUSTER LIST OF LISTS >< ACCURACY > | ... ;
< CLUSTER LIST OF LISTS > ::= “[”< CLUSTERLIST >“]”|“[ ]” ;
< CLUSTERLIST > ::= “[”< CLUSTER >“]”| ;

“[”< CLUSTER >“]”< CLUSTERLIST > ;
< CLUSTER > ::= < RECNO >|< RECNO >< CLUSTER > ;
< RECNO > ::= int ;

\∗ Error Informative ∗\

< ERROR > ::= “null” ;

\∗ Miscellaneous ∗\

< FROM REC NO > ::= int ;
< TO REC NO > ::= int ;
< FROM ATT NO > ::= int ;
< TO ATT NO > ::= int ;
< ACCURACY > ::= double ;
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Note that in the chapter subsequent to this one various refinements to the framework,

as described in this chapter, will be suggested specifically in the context of MABC.

With respect to MABC, once the Task Agent has identified appropriate clustering

Data Mining Agents (there are a sequence of N of these in Figure 3.1) the Task Agent

requests the identified Clustering Agents to conduct the desired clustering with respect

to the indicated data. Each Clustering Agent then communicates with the appropriate

Data Agent (the Data Agent that has access to the indicated data source). As a

consequence the Data Agent passes the data back to the Clustering Agent which then

generates a set of clusters according to its specific clustering algorithm. The generated

results are then passed to the Validating Agent, which determines the most appropriate

set of clusters, according to some metrics (experiments using F-measure, WGAD and

BGAD are reported in Section 3.3), and returns the “best” configuration to the Task

Agent. The Task Agent then returns the result to the user, via the User Agent, after

which the process is ended and the Task Agent ceases to exist (but the remaining agents

persist).

This process is illustrated in Table 3.2, in terms of the agent communicative acts

presented in Table 3.1 that are used at each stage. Note that the table does not include

communication with the house keeping agents or communication from the User Agent

to the Task Agent as neither is conducted using OntoDM. Communication with house

keeping agents is as dictated by JADE. Communication from the User Agent to the

Task Agent is integral to the Task Agent spawning process.

Table 3.2: Clustering Process in Terms of the Agent Communications using OntoDM.

Step From Agent To Agent Message Content

1 Task Clustering “Database” URL “All” < NAME OF ALGO >
Agent Agent < CLUSTERING PARAM >

2 Clustering Data “All”
Agent Agent

3 Data Clustering array of data
Agent Agent

4 Clustering Validation < APPROACH NAME >
Agent Agent < CLUSTER LIST OF LISTS >

5 Validation Task < CLUSTER LIST OF LISTS >
Agent Agent < ACCURACY >

6 Task User < CLUSTER LIST OF LISTS >
Agent Agent < ACCURACY >

The above scenario has been realised, and experimented with using a JADE imple-

mentation of the proposed MADM framework. Three Clustering Agents were included,

each with a distinct clustering algorithm: (i) K-means, (ii) K-NN and (iii) Divisive

hierarchical clustering. Note that more clustering algorithms can be easily be added to

the framework (provided they subscribe to OntoDM).
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3.3 Evaluation

For evaluation purposes, a number of experiments were conducted which were designed

to analyse the operation of the proposed framework in relation to clustering activities.

More specifically, the experiments were designed to demonstrate that the proposed

MADM approach can identify a best set of clusters by using clustering metrics to

evaluate the quality of cluster configurations, and to compare a number of cluster-

ing metrics that may be used for identifying a best cluster configuration (namely the

WGAD cluster cohesion metric and the BGAD cluster separation metric).

A sequence of pre-labelled (“classification”) data sets taken from the UCI machine

learning data repository [38] were used. The data sets were all pre-labelled with class

values. Each class was considered to present a cluster. Thus the results produced using

the proposed MADM framework can be compared with the known cluster configuration.

Note that the MADM framework makes no use of these class labels when undertaking

clustering operations, they are only used here to evaluate the outcomes. To determine

the “accuracy” of any clustering operation the F-measure and the WGAD and BGAD

metrics were used. A description of the F-measure, and the WGAD and BGAD metrics,

was presented in Chapter 2 Subsection 2.2.2.

For the experiments three clustering Data Mining Agents were used, each equipped

with a different clustering algorithm: (i) K-means, (ii) K-NN or (iii) divisive hierarchical

clustering.

3.3.1 Performance Comparison of the MADM Framework When Used
For MABC

This subsection describes the results obtained from experiments used to evaluate the

performance of the proposed MADM framework when applied to MABC. With respect

to the K-means and divisive hierarchical clustering algorithms, so that the number of

desired clusters may be specified in advance, the number of classes given in the UCI

repository were used as the input (K-NN determines it own most appropriate number

of clusters). The parameter used for K-NN was a threshold, τ , used to determine

the nearest neighbour. Note that the most appropriate τ value was derived using an

“alternative approach to identifying best parameters” process as described later in this

thesis in Chapter 6.

Table 3.3 presents some statistical information regarding the data sets used for the

reported evaluation. The table gives the size of the data set (in terms of the number

of data records and attributes), the number of predefined classes and the nature of the

attributes (numerics, real, ordered, binary, nominal, integer and/or boolean).

Table 3.4 lists the results obtained using the proposed MADM approach to MABC

when applied to the ten selected data sets. The table gives the number of clusters

produced and the associated F-measure (F1), for each of the three clustering algorithms
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Table 3.3: Statistical information for the data sets used in the evaluation.

No. Data Set Num Num Num Attribute
Records(N) Attr. Classes Description

1 Breast Tissue 106 9 6 9 Numeric
2 Iris 150 4 3 4 Numeric
3 Wine 178 13 3 13 Numeric
4 Heart 270 13 2 6 Real, 1 Ordered,

3 Binary, 3 Nominal
5 Ecoli 336 7 8 7 Real
6 Blood Trans. 748 4 2 4 Integer
7 Pima Indians 768 8 2 8 Numeric
8 Ionosphere 351 34 2 2 Boolean, 32 Numeric
9 Breast Cancer 569 30 2 30 Numeric
10 Yeast 1484 8 10 8 Numeric

and the values for the required parameters (K and τ). The clustering configurations

generated by each Clustering Agent were communicated to the Validation Agent for

evaluation using the F-measure. The clustering result with the highest F1 value was

then selected by the Validation Agent and sent back to the User Agent (via the Task

Agent).

Table 3.4: The clustering results as produced by the MABC framework.

No. Data sets K-means K-NN Divisive
Num F1 τ Num F1 Num F1

Classes Classes Classes

1 Breast Tissue 6 0.43 3692.43 6 0.30 6 0.35
2 Iris 3 0.88 0.99 3 0.78 3 0.83
3 Wine 3 0.71 164.31 3 0.68 3 0.66
4 Heart 2 0.61 58.99 2 0.59 2 0.52
5 Ecoli 8 0.63 0.42 7 0.61 8 0.71
6 Blood Trans. 2 0.71 3500.83 2 0.75 2 0.67
7 Pima Indians. 2 0.64 149.08 2 0.70 2 0.58
8 Ionosphere 2 0.71 5.31 2 0.69 2 0.74
9 Breast Cancer 2 0.84 826.75 2 0.77 2 0.91
10 Yeast 10 0.42 0.34 10 0.41 10 0.43

Table 3.5 gives the best result, returned to the end user in each case (as identified

by the Validation Agent). Table 3.5 supports the observation that there is no single

best clustering algorithm, consequently supporting the motivation for the proposed

mechanism and the research described in this thesis. From the table it can also be seen

that there is no obvious link between particular clustering algorithms and the features

associated with individual data sets. The data sets presented in bold font in Table 3.5

indicate the cases where the MABC, using the proposed MADM, identified the most

appropriate clustering algorithm which provided a best set of clusters. From Table 3.5
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it can be seen that in eight of ten cases, the most appropriate clustering configuration

was identified.

Thus it can be argued that the proposed approach worked well in the majority of

cases. It is also worth noting that, in many cases, K-means and Divisive hierarchical

clustering algorithms tended to out perform K-NN.

Table 3.5: The “best” cluster result identified using the MADM framework.

No. Data sets F-Measure Best clustering algo.

1 Breast Tissue 0.43 K-means
2 Iris 0.88 K-means
3 Wine 0.71 K-means
4 Heart 0.61 K-means
5 Ecoli 0.71 Divisive
6 Blood Trans. 0.75 K-NN
7 Pima Indians. 0.70 K-NN
8 Ionosphere 0.74 Divisive
9 Breast Cancer 0.91 Divisive

10 Yeast 0.43 Divisive

Although good results were obtained using the external F1 measure, of course in

“real life” we would not know in advance what the “right” number of clusters might be.

Thus some alternative measure of cluster configuration correctness is required. With

respect to the work described in this thesis use of the internal WGAD and BGAD

measures is proposed. A comparison of these two measures is presented in the following

subsection.

3.3.2 Comparison of The WGAD and BGAD Metrics

In order to compare the WGAD and BGAD measures, so as to determine which was the

best suited to the identification of a best cluster configuration, a number of experiments

were conducted:

• Identification of the WGAD and BGAD values generated using K-means where

K is set to the known number of clusters.

• Identification of the WGAD and BGAD values generated using K-NN where τ is

set according to the known number of clusters.

• Identification of the WGAD and BGAD values generated using divisive hierar-

chical clustering and the known K value to control the decomposition.

• A comparison between WGAD and BGAD to determine which metric served to

identify the best cluster configuration in the majority of cases.
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Each is discussed in the remainder of this subsection. For the purpose of the comparison

(the fourth set of experiments), the same parameter values for K and τ used in the

earlier experiments were used. The values were dependent on the nature of the data

set. The results of the experiments, using K-means, K-NN and Divisive hierarchical

clustering, are reported in Tables 3.6 to 3.8 respectively. Note that the number of

generated classes is equal to K for K-means and divisive hierarchical clustering while

the number of generated classes for K-NN is dependent on the τ value used. Hence, the

number of generated classes is included in Table 3.7. Each row in each table includes

the clustering parameter for each clustering paradigm and the WGAD and BGAD

values. Recall that the Validation Agent uses a clustering metric to evaluate clustering

configurations generated by Clustering Agents using different clustering algorithms and

hence identify a best cluster configuration. In the case of the Validation Agent using the

WGAD metric the clustering result with the lowest WGAD value would be selected

to be sent back to the User Agent. On the other hand, the highest BGAD value is

required when using the BGAD metric. The results are reported in Table 3.9.

Table 3.6: WGAD and BGAD values using K-means.

No. Data Set K-means
normalised normalised

K WGAD BGAD

1 Breast Tissue 6 1.00 1.00
2 Iris 3 0.92 0.99
3 Wine 3 0.95 0.98
4 Heart 2 0.98 0.99
5 Ecoli 8 0.92 0.86
6 Blood Trans. 2 0.94 0.58
7 Pima Indians 2 0.90 0.67
8 Ionosphere 2 0.99 0.72
9 Breast Cancer 2 0.99 0.66
10 Yeast 10 0.78 0.67

Figure 3.2 presents the comparison of the WGAD and BGAD values produced by

K-means, K-NN and divisive hierarchical clustering using the ten UCI data sets. Table

3.9 gives a summary of the operation of MABC using the proposed framework when

the best cluster configuration is chosen by either: (i) minimising the WGAD measure,

or (ii) maximising the BGAD measure. The table lists the best performing WGAD and

BGAD values with respect to each of the considered data sets as presented in Tables

3.6 to 3.8. In each case the associated clustering algorithm that produced the best

performance according to each clustering metric is also listed. It is interesting to note,

from the table, that there is little agreement (except in the case of the Ecoli, the Y east

and the Ionosphere data sets) between the two metrics regarding the most appropriate

clustering algorithm given a specific data set.
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Table 3.7: WGAD and BGAD values using K-NN.

No. Data Set K-NN
Num normalised normalised

Classes τ WGAD BGAD

1 Breast Tissue 6 3692.43 0.90 0.98
2 Iris 3 0.99 1.00 1.00
3 Wine 3 164.31 0.96 1.00
4 Heart 2 58.99 0.99 1.00
5 Ecoli 7 0.42 0.72 1.00
6 Blood Trans. 2 3500.83 1.00 1.00
7 Pima Indians 2 149.08 1.00 1.00
8 Ionosphere 2 5.31 0.76 1.00
9 Breast Cancer 2 826.75 1.00 1.00
10 Yeast 10 0.34 0.76 1.00

Table 3.8: WGAD and BGAD values using Divisive hierarchical clustering.

No. Data Set Divisive Hierarchical Clustering
normalised normalised

K WGAD BGAD

1 Breast Tissue 6 0.89 0.96
2 Iris 3 0.98 0.96
3 Wine 3 1.00 0.86
4 Heart 2 1.00 0.92
5 Ecoli 8 1.00 0.94
6 Blood Trans. 2 0.83 0.48
7 Pima Indians 2 0.83 0.59
8 Ionosphere 2 1.00 0.68
9 Breast Cancer 2 0.99 0.61
10 Yeast 10 1.00 0.86

Table 3.9: Summary of the best WGAD and BGAD values obtained with respect to
Tables 3.6 to 3.8 and the best F-measure values obtain with respect to Table 3.4.

No. Data Set Best Best Best
clustering clustering clustering

algo.(WGAD) algo.(BGAD) algo.(F1)

1 Breast Tissue Divisive K-means K-means
2 Iris K-means K-NN K-means
3 Wine K-means K-NN K-means
4 Heart K-means K-NN K-means
5 Ecoli K-NN K-NN Divisive
6 Blood Trans. Divisive K-NN K-NN
7 Pima Indians Divisive K-NN K-NN
8 Ionosphere K-NN K-NN Divisive
9 Breast Cancer Divisive K-NN Divisive
10 Yeast K-NN K-NN Divisive
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Figure 3.2: Histograms of WGAD and BGAD produced using K-means, K-NN and
divisive hierarchical clustering algorithms.
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Table 3.10 gives the “clustering accuracy”, associated with the experiments de-

scribed in Tables 3.6 to 3.8, with respect to a “ground truth” configuration, the accu-

racy is calculated as follows:

Accuracy =

∑i=K
i=1 Ci

m
. (3.1)

Where K is the number of clusters, m is the number of total records and Ci is the size

(number of records) of the majority class for cluster i. Not that the accuracy produced

is not dependent on the “known” number of clusters (classes). Thus if a given input

data set is known to have three classes (x, y and z) and the framework produces four

clusters, the first two of which contain only examples of class x, the third contains only

examples of class y and the fourth contains only examples of class z; then an accuracy

value of 100% will be returned. Of course the “ground truth” accuracy presented in

Table 3.10 may not represent the “best” cluster configuration, however the table suffices

as a guide to what may be the most appropriate configuration. Table 3.10 also (last

column) lists the clustering algorithm used to generated the best result.

The clustering algorithms presented in bold font in Table 3.9 indicate the cases

where the MABC, using the proposed MADM approach, identified the best performing

clustering algorithm which generated a best cluster configuration. By cross referencing

between Tables 3.9 and 3.10 it can be seen that, with respect to the Blood Transfusion

and Pima Indians data sets, both WGAD and BGAD identify the best performing

clustering algorithm. For these two cases all three clustering algorithms produced a

best set of clusters according to the best accuracy result presented in Table 3.10. In

three cases (Ecoli, Y east and Ionosphere) neither of the two approaches finds the

most appropriate algorithm. From the remaining five data sets WGAD operates most

successfully in four of the five cases. An argument can therefore be made in favour of

WGAD as the most appropriate mechanism for identifying best cluster configurations.

Table 3.10: Best accuracy values produced using K-means, K-NN, and Divisive hierar-
chical clustering algorithms from Tables 3.6 to 3.8.

No. Data Set K-means K-NN Divisive HC Best clustering
Acc.(%) Acc.(%) Acc.(%) algo.

1 Breast Tissue 43 30 32 K-means
2 Iris 89 84 83 K-means
3 Wine 70 65 69 K-means
4 Heart 61 59 55 K-means
5 Ecoli 83 65 72 K-means
6 Blood Trans. 76 76 76 K-means,K-NN,Divisive
7 Pima Indians. 66 66 66 K-means,K-NN,Divisive
8 Ionosphere 71 64 74 Divisive
9 Breast Cancer 85 79 91 Divisive
10 Yeast 54 34 40 K-means
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3.4 Critique and Conclusion

In this chapter, a proposed MADM framework has been described. This was evaluated

by using it for MABC. The motivation was two fold. The first was to provide the

solution to the “best cluster configuration” problem. The second was to illustrate the

operation of MABC within the context of a generic MADM approach. To identify a

best clustering configuration the use of WGAD and BGAD was explored and compared.

The evaluation, with respect to MABC, clearly demonstrates that: (i) an MADM

framework can successfully be used to find a best cluster configuration given a number

of competing clustering algorithms and (ii) that clustering metrics (such as WGAD

and BGAD) can be used to identify a best cluster configuration. However, it may be

appropriate to consider both WGAD and BGAD together as will be demonstrated in

the next chapter.

The MADM framework proposed in this chapter represents the first attempt at

providing a generic approach to MABC. Criticism of the proposed approach can be

considered under the following two headings:

• Decentralised control

• Capabilities of agent

Decentralised control is, arguably, one of the most significant advantages offered by

MAS with respect to the data mining process where it is often necessary to process

distributed resources. In MASs, each agent is designed to achieve its delegated ob-

jectives in an independent manner (an agent does something because it wants to, not

because it has to). One criticism of the proposed MADM framework described in this

chapter is that the framework seems not to feature what might be referred to as “real

decentralised control”. Task Agents act as coordinators or facilitators with respect to

other agents in the system, the other agents have to communicate via the Task Agent.

To make agents more independent the role of the Task Agent needs to be reconsidered.

The second criticism refers to the fact that true capabilities of agents have not been

adopted, such as cooperation or negotiation. These social capabilities may offer benefits

with respect to MABC. In the set-up described in this chapter the proposed MADM

framework allows a number of clustering Data Mining Agents to perform a clustering

task using different clustering algorithms applied to the same data set. To identify a

best cluster configuration, each clustering result is evaluated by the Validation Agent.

This means that the same task (albeit in a different manner) is performed by different

agents. It would be more in the spirit of MAS if a collection of agents collaborated to

produce a best cluster configuration. These agents would interact with each other so as

to produce a best cluster configuration using a process of cooperation and negotiation.
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A criticism of the use of ontologies, such as the proposed OntoDM, is that all inter-

ested parties need to agree on the ontology to be used for a specific domain. There are

also problems when a system is intended for use across two or more domains. Although

the operation of OntoDM was perfectly adequate with respect to the proposed frame-

work it can be argued that the use of such ontologies should be avoided and replaced

with a much simpler set of “utterances” that all agents that may be incorporated into

the proposed framework subscribe to. In the following chapter a revised version of the

proposed framework is presented. The revisions are designed to address the criticisms

of control and the lack of utilisation of the full capabilities of agents featured in the

current framework, and the effectiveness of the use of ontologies such as OntoDM.
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Chapter 4

Agent Negotiation for
Multi-Agent Based Clustering

From the previous chapter, and as noted by many other practitioners, there is no single

best clustering method for all possible data sets and that the selection of appropriate

clustering parameters greatly influences clustering results. This chapter describes the

extension of the proposed Multi-Agent Data Mining (MADM) framework introduced

in the previous chapter. The most significant feature of the proposed extended MADM

framework, in the context of MABC, is that it allows agents to negotiate so as to

improve an initial cluster configuration. The revisions are designed to address the

criticisms of control and lack of utilisation of the full capabilities of agents featured

by the previous proposed framework. Thus, the extended framework allows agents

to be more independent and provides for greater agent interaction. In the revised

framework there are no coordinators or facilitators that are responsible for managing

and controlling the overall clustering process.

The extended framework encourages a two phase approach to clustering. The first

(Phase 1) comprises the application of one of a number of standard clustering tech-

niques, except in a decentralised manner. This allows a collection of agents to cooper-

ate to perform clustering tasks and then generate an initial cluster configuration. How

this is achieved depends on the nature of the clustering paradigm adopted. The second

(Phase 2) comprises a negotiation phase where agents seek to improve the initial cluster

configuration produced in Phase 1; during this phase agents interact with one another

with the aim of “swapping” records so as to improve their initial cluster configura-

tion. It is this second phase that is the most novel feature of the proposed extended

framework. The negotiation process can of course be “mimicked” within a centralised

setting, however it is much more suited to a MAS infrastructure which readily supports

the concept of negotiation. Three clustering paradigms are used to support Phase 1

to produce an initial clustering result: K-means, K-NN and divisive hierarchical clus-

tering. The rest of this chapter describes the extended MABC approach directed at

harnessing the true potential of MASs, including the negotiation mechanism used to
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improve cluster configurations. The main contributions of the work described in this

chapter can be itemised as follows:

• A more versatile MADM framework (than that described in the foregoing chap-

ter).

• A set of communication performatives to specifically support negotiation with

respect to MABC.

• A negotiation protocol whereby agents can interact with one another with the

express aim of exchanging records to improve cluster configurations.

It is this last contribution, the negotiation ability, that sets the proposed exten-

sion to the MADM framework apart from other clustering mechanisms such as dis-

tributed/parallel mechanisms. It can be argued that the proposed intra-agent negotia-

tion allows the framework to harness the true potential of Multi-Agent Systems (MASs)

rather than simply using the concept of a MAS to achieve a distributed clustering.

The remainder of this chapter is organised as follows. Section 4.1 gives an overview

of the proposed extended MADM framework. Section 4.2 describes the adopted com-

munication mechanism and details the performatives used to achieve the desired clus-

tering, including the operation of the extended MABC framework in terms of these

performatives. Section 4.3 describes the operation of the proposed extension to the ex-

tended MADM framework from an algorithmic perspective. To facilitate the complete

understanding of the extended MABC approach Section 4.4 illustrates its operation

using a simple example. Section 4.5 concludes the chapter.

4.1 The MABC framework

The extended MADM framework architecture is similar to the architecture of the pro-

posed MADM framework introduced in the previous chapter. The extended framework

again comprises the four principle categories of agent identified previously: (i) User

Agents, (ii) Data Agents, (iii) Validation Agents and (iv) Data Mining Agents. How-

ever, the architecture of the extended MADM framework described in this section differs

from that previously described in that there are no coordinators or facilitators (Task

Agents) to manage and control (clustering) tasks because of the criticism of control

as discussed in Chapter 3. Thus, the agents are more independent to carry out their

tasks.

The extended framework allows a collection of agents to cooperate to perform clus-

tering tasks and improve their cluster configurations. Hence, the Clustering Agent1

functionality is revised to achieved the desired extended framework functionality. Two

1Recall that Clustering Agents are the type of Data Mining Agent.
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main new functions of the Clustering Agents are: (i) generation of an “initial” cluster

configuration and (ii) cluster configuration refinement through a negotiation mecha-

nism.

Each Clustering Agent represents a cluster, thus a group of Clustering Agents can

be thought of as representing a clustering algorithm and a set of clusters (a clustering

result). Note that this Clustering Agent concept significantly differs from the Clustering

Agent concept presented in the previous framework in which each Clustering Agent

was equipped with a clustering algorithm and held a complete set of clusters. The

Clustering Agents are able to cooperate to generate an initial cluster configuration and

spawn additional Clustering Agents as required. The number of Clustering Agents

used for a particular clustering task depends on the nature of the adopted clustering

paradigm and the nature of the input data set.

The extended framework is designed to be used with a number of different clustering

paradigms. With respect to the thesis the framework is illustrated using the well known

K-means, K-NN and divisive hierarchical clustering paradigms. However, in each case,

these algorithms were revised so that the Clustering Agents could perform the clustering

task in a decentralised manner and cooperate to produce the final clustering result. At

the start of the process the User Agent spawns one or more Clustering Agents depending

on the adopted clustering paradigm. The Clustering Agents represent clusters. In the

case of the K-means algorithm the number of clusters is predefined; thus, by extension,

the number of Clustering Agents that will be spawned will also be predefined. In the

case of the K-NN and divisive hierarchical clustering algorithms the User Agent will

only spawn a single Clustering Agent, however Clustering Agents may spawn further

Clustering Agents as the clustering process progresses. The framework also allows

for two Clustering Agents to merge to form a single cluster (in which case one of

the Clustering Agents will “disappear”), for use in (say) conglomerative hierarchical

clustering.

To achieve the generation of an initial cluster configuration using cooperation be-

tween Clustering Agents in Phase 1, each Clustering Agent has to determine whether

each given record fits well with its cluster or not. If the record is similar to other

records in the cluster, the Clustering Agent will adopt the record and merge the record

into its cluster. The Data Agent is responsible for offering up records for adoption

by Clustering Agents thus the Data Agent also operates in a slightly different manner

so that described with respect to the original MADM framework. Note that in the

examples presented in this chapter it is assumed that a single Data Agent exists, it is

of course possible for the framework to operate using more than one Data Agent (thus

multiple data sources). The Clustering Agents then place a “bid” for the record; the

record will be assigned to the winning Clustering Agent. To win the bid, with respect

to K-means, each Clustering Agent determines the distance between the record and
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its cluster centroid. The winning Clustering Agent is then the agent which holds the

shortest distance. With respect to K-NN the bid is the nearest neighbour distance. The

record adoption process in Phase 1, using divisive hierarchical clustering differs from

the record adoption process for K-means and K-NN in that the splitting Clustering

Agent will offer up records for a new spawned Clustering Agent. Details concerning

the operation of K-means, K-NN and divisive hierarchical clustering with respect to

the extended MABC framework are presented in Section 4.3.

Figure 4.1: Schematic of initial cluster configuration using K-means.

The Clustering Agent is also able to evaluate its cluster configuration to determine

whether its cluster configuration should be refined (improved) or not. The cluster

configuration is assessed in terms of cluster cohesion and cluster separation according

to the cohesion threshold and the separation threshold. The WGAD and the BGAD

metrics are suggested for this purpose. If the initial cluster configuration is satisfactory

the process ends. Otherwise the negotiation stage is entered (Phase 2). If a Clustering

Agent finds that its cluster configuration should be refined, the Clustering Agent will

identify a set of unwanted records that do not fit well with its cluster and put them up

for adoption by other Clustering Agents. The idea of adoption in Phase 2 is independent

from the idea of adoption in Phase 1 in terms of the “bid value”. In Phase 2, the bid

value is a cluster cohesion value of a cluster belonging to the Clustering Agent which
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wishes to adopt the record. The bid is calculated assuming that the record is already

merged into its cluster. Any “unwanted” records are identified as “outliers”. As already

mention above, the framework allows two Clustering Agents to merge into a single

cluster; in this case one of Clustering Agents puts all its records up for adoption. Thus

this second Clustering Agent will have no records within its cluster and will therefore

disappear. Detail concerning the operation of the negotiation element of the process is

presented in Section 4.3.

Figure 4.2: Schematic of initial cluster configuration using either K-NN or divisive
hierarchical clustering.

Figures 4.1 and 4.2 present two possible MABC agent configurations (to facilitate

ease of understanding a Validation Agent has not been included in the figures). Figure

4.1 presents a generic K-means configuration where K Clustering Agents are spawned

at the outset. Figure 4.2 presents a generic K-NN or divisive hierarchical clustering con-

figuration where only one Clustering Agent is spawned at the outset (although further

agents may be spawned later in the process). The directed arcs indicate communication

between agents; communication can be bidirectional or unidirectional. Note that the

desired clustering may be conducted using either a single data source or a distributed

data source. Similarly, only one Clustering Agent is spawned with respect to the generic

divisive hierarchical clustering configuration (although further agents may be spawned
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later during process). Both figures assume a single Data Agent; but, as indicated by the

“grayed out” Data Agents, multiple Data Agents can be included. Note also that there

are a number of “house keeping” agents in addition to the specific MABC agents listed

above. In Chapter 2 it was noted that, with respect to the implementations conducted

to support the work presented in this thesis, the house keeping agents are provided

by the JADE framework. These house keeping agents have no direct connection with

MABC, but provide various facilities to maintain the broad operation of the MAS.

Validation Agents in the extended MABC framework are responsible for measuring

the quality of the final clustering result and sending the cluster validation value to the

User Agent. As mention above, a Clustering Agent can measure the “goodness” of

its cluster in terms of the cluster cohesion and separation using WGAD and BGAD

respectively. The overall cluster cohesion and separation can be calculated, without

reference to the Validation Agent, using communication between Clustering Agents.

For this purpose, each Clustering Agent has to communicate its cluster centroid to

all other agents. The Validation Agents are equipped with clustering metrics. Thus

after finishing an initial cluster configuration phase or during the negotiation phase, the

Clustering Agent can request the Validation Agent to evaluate its cluster configuration

using clustering metrics such as the Silhouette Coefficient (Sil. Coef.), the Davies-

Bouldin (DB) index and WGAD-BGAD. Note that for the evaluation of MABC using

the extended MADM framework, only the WGAD and the BGAD were used (this

evaluation is described in Chapter 5).

4.2 Agent Communication within the Framework

As noted in the review of agent communication presented in Chapter 2; the FIPA

ACL, that JADE comes equipped with, is rather broad and not universally applicable

to all types of dialogue that can take place within different domains. The extended

MADM framework was specifically designed for use in MABC, hence the agents in the

system should be able to communicate explicitly about their associated data clustering

activities. Whilst it may be possible to exchange the required information within the

content of FIPA ACL messages, it is desirable to make the syntax of the performatives

used by agents in the system more specific and descriptive of the particular task that

the agents are communicating about within the clustering domain. For this reason,

a set of performatives was defined and implemented in order to enable the agents to

negotiate about the suitability of moving records or merging records between clusters.

The defined set of performatives follows some of the desiderata given in [61] that the

FIPA ACL does not meet, for example “enablement of self-transformation”; the process

whereby agents can change their beliefs, preferences or intentions as a result of their

interactions with one another. To facilitate the expression of self-transformation, a

“retract” performative is included. The details of the communication language are
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Table 4.1: Performatives to support Multi-Agent Clustering System (I).

Performatives Pre-conditions Post-conditions

Simple dialogue

Mining request
(start dialogue)

An agent wishes to initi-
ate a dialogue. No dialogue
about this mining request
is open.

Receivers (Data Agents, a collec-
tion of Clustering Agents, Vali-
dation Agents, etc.) obtain min-
ing request. Subsequently, they
can either accept or refuse the re-
quest to join the dialogue.

Join dialogue The agent sending the re-
quest is not yet a partici-
pate in the dialogue. The
agent wants to join the di-
alogue to cooperate on a
clustering problem.

Sender maintains its intention to
achieve its goal. The Sender
agent is now a participant in the
dialogue.

Refuse join
dialogue

Sender has received a re-
quest to join the dialogue
to cooperate on a cluster-
ing problem and is not a
participant in the dialogue.

The Sender agent has not joined
the dialogue. A reason for the re-
fusal is sent to the initiator of the
dialogue (e.g. “I am busy right
now”).

Leave dialogue Sender is currently partici-
pating in the dialogue.

Sender has left the dialogue (re-
gardless of whether its goal has
been achieve), leaving it ready to
join other dialogues.

Close dialogue The User Agent has re-
ceived the cluster configu-
ration.

The agents have all left the dia-
logue.

presented below. The performatives used at each stage are indicated in italics.

The performatives are classified into four categories (at a high conceptual level) as

follows:

1. Holding a dialogue.

2. Performing a clustering task.

3. Negotiating about the movement of records between the clusters.

4. Informing about clustering results.

Tables 4.1, 4.2, 4.3 and 4.4 illustrate the semantics of the defined performatives,

classified into the previous categories (the performatives are split over four tables solely

for ease of presentation). The tables give the names of the performatives, the pre-

conditions and the post-conditions. The pre-conditions indicate the necessary “state”

for an agent to send a given performative. The post-conditions describe the state of the

57



Table 4.2: Performatives to support Multi-Agent Clustering System (II).

Performatives Pre-conditions Post-conditions

Clustering task dialogue

request data Receivers and Sender are
in the same dialogue. Re-
ceivers (i.e. Data Agents)
have held a data source.

Receiver has information, such as
Receiver agent name. Hence, the
Receiver knows who will obtain
its data.

Refuse sending
data

Receiver and Sender are in
the same dialogue. Sender
currently has obtained the
request data performative.
Sender wishes not to send
the data to the Receiver.

The reason for the refusal has
been sent to the Receiver.

Inform data Receivers and Sender are
in the same dialogue. Re-
ceiver does not currently
have a data.

Receivers (i.e. Clustering
Agents) have obtained a set of
items and started to perform the
clustering task.

Refuse clustering
task performing

Receiver and Sender are in
the same dialogue. Sender
currently has a data for
the clustering task. Sender
wishes not to perform clus-
tering task.

The reason for the refusal has
been sent to the Receiver.

Inform cluster
centroid

Sender holds an initial
cluster configuration and
knows its cluster centroid.
Receiver does not currently
have this cluster centroid
information.

Receiver keeps the cluster cen-
troid for cluster separation eval-
uation. Receiver checks the
number of cluster centroids. If
the Receiver obtained all of
other cluster centroids the Re-
ceiver performs cluster separa-
tion evaluation.

Refuse cluster
centroid

Receiver and Sender are in
the same dialogue. Sender
currently has knowledge of
the sender’s cluster cen-
troid. Sender wishes not to
perform cluster separation
evaluation.

The reason for the refusal has
been sent to the Receiver.
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sender after the successful utterance of a performative, and the state of the receiver after

the receiving and processing of a message. The process can be illustrated using state

transition diagrams. At the beginning of the clustering process a dialogue is opened

by an agent who wishes to initiate a dialogue. Other agents are invited to join the

dialogue (join dialogue). Meanwhile, a request for data is sent to the agent (or agents)

who holds the data source (request data). The agent holding the data source then

sends the data using the inform performative to a Clustering Agent (or a collection

of Clustering Agents) designated to perform the clustering task (inform data). The

clustering task is thus performed and the resulting initial cluster configuration generated

and evaluated for “goodness”. Each Clustering Agent transmits its cluster centroid to

the other Clustering Agents, using an inform cluster centroid performative, so that the

Clustering Agent can collectively calculate and evaluate the overall cluster separation.

The propose item move performative is then used if a Cluster Agent finds that its cluster

configuration can be improved. The recipients of an item move proposal can either

refuse or accept (refuse/accept item move). The sender agent then determines who

should receive the record (confirm item move). However, the sender agent can “change

its mind” and retract a proposed item move using retract item move performative,

the receiver has to remove the item from its cluster and the item will belong to the

sender again. This may happened given the situation where a proposing agent, after

suggesting an item move, adopts records from some other agent as a result of which

its cluster centroid is altered and consequently the initial suggested move is no longer

valid. At the end of the communication concerning cluster refinement, the Clustering

Agents inform the clustering result to the User Agent who made the initial mining

request (inform cluster). So that all eventualities are covered the set of performatives

include the option for agents refuse requests. For example, although unlikely, there may

be a situation where an agent might not send data when a data request performative

has been received. In this case, the agent has to send the reason for the refusal to the

sender agent who has requested the data using the refuse sending data performative.

The agents use the above performatives as part of a protocol that governs the ex-

change of information between the agents. To illustrate the use of the protocol, Figures

4.3 to 4.6 provide some simple state transition diagrams that show the dialogue moves

(i.e. performatives that can be uttered) by the different agents and the subsequent

choice of moves which are then available in the new state.

An User Agent establishes a dialogue by sending a mining (clustering) request as

shown in Figure 4.3. The user agent also sends the request asking agents to join the

dialogue (join dialogue), such as Data Agents, Validation Agents or Clustering Agents.

Thereafter, the agents in the same dialogue know with whom and how they will interact

and cooperate to perform some clustering task. The request data performative is sent

by the Data Agent in order to commence a clustering process. The User Agent waits
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Table 4.3: Performatives to support Multi-Agent Clustering System (III).

Performatives Pre-conditions Post-conditions

Cluster Ensemble dialogue

Propose item
move

Sender has found that its
cluster and cluster cohe-
sion and/or cluster separa-
tion could be improved.

Receiver has determined whether
a given item set would belong to
its cluster or not. After that, re-
ceiver can either accept or refuse
the proposed item move.

Refuse item move Sender has received pro-
pose item move and estab-
lished that cluster cohesion
could not be improved.

Receiver updated its information
that the Receiver is not a candi-
date for item (record) adoption.

Accept item move Sender has received pro-
pose item move and found
that its cluster and clus-
ter cohesion could be im-
proved.

Receiver has updated its infor-
mation that the Sender is a can-
didate for item (record) adop-
tion and determined which agent
would obtain the item set.

Confirm item
move

Sender has received either
accept item move or refuse
item move.

Receiver has combined a given
item set with existing items, in
the case of an “accept” (Sender
agreed that the Receiver is the
item bidding winner); or does not
perform any actions, in the case
of a “refusal”.

Retract item
move

Sender has confirmed item
move to the Receiver and
received a propose item
move from the other agent.
The receiving item fits its
cluster and the given item
also fits to its cluster.

Receiver has removed the item
from its cluster and sent reply
message for notification.
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Table 4.4: Performatives to support Multi-Agent Clustering System (IV).

Performatives Pre-conditions Post-conditions

Clustering result dialogue

Inform cluster The User Agent does not
know the result of the clus-
ter refinement. The Sender
has no further refinements
to make.

Receiver has performed a cluster
evaluation process. Cluster vali-
dation value is sent to the sender.
If all clusters have been arrived
Receiver performs overall clus-
ter evaluation process and replies
the overall cluster configuration
value to the User Agent, who ini-
tially sent the mining request.

Inform cluster
configuration

The User Agent does not
know the result of the clus-
ter refinement. The Sender
has no further refinements
to make.

Receiver (a User Agent) ob-
tains an improved cluster
configuration.

until the final clustering result is obtained and then the dialogue will be closed.

After receiving the request data performative, the Data Agent(s) will allocate the

data to associated Clustering Agents using the inform data performative and wait until

an initial cluster configuration is produced and then leave the dialogue as shown in

Figure 4.4.

The Validation Agent (Figure 4.5) will wait until a Clustering Agent sends a cluster

for determination of the “goodness” of the cluster (inform cluster). The Validation

Agent measures the cluster configuration and sends the result to the Clustering Agent

who has sent the request for cluster configuration validation. The Validation Agent

waits for another inform cluster and decides to leave the dialogue when the User Agent

receives the final clustering result as presented in Figure 4.5.

When a Clustering Agent enters a dialogue (see Figure 4.6), each Clustering Agent

waits for a record to be offered by the Data Agent, again using inform data, and then

bids for the record in order to adopt the record to its cluster. Once all the records

have been assigned, each Clustering Agent will hold an initial cluster. Each Clustering

Agent then evaluates its cluster and determines whether its cluster could be refined or

not. In the case where the cluster configuration is satisfactory, the Clustering Agent

sends the cluster to the User Agent using inform cluster. Otherwise, where the cluster

could be refined, unwanted records are identified and proposed for adoption by the other

Clustering Agents using the propose item move performative. The proposing Clustering

Agent then has to wait until an accept item move, refuse item move or retract item move

performative arrives. The proposing Clustering Agents will wait until all responses

arrive and then make a decision as to which agent to give the unwanted records to
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using confirm item move. While it is waiting, the proposing Clustering Agent may

also receive propose item move performatives from other Clustering Agents, thus the

Clustering Agent has to also consider whether any proposed record should be adopted

or not. If a record “fits” its cluster the agent uses an accept item move performative,

otherwise the refuse item move performative is used. When the Clustering Agent

receives the confirm item move performative, that allows the Clustering Agent to adopt

the record, the record will be merged into its cluster. The Clustering Agent can leave

the dialogue after its cluster has been sent to the User Agent.

  

Enter dialogue
and wait for 

clustering result 

start dialogue
(mining request)

Inform cluster configuration &
Close dialogue

Dialogue
terminated

System waiting

performative

system transaction

Figure 4.3: State transition diagram for User Agent.
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join dialogue

Data request

Leave dialogue

Inform data

Enter dialogue
and wait for

a mining request

Allocate data

Wait for another 
mining request

Exit
dialogue

System waiting

System waiting

System waiting

performative

system transaction

Figure 4.4: State transition diagram for Data Agent.
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join dialogue

Inform cluster

Leave dialogue

Enter dialogue
and wait for

inform cluster  

Cluster validation
check

Wait for another 
inform cluster

Exit
dialogue

System waiting

System waiting

System waiting

Yes/No

performative

system transaction

Figure 4.5: State transition diagram for Validation Agent.
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join dialogue

An initial cluster

Cluster validation
check

Cluster is 
satisfactory

 

Record (item)
adoption

Cluster is 
unsatisfactory

 

Exit
Dialogue

 

Propose 
item move

Wait for 
acceptance

 

Leave dialogue

Inform cluster configuration

Inform cluster

Confirm
item move

Wait for all 
reply acceptance

 

Update
the cluster

 

Inform data

Propose item move  from other cluster agents

Propose item move  from other cluster agents

Enter dialogue
and 

Wait for data 

Yes

No

Accept/refuse
Item move

System waiting

Cluster
configuration

performative

system transaction

Figure 4.6: State transition diagram for Clustering Agent.
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end 

agent 1 makes proposal 

agent 1 makes a decision 
using  “bidCohesion”    

agent 1 sends a 
proposed item to 

“outlier”   

either agent2 or agent 3 
accepts 

agent 1 accepts 

start 

agent 2 & 
agent 3 
 refuse 

agent 2 & 
agent 3 
 accept 

Figure 4.7: A simple alternating offer protocol for negotiation within MABC.

A simple alternating offer protocol for negotiation was adopted with respect to the

proposed MABC approach as shown in Figure 4.7. The negotiation participants interact

in terms of a many-to-one negotiation: that is, a single agent (agent 1) negotiates with

other agents to improve its cluster configuration. In the example given in Figure 4.7

three Clustering Agents are engaged in negotiation: agent 1, agent 2 and agent 3. The

negotiation commences when agent 1 makes a proposal to agent 2 and agent 3. Agent

2 and agent 3 receive the propose item move performative and determine, from their

clusters, whether an item move can improve their cluster configuration or not. The

accept item move performative is used when the record move can improve the agent’s

cluster configuration, while the refuse item move performative is used for refusing the

record, because if the agent merges this record into its cluster the cluster configuration

will get worse. There are three possible cases: (i) both receiving agents accept the item

move, thus agent 1 determines who will obtain the item move using “bidCohesion”,

which is the cohesion bid value used for record bidding in the negotiation phase, (ii)

only one of agents 2 and 3 accept, thus an agreement is reached amongst agents, or (iii)

both receiving agents refuse the item move (in which case the record will be designated

to be an outlier).
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4.3 Operation

The operation of the proposed extended MADM framework, in the context of MABC, is

described in this section from an algorithmic perspective (the previous section described

the operation in terms of the communication performatives used). As already noted,

the proposed MABC features a two phase mode of operation: an initial clustering

phase (Phase 1) and a negotiation phase (Phase 2). The objective of Phase 1 is to

generate an initial cluster configuration in a decentralised manner. For Phase 1, three

distinct clustering paradigms are currently supported: (i) K-means, (ii) K-NN and

(iii) divisive hierarchical clustering. Recall that the clustering paradigms were revised

to support the concept of a collection of agents that cooperates to produce an initial

cluster configuration. Note that the initial cluster configuration will be the same as

that produced using a “traditional” centralised approach. The objective of Phase 2 is

then to refine this initial cluster configuration using an intra-agent negotiation process.

4.3.1 Initial Cluster Configuration founded on the K-means Paradigm

The operation of the initial cluster configuration process with respect to the K-means

paradigm is detailed in the algorithm presented in Table 4.5. Referring to Table 4.5

and Figure 4.1, K Clustering Agents are spawned to represent the clusters (line 1).

Each Clustering Agent is then allocated a single record, by the identified Data Agent,

and this record is used to represent the initial centroid of each cluster (lines 2 to 4).

In Table 4.5, to facilitate ease of understanding, a single data source is assumed; the

process will not be that different given multiple data sources. The Data Agent(s)

will offer up records for “adoption” by Clustering Agents one-by-one. Each Clustering

Agent places a “bid” for records (lines 5 to 8). In the implementation used to evaluate

the process the bidDistance equates to the “distance” of di (di ∈ D) from the centroid

of the cluster represented by the Clustering Agent in question. The Clustering Agent

with the lowest bidDistance “wins” the record. Note that the centroid for the cluster

winning the current record is recalculated (line 9). At the end of the process the K

Clustering Agents will collectively hold an initial cluster configuration. Note that, in

common with standard K-means clustering, as the process proceeds the centroid will

tend to “move”, and thus a best cluster configuration may not be arrived at. The

“goodness” of this initial configuration will thus be very much influenced by the nature

of the first K records selected to define the initial clusters.

4.3.2 Initial Cluster Configuration founded on the K-NN Paradigm

The initial clustering phase founded on the K-NN paradigm, as noted above, commences

with a single Clustering Agent (Ci) (see Figure 4.2). The operation of this process is

presented, from an algorithmic perspective, in Table 4.6. For ease of understanding
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Table 4.5: Initial cluster configuration phase using the K-means paradigm.

Phase I: An initial cluster configuration phase using K-means

Input: Dataset (D = {d1, d2, ..., dn}), the desired number of clusters (K)
Output: An initial clustering configuration (C = {c1, c2, ..., cK})
1. User Agent spawns K Clustering Agents (C = {c1, c2, ..., cK})
2. Each Clustering Agent sends a data request to the indicated Data Agent
3. Data Agent sends first K records ({d1, d2, · · · , dK}) to the K Clustering Agents;

d1 to c1, d2 to c2, and so on.
4. Each Clustering Agent calculates its cluster centroid
5. ∀di ∈ D (i = K + 1 to n)
6. ∀cj ∈ K (j = 1 to K)
7. bidDistance = di − centroid cj
8. Allocate di to cj so as to minimise bidDistance
9. Recalculate centroid for cj

Table 4.6 again assumes a single data source, however the process can easily be extended

to operate with multiple data sources (as suggested in Figure 4.2). The Data Agent will

put records up for adoption by Clustering Agents. In this case, the winning agent is the

agent that holds the “nearest neighbour” to the current record provided that the closest

distance is less than a predefined nearest neighbour threshold parameter, τ ; this is to

prevent “outliers” from being associated with their “closest” cluster. If the bidDistance

is less than the threshold, the record in question is allocated to the “closest” cluster

(line 6). If there is no “closest” cluster a new Cluster Agent is spawned (line 7). The

record is assigned to the newly created Clustering Agent which will continue to operate

in an entirely independent manner to the Clustering Agent that created it.

Note that the chosen value of τ can significantly affect the number of Clustering

Agents that are spawned. The author proposes in Chapter 6 a method, in the context

of MABC, to identify the most appropriate value for τ where a number experiments

were conducted with respect to a number of cluster validation techniques to identify

the optimum parameters for clustering algorithms. In Chapter 6 the desired final

configuration was generated using a sequence of parameter values to produce a collection

of cluster configurations from which the most appropriate was selected. These reported

experiments clearly demonstrated that there was no single “best” value for τ . From the

experiments it was also clear there were many factors that influence the choice of the

best value for τ , such as the nature of the data set size, distribution of values, number

of potential clusters and so on; consequently it was not possible to identify specific

correlations between τ values and the nature of the data set. However, for evaluation

purposes (see Chapter 5) values for τ were selected so as to provide correlations with

the “ground truth” number of clusters.
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Table 4.6: Initial cluster configuration phase using the K-NN Clustering Paradigm

Phase I: An initial cluster configuration phase using K-NN

Input: Dataset (D = {d1, d2, ..., dn}), threshold τ
Output: An initial clustering configuration (C = {c1, c2, ..., cK})
1. User Agent spawns a single Clustering Agent (c1)
2. K = 1
3. ∀di ∈ D (i = 2 to n)
4. ∀cj ∈ K (j = 1 to K)
5. bidDistance = nearest neighbour to di
6. IF ∃cj ∈ C such that bidDistance < τ , allocate di to cj so as to minimise

bidDistance
7. ELSE K = K + 1, spawn Clustering Agent cK , allocate di to cK

4.3.3 Initial Cluster Configuration founded on the divisive hierarchi-
cal clustering Paradigm

In the case of the divisive hierarchical clustering paradigm, the Divisive Analysis (DI-

ANA) algorithm was adopted to generate the initial cluster configuration. The DIANA

algorithm is one of the most well-know divisive hierarchical clustering algorithms [50].

The algorithm as extended for use in the context of MABC is presented in Table 4.7. As

noted above, the splitting Clustering Agent will offer up a set of records to be adopted

by the newly spawned Cluster Agent. A “bid” system is not used in this case. The

process commences with the entire data set loaded into a single Clustering Agent (line

4 and 5). The dividing process repeats until each cluster cohesion value is less than a

given cohesion threshold. In each round, Clustering Agents calculate their cluster cohe-

sion values. The Clustering Agent that holds the cluster containing the longest distance

between two records is selected to be divided (split); the longest distance between any

two of its records represents the largest dissimilarity (line 7 and line 8). To divide the

selected cluster, the Cluster Agent looks for its most disparate record which has the

largest average dissimilarity to the other records of the selected cluster (line 10). This

record is used to initiate a new sub-cluster (line 12). In subsequent steps, the algorithm

reassigns (offers up for adoption) records that are closer to the new sub-cluster than

the old cluster (line 14 to 24). The result is a division of the selected cluster into two

sub-clusters (A and B). In order to assign a record to the new sub-cluster (B), the Clus-

tering Agent determines the difference between the average intra-distance, which is the

average distance between the record and the other records in the same cluster, and the

average inter-distance which is the average distance that the record is far from records

in the other clusters (line 16). If the difference value is more than 0 then the record is

closer to the outer records in other clusters than the records in the same cluster, thus

the record is assigned to the new sub-cluster B (line 17-23). The Clustering Agent then

keeps the largest sub-cluster containing the majority of records and spawns a second
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Clustering Agent to which the smaller sub-cluster is allocated. The process continues

until all cluster cohesion values are less than the cohesion threshold value.

There is no standard cohesion threshold value, the most appropriate threshold for

a particular data set is usually derived experimentally by the user. For the conducted

experiments described in Chapter 5, cohesion thresholds were used and calculated to

give results according to the expected number of clusters (K).

Note that the algorithm presented in Table 4.7 uses the distance between a record

(data object) xi and a cluster Ck to determine similarity. The distance is defined as

[16]:

D(xi, Ck) =

{
1

|Ck|−1
∑

xj∈Ck,j 6=i dist(xi, xj) , xi ∈ Ck
1
|Ck|

∑
xj∈Ck

dist(xi, xj) , xi /∈ Ck
(4.1)

|Ck| is the number of records in cluster Ck.

4.3.4 Negotiation (Refinement) Phase

The negotiation process is presented in Table 4.8 and illustrated in Figure 4.11. At

the end of Phase 1 the extended MABC framework will have produced an initial clus-

ter configuration. Each Clustering Agent must then evaluate its cluster cohesion and

calculate the overall cluster separation so as to determine whether its cluster, in its cur-

rent form, should be improved or not. If the cluster should be improve, the Clustering

Agent will engage in the negotiation process (Phase 2).

During the negotiation process individual Clustering Agents identify records that

do not fit well with their cluster definition and put them up for “adoption” by other

Clustering Agents. At the same time individual Clustering Agents will “bid” for records

put up for adoption by other Clustering Agents. It is this negotiation phase that sets

the proposed extended MADM framework apart from the basic MADM framework

described in Chapter 3. Clustering Agents select records to be put up for adoption

according to their cluster cohesion and the overall cluster separation. The overall aim

is to minimise the cluster cohesion value and maximise the cluster separation value.

Cluster cohesion (the compactness of a cluster) can be determined, by each Clus-

tering Agent, simply by considering the distance between the members of its cluster.

In order to determine the degree of separation (the distinctiveness of each cluster with

respect to each other cluster) agents must communicate with one another to obtain

cluster centroids. With respect to the framework described in this Chapter, the Within

Group Average Distance (WGAD) and the Between Group Average Distance (BGAD)

metrics were adopted to determine cluster cohesion and separation respectively, as de-

scribed in Chapter 2.

There are three main activities in the process: splitting, moving and merging.

With reference to Table 4.8 the negotiation phase commences (lines 1 and 2) with each
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Table 4.7: Initial cluster configuration phase using the divisive hierarchical clustering
paradigm.

Phase I: Initial cluster configuration phase using divisive hierarchical clustering

Input: Dataset (D = {d1, d2, ..., dn}), the cohesion threshold
Output: An initial clustering configuration (C = {c1, c2, ..., cK})
1. User Agent spawns a single Clustering Agent (c1)
2. K = 1
3. C = {c1}
4. ∀di ∈ D (i = 1 to n)
5. Allocate di to c1
6. DO WHILE there exists cluster cohesion value > cohesion threshold
7. ∀ci ∈ C (i = 1 to K)
8. A = the cluster containing two records with the longest distance.
9. B = ∅
10. xi = the record in A with maximum D(xi, A)
11. A = A−{xi}
12. B = B∪{xi}
13. split = true
14. DO WHILE split = true
15. ∀xj ∈ A (j = 1 to |A|)
16. e(j) = D(xj , A)−D(xj , B)
17. IF ∃e(j) > 0
18. xk = the record in A with maximum e(j)
19. A = A−{xk}
20. B = B∪{xk}
21. split = true
22. ELSE
23. split = false
24. END DO WHILE
25. K = K + 1
26. A Clustering Agent is spawned. (C = C ∪ {cK})
27. IF |A| > |B|
27. ∀xi ∈ B (i = 1 to |B|)
28. Allocate xi to cK
29. ELSE
30. ∀xi ∈ A (i = 1 to |A|)
31. Allocate xi to cK
32. ∀ci ∈ C (i = 1 to |C|)
33. Calculate the cluster cohesion
34. END DO WHILE
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Clustering Agent, ci, determining its own cluster cohesion value, WGADi. The com-

plete set of Clustering Agents then collectively determine an average cohesion value,

AveWGAD, and an overall BGAD separation value (lines 3 and 4 respectively). Two

threshold values were also used, a cohesion threshold (WGADthold) and a separation

threshold (BGADthold), to determine whether the current cluster configuration is sat-

isfactory or not. The threshold values are calculated on line 5 and 6. The factors, p

and q, are used to calculate the target WGAD (the cohesion threshold) and the target

BGAD value (the separation threshold). A loop is then entered where the process

repeatedly attempts to move unwanted records until either the overall cluster config-

uration cohesion and separation is within the identified thresholds or no more records

can be moved. For each Clustering Agent the process first determines whether its lo-

cal WGAD value, WGADi, is below the WGAD threshold, if so there is no need to

attempt to move any records. Otherwise (line 10) the Clustering Agent will split the

cluster into two sub-clusters, Cmajor and Cminor using the K-means algorithm (with

K set to 2). The Cmajor sub-cluster contains the majority of records while the Cminor

sub-cluster holds the smaller number of records. Note that this splitting process is

entirely independent from the K-means algorithm that may be adopted in Phase 1.

Records in Cminor are then put up for adoption. So as to limit the communication

overhead, Clustering Agents identify themselves as potential “adopters” using individ-

ual BGAD values (distance between their cluster centroids). Clustering Agents whose

BGAD values are less than the BGADthold threshold value then bid for the records.

The Clustering Agents determine whether records should belong to their clusters or not

using the distance between their centroids and the individual records put up for adop-

tion, distancejk (lines 15 and 16). The cluster cohesion value (bidCohesion) is used

for the record bidding. The Clustering Agents consider the records that have been

placed up for adoption one-by-one, the bidCohesion value is calculated by assuming

that the record is merged to their cluster. Thus, the magnitude of the bidCohesion

value depends on the foregoing records. The Clustering Agents are then ranked accord-

ing to their individual distancejk to determine the “winning” Clustering Agent. Then

bidCohesion value is calculated in lines 17 to 20. Each Clustering Agent will bid for the

records where bidCohesion < WGADthold, otherwise the records are refused. Again

the Clustering Agent with the lowest bidCohesion wins the record. In cases where two

(or more) Clustering Agents make the same offer, the “winner” is randomly selected. If

there are no Clustering Agents willing to bid, or no bidCohesion is received below the

threshold, the record is moved to an outlier cluster (line 18). This process repeats until

either satisfactory cohesion and separation values are reached or no more records can

be moved. A “timeout” has been included to avoid extensive processing and potential

deadlocks occurring during the process.
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Table 4.8: Algorithm for negotiation phase: moving, splitting, and merging

Algorithm Phase II: Negotiation

Input: a set of clusters (C = {c1, c2, ..., cK})
Output: an improved clustering result

1. ∀ci ∈ C (i = 1 to K)
2. Calculate WGADi

3. Calculate overall AveWGAD value
4. Calculate overall BGAD value
5. Global WGADthold = AveWGAD × p
6. Global BGADthold = BGAD × q
7. DO WHILE there exists cluster cohesion value > cohesion threshold

or cluster separation value < separation threshold
8. ∀ci ∈ C (i = 1 to K)
9. IF WGADi > WGADthold
10. Split a cluster ci into two sub-clusters, cmajor and cminor using K-means

using K = 2
11. ∀cj ∈ C (j = 1 to K and j 6= i)
13. Calculate BGADij

14. IF BGADij < BGADthold
15. ∀d ∈ cminor (k = 1 to |cminor|)
16. Calculate distancejk
17. ∀d ∈ cminor are listed in ascending order of distance
18. ∀d ∈ cminor (k = 1 to |cminor|)
19. Calculate WGADjk

20. bidCohesion = WGADjk
21. IF bidCohesion < WGADthold and bidCohesion is minimum
22. add d to cluster j
23. ELSE Allocate d to “outlier cluster”
24. IF no records have been reallocated, EXIT
25. END DO WHILE
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4.4 Multi-Agent Clustering Example

To illustrate the operation of the proposed extended MABC framework this section

presents a simple worked example. The example is designed to illustrate the complete

functionality of the proposed extended MABC framework. Recall that, with respect to

the implementation of the extended framework, in Phase 1, three clustering paradigms:

(i) K-means, (ii) K-NN and (iii) divisive hierarchical clustering may be used to generate

an initial cluster configuration. The generation of the initial cluster configuration, using

each of these example paradigms, is therefore discussed in Subsections 4.4.1, 4.4.2 and

4.4.3 below. The negotiation phase is the same regardless of which paradigm is used,

and is considered in Subsection 4.4.4.

4.4.1 Multi-Agent Clustering Example using K-means

With respect to the K-means paradigm, the data set as held by the Data Agent, is

presented in Figure 4.8(a). It is assumed that K = 3, thus the process commences

with the spawning of three Clustering Agents (Figure 4.8(b)), one per cluster. Each

Clustering Agent obtains a record from the Data Agent and uses this record to define

its initial cluster centroid. The agents then bid for the remaining nine records (Figure

4.8(c)). At the end of the process each clustering agent holds a cluster, collectively the

agents hold an initial cluster configuration (Figure 4.8(d)).

4.4.2 Multi-Agent Clustering Example using K-NN

The operation of the initial cluster configuration process with respect to the K-NN

paradigm is illustrated in Figure 4.9. Recall that the process requires a threshold, τ , to

determine the nearest neighbour. The data set given in Figure 4.8(a) is again used. A

single Clustering Agent is spawned in the first step (Figure 4.9(a)) and the first record

held by the Data Agent is assigned to this Clustering Agent. The Clustering Agent

then “bids” for the next record, d2. The bidDistance is defined in terms of the nearest

neighbour value connecting record d1 to d2. In the example it is assumed that the

bidDistance is greater than τ , thus a new Clustering Agent is spawned (Figure 4.9(b)).

Both Clustering Agents then bid for the record d3. The example again assumes that

both bidDistances are greater than τ , and thus a third Clustering Agent is spawned

(Figure 4.9(c)). The agents then continue to bid for the remaining eight records (Fig-

ure 4.9(d)). In the example no more Clustering Agents are spawned, all the remaining

records are assigned to one of the existing Clustering Agents so far. The initial cluster-

ing configuration arrived at is then as shown in Figure 4.9(c). Note that for illustrative

purposes, it was assumed that a slightly different configuration is arrived at than when

using the K-means paradigm (Figure 4.9(d)).
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Figure 4.8: Example of initial cluster configuration generation using K-means.
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4.4.3 Multi-Agent Clustering Example using divisive hierarchical clus-
tering

The operation of the initial cluster configuration process with respect to the divisive

hierarchical clustering paradigm is illustrated in Figure 4.10. Recall that the process

requires a cohesion threshold to determine a cluster configuration (alternatively, as

noted previously and as used with respect to the evaluation reported later in this

thesis, a K value can be used). If the cluster cohesion of each cluster belonging to each

Clustering Agent is less than the cohesion threshold, the splitting process is terminated.

The data set, as held by the Data Agent, is presented in Figure 4.10(a). A single

Clustering Agent is spawned in the first step, Figure 4.10(b) and the entire data set

held by the Data Agent is assigned to this Clustering Agent.

The Clustering Agent determines the longest distance between a pair of records in

its cluster and broadcasts this to other Clustering Agents in order to identify the agent

whose cluster is to be split. In this step, Figure 4.10(b), there is only Clustering Agent

1, thus Clustering Agent 1 holds the longest distance (the distance between d1 and d3).

Clustering Agent 1 identifies its most disparate record (d1 has the maximum average

distance from other records in the same cluster) to be the seed for the new sub-cluster.

Two temporary sub-clusters are therefore formed {d3, d4, d5, d6, d9, d12} and {d1, d2,
d7, d8, d10, d11}. Clustering Agent 1 then spawns a new Clustering Agent and assigns

the smaller of the temporary sub-clusters to this new Clustering Agent, keeping the

largest sub-set for itself.

Again, each Clustering Agent determines its cluster cohesion. If the cluster cohesion

is not less than the cohesion threshold, the process repeats. Note that each Clustering

Agent has to inform its longest distance between any two of its records to the other

agents in order to determine who will perform the splitting. In the example, Clustering

Agent 2 now holds the longest distance between d4 and d6. Thus, a new sub-cluster

is created holding d4. Record d5 is placed into the new sub-cluster because it is closer

to d4 than other records in the same cluster. No other records are close to d4, thus

a new Clustering Agent is spawned and the new sub-cluster is assigned to the new

Clustering Agent, Clustering Agent 3 (Figure 4.10(d)). In Figure 4.10(e), Clustering

Agent 1 holds the longest distance and thus record d2 is selected as its most separate

record. There is no record close to record d2. The agent spawns Cluster Agent 4 and

assigns the sub-cluster to Clustering Agent 4. The process is now complete because

it is assumed that each cluster cohesion is less than the cluster threshold. The initial

cluster configuration is then as in Figure 4.10(f).

4.4.4 Multi-Agent Clustering Example: Negotiation Phase

Figure 4.11 illustrates the refinement (negotiation) process using the initial cluster

configurations generated using the K-means paradigm (Figure 4.11(a)). The process
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commences with each agent determining its cluster cohesion (WGAD) and cluster sep-

aration (BGAD) values. Next the overall cohesion threshold (WGADthold) and the

desired separation threshold (BGADthold) are determined and used to assess the ini-

tial cluster configuration. In the example, the cluster held by Clustering Agent 2 meets

the cohesion and separation threshold requirements and is sent to the Validation Agent

(Figure 4.11(b)). Clustering Agent 2 therefore plays no part in the refinement process.

On the other hand, in the example, the clusters held by Clustering Agents 1 and 3 do

not meet the cohesion and separation requirements. The agents therefore each split

their clusters into two sub-clusters: a major sub-cluster and a minor sub-cluster (Fig-

ure 4.11(c)). The minor cluster associated with Clustering Agent 1 holds d12, and that

associated with Clustering Agent 3 holds d3. These two records are then put up for

adoption (Figure 4.11(d)). In the example the bid for d3 is rejected, whilst the bid for

d12 is accepted (Figure 4.11(e)). Record d12 is therefore moved from Clustering Agent

1 to Clustering Agent 2 (Figure 4.11(f)); and record d3 is placed in the outlier class.

The process is now complete and Clustering Agents 1 and 3 now also pass their clusters

to the Validation Agent (Figure 4.11(g)). Note that the final configuration is then as

shown in Figure 4.11(h).

4.5 Conclusions

The extension of the proposed MADM framework introduced in Chapter 3 has been

described. The main features of this extension, in the context of MABC, can be sum-

marised as follows:

• The extended framework supports a two phase approach to MABC; an initial

clustering phase and a negotiation phase.

• Clustering Agent functionality was revised so that each Clustering Agent rep-

resented a cluster, thus a collection of Clustering Agents can be thought of as

representing a clustering algorithm and a set of clusters. The Clustering Agents

were designed to cooperate to produce an initial cluster configuration. Conse-

quently, the adopted clustering paradigms founded on the K-means, K-NN and

divisive hierarchical clustering were revised in order to produce the desired initial

cluster configuration (in a decentralised manner).

• Agents are more independent to perform their tasks, for example agents are free

to decide whether they want to take part in the negotiation process or not. In

addition, there were no coordinators or facilitators for managing and controlling

clustering tasks.

• The negotiation mechanism whereby agents were able to improve on an initial

cluster configuration, is the most significant feature. The negotiation process
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allowed agents to negotiate regarding the exchange of records so that the initial

cluster configuration can be enhanced.

• A set of communicative performatives, as a part of a negotiation protocol, has

been proposed to encourage the negotiation mechanism by allowing agents to

interact with one another with the express aim of exchanging records to improve

an initial cluster configuration.

The following chapter provides a detailed assessment, founded on a number of ex-

periments, of the negotiation mechanism that has been incorporated into the extended

MADM framework with respect to MABC.
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Chapter 5

Evaluation and Analysis

The foregoing Chapter 4 described an extension to the initial MADM framework intro-

duced in Chapter 3 (recall that it was conjectured that the initial framework did not

feature the full potential of MASs). The significant feature of the extended framework

was that it adopted a two phase approach to clustering. Phase one was similar to es-

tablished centralised clustering approaches. The only difference resided in the fact that

Phase 1 was conducted in a decentralised manner by means of agent messaging. Each

Clustering Agent represented a cluster and cooperated with other Clustering Agents

to produce an initial cluster configuration. Phase two comprised the most significant

element of the proposed framework, featuring a negotiation phase whereby agents in-

teracted with one another and swapped unwanted records to improve an initial cluster

configuration produced in Phase 1.

This chapter presents the evaluation of the extended MADM framework in con-

text of MABC, and especially the negotiation mechanism that is incorporated into this

framework. The reported evaluation is founded on a number of experiments. The

experiments were designed to demonstrate that a multi-agent based approach to clus-

tering, and more specifically the extended MADM approach, can significantly improve

the quality of cluster configurations. The reported analysis was again conducted using

benchmark UCI data sets and the welfare benefits data used as an exemplar applica-

tion. The welfare benefits monitoring application was selected because the vision of

MABC proposed in this thesis typically operates using geographically distributed data

sets which, for a variety of reasons, cannot be readily combined into a single “data ware-

house”. As will become clear, adoption of the extended MABC facilitates decentralised

benefits monitoring in that it allows for the identification of anomalies and “outliers”

without requiring data to be combined into a single warehouse (thereby infringing data

protection requirements).
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5.1 MABC Accuracy and Runtime Comparison

To evaluate the proposed approach described in Chapter 4, a number of experiments

were conducted and designed to analyse the operation of both phases of the proposed

extended MADM framework. Recall that during Phase 1, an initial cluster configura-

tion, was determined, whereby a collection of agents cooperate to generate an initial

cluster configuration (in a decentralised manner). How this is achieved depends on the

nature of the clustering approach adopted. Three clustering approaches (founded on

the K-means, K-NN and divisive hierarchical clustering) were considered for the pro-

posed extended MABC framework. Note that the clustering paradigms were revised

to support clustering in a decentralise manner. Recall also that during Phase 2, ne-

gotiation, the collection of agents negotiate to improve the initial cluster configuration

produced in Phase 1 by swapping unwanted records that do not fit well with their

clusters definition (records are put up for “adoption” by other agents).

As already noted in the introduction to this chapter, a number of experiments were

conducted using a selection of data sets taken from the UCI machine learning repos-

itory, and a fictional housing benefits data set. Some statistics concerning the UCI

data were presented in Table 3.3 in Chapter 3. The benefits data set was used because

it represented an exemplar domain for the application of the MABC framework (as

discussed in Section 1.1). The benefits data set comprised 8000 benefits records detail-

ing applications for an artificial Retired Persons Housing Allowance (RPHA). RPHA

is payable to persons who are of retirement age, whose housing costs exceed one fifth

of their available income and whose capital is inadequate to meet their housing costs.

Such persons should also be resident in the UK or absent only by virtue of “service to

the nation” (for example, the armed forces), and should have an established connection

with the UK labour force. The data comprised four classes: (i) Entitled, applicant is

eligible to full RPHA allowance; (ii) Entitled with Priority, applicant is entitled to full

RPHA allowance with priority; (iii) Partial Entitled, applicant is entitled but with a

lower rate of benefits, and (iv) Not Entitled. Although fictional, the Housing Benefits

data set uses conditions typically found in welfare benefits legislation. It has previously

been used with respect to several AI and Law applications. Its usage was first reported

in [15] and subsequently in [14, 48, 64, 86, 87]. The data was originally generated using

a LISP program and comprised just two clusters: entitled and not entitled. The work

reported in [88] later grouped the data into the four clusters listed above and used with

respect to the evaluation reported in this chapter.

The operation of the extended MABC framework was evaluated by comparing its

operation with and without the inclusion of Phase 2 (the negotiation phase) and with

equivalent centralised clustering techniques. With respect to the K-means paradigm,

the number of desired clusters, K, must be pre-specified in order that MABC can spawn

the appropriate number of Clustering Agents. The number of known clusters was used
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for this purpose. The K-NN paradigm required a threshold, τ , to determine “nearness”,

a τ value providing the closest number of clusters to the known number of clusters was

therefore selected. This value was determined using the method described in Chapter 6.

With respect to divisive hierarchical clustering, a cohesion threshold value was required

to control the splitting process (controlling the number of generated clusters). How-

ever, there is no standard cohesion threshold value, the most appropriate threshold for

a particular data set is usually derived experimentally by the user. For the conducted

experiments, cohesion thresholds were used to give results according to the expected

number of clusters. For the reported experiments, as described in this Section, a thresh-

old value was adopted equivalent to the cohesion threshold generated as a result of the

application of Phase 1 when using the decentralised K-means paradigm. The cohesion

value for the cluster that featured the least cohesion (compactness) was selected as the

cohesion threshold value to be used for the divisive hierarchical clustering.

In the context of the extended MABC framework, the Within Group Average Dis-

tance (WGAD) metric has been adopted to measure intra-cluster cohesion (compact-

ness), and the Between Group Average Distance (BGAD) metric to measure inter-

cluster separation. These metrics were described in detail in Chapter 2. To obtain a

good cluster configuration WGAD should be minimised and BGAD should be max-

imised. With respect to the operation of the mechanism supported by the proposed

extended framework, the target WGAD value (the cohesion threshold), is the average

WGAD across the identified set of clusters, in the initial cluster configuration (Phase

1), multiplied by a factor p (0 < p < 1.0). The target BGAD value (the separation

threshold), is the BGAD value for the initial cluster configuration multiplied by a fac-

tor q (1.0 < q < 2.0). Experiments, described in this chapter, indicated that values

of p = 0.8 and q = 1.2 tend to produce the most effective results. The reason for this

was that it is desirable to choose a factor p value that makes the cohesion threshold

smaller than the existing overall cluster cohesion, and likewise a factor q value that

makes the separation threshold larger than the existing overall cluster separation. In

each case the cluster configuration accuracy was calculated using the same equation as

the accuracy measure given earlier in equation 3.1.

Tables 5.1, 5.2 and 5.3 give the clustering results obtained using the UCI data sets,

with and without the application of the negotiation phase (Phase 2), with respect to

the three clustering paradigms (K-means, K-NN and divisive hierarchical clustering)

supported by the extended MABC framework. Recall that the “goodness” of a cluster

configuration using standard K-means clustering is much influenced by the nature of

the records which are assigned as the initial cluster centroids. With respect to the K-

means algorithm used in the MABC framework presented in Chapter 4, the centroids of

clusters was fixed using K selected records as the initial centroids, hence accuracy values

obtained by using one agent to perform the clustering task and manage all clusters
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Table 5.1: Accuracies obtained using the K-means paradigm with and without appli-
cation of the negotiation phase (UCI data).

No. Data Set Num % Acc. % Acc. % Acc. WGAD BGAD
Classes using Phase I Phase II thold. thold.

one agent

1 Breast tissue 6 43 45 48 2694.15 16852.20
2 Iris 3 89 89 97 1.41 2.03
3 Wine 3 70 68 70 204.95 296.73
4 Heart 2 59 55 59 33.87 106.28
5 Ecoli 8 76 76 80 0.42 0.54
6 Blood Trans. 2 76 76 76 934.54 3363.15
7 Pima Indians 2 66 65 66 65.08 290.60
8 Ionosphere 2 71 64 75 5.36 3.68
9 Breast cancer 3 85 79 85 283.16 1729.93
10 Yeast 10 46 46 53 0.38 0.51

(accuracy recorded in column 4 of Table 5.1), were calculated using the first K records

as the initial centroids rather than using K random as presented in Table 3.10 (column

3). In the tables the values in bold indicate where the cluster configurations were

improved. From the tables, it can be seen that in the majority of cases the application

of agent negotiation, Phase 2, serves to enhance the initial cluster configuration.

Table 5.2: Accuracies obtained using the K-NN paradigm with and without application
of the negotiation phase (UCI data).

No. Data Set Num % Acc. % Acc. % Acc. WGAD BGAD
Classes using Phase I Phase II thold. thold.

one agent

1 Breast tissue 6 30 30 37 2301.66 76376.58
2 Iris 4 84 84 92 1.90 1.93
3 Wine 3 65 65 66 281.49 282.98
4 Heart 2 59 55 61 21.96 62.51
5 Ecoli 7 65 64 67 0.38 0.26
6 Blood Trans. 2 76 76 76 1222.54 3090.16
7 Pima Indians 2 66 65 65 133.77 152.08
8 Ionosphere 2 64 64 64 3.16 1.65
9 Breast cancer 2 79 63 84 205.51 847.98
10 Yeast 10 34 34 39 0.47 0.58

For the Housing Benefits data set (Table 5.4), which closely replicates a real world

application, it was found that agent negotiation clearly improved the accuracy of the

cluster configuration. The suggested reason why the agent negotiation tends to improve

the initial clustering is that there is no generic clustering algorithm appropriate to all

data sets. Different clustering algorithms provide different clustering results depending

on the characteristics of the input data set and the input parameters used to define
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the nature of the desired clusters (even the ordering of records can affect the outcome).

Thus, the extended MABC approach can enhance the cluster configuration when a

negotiation phase is appended to the clustering process. As can be seen from the ta-

bles, in some cases there is no accuracy improvement because the selected paradigm

was well suited to the data and/or a “best” configuration was immediately arrived

at. Consequently, no records could be moved during the negotiation phase. Closer

inspection of the data sets (Blood Transfusion, Pima Indian and Ionosphere) in-

dicated that the number of classes was 2. Thus in this case, if one of the Clustering

Agents considers that its cluster is “satisfactory”, the other Clustering Agent could not

be able to move its unwanted records to this cluster. Thus, there was no negotiation

process. With respect to the Breast Cancer data set, a small reduction in accuracy

was recorded with respect to the the divisive hierarchical clustering paradigm (Table

5.3). Further investigation of this case indicated that the mechanism (using K-means)

whereby each initial cluster is divided into two sub clusters, Cmajor and Cminor (where

Cminor contains unwanted records), resulted in some records that should have been

included in Cmajor being included in Cminor and consequently being moved to another

cluster. There was no clear explanation for this anomaly. The results demonstrated

that a huge improvement was obtained using K-NN when applied to Breast Cancer

data set; closer inspection of the generated result, consequent to Phase 1 revealed that

the clustering result contained one cluster (C1) with only one record and the other

cluster (C2) contained all the remaining records, thus when Phase 2 was applied the

records moved from C2 to the C1 and the accuracy was substantially increased (the

number of clusters contained in the Breast Cancer dataset was 2).

Table 5.3: Accuracies obtained using the divisive hierarchical clustering paradigm with
and without application of the negotiation phase (UCI data).

No. Data Set Num % Acc. % Acc. % Acc. WGAD BGAD
Classes using Phase I Phase II thold. thold.

one agent

1 Breast tissue 5 32 32 37 2872.18 89472.91
2 Iris 3 83 83 87 1.20 3.70
3 Wine 2 69 69 69 311.35 649.15
4 Heart 2 55 60 62 93.93 84.16
5 Ecoli 7 72 73 76 0.51 0.71
6 Blood Trans. 2 76 76 76 934.54 3363.15
7 Pima Indians 2 66 65 65 155.09 213.11
8 Ionosphere 2 74 74 77 3.42 4.02
9 Breast cancer 3 91 91 90 604.44 1338.51
10 Yeast 2 40 35 37 0.41 0.29

The work described in [88] was directed at supervised learning, more specifically,

classification; while the work described in this thesis is directed at unsupervised learn-
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ing, more specifically, clustering. Two very different branches of data mining; the first

aimed at the construction of classifiers, the second at the segmentation of data. How-

ever, it can be argued that the “prototypes” for individual clusters can be used for

classification purposes. Whatever the case, for the record, the work described in [88]

generated a best classification accuracy of 98.48% while the best accuracy presented in

Table 5.4 was 55.73%. This is to be expected as classifier generation, as already noted,

is a supervised technique, benefitting from knowledge as to which record belongs to

which class; while clustering does not make use of this prior knowledge.

Table 5.4: Accuracies obtained using the Housing Benefits data set with and without
application of the negotiation phase.

No. Data Set % Acc. % Acc. WGAD BGAD
Phase I Phase II thold. thold.

1 K-means 41.91 55.73 3.99 3.01
2 K-NN 32.25 44.74 2.81 2.93
3 Hierarchical clustering 35.14 38.27 3.02 2.14

Runtime results using the UCI data sets are presented in Table 5.5, 5.6 and 5.7.

Comparisons are made between: (i) running K-means, K-NN and divisive hierarchical

clustering in a centralised manner, (ii) using only Phase 1 of the proposed MABC

framework and (iii) using both Phase 1 and 2. The results showed that the runtime

using a centralised approach is of course less than when using the proposed MABC; this

is to be expected as there is no “messaging overhead”. However, it is suggested here

that the additional runtime did not constitute a prohibitive overhead. The execution

time for Phase 1 was dependent on the size of the input data set in terms of number of

records and number of attributes (see Table 3.3 in Chapter 3), for example the Y east

data set had significantly more records than the Iris data set. Phase 2 was dependent

on the amount of negotiation undertaken (which will also be influenced by the size of

the input data set as there is likely to be more negotiation given a large data set than

a small data set). The runtime values obtained using the housing benefits data set are

given in Table 5.8.

It is also worth noting that the runtime associated with divisive hierarchical clus-

tering (regardless of whether the MABC framework was used or not) is always greater

when using K-means or K-NN. This is because divisive hierarchical clustering has a

time complexity of at least O(n2) where n is the number of data records, while K-NN

has a complexity of approximately O(n) and K-means a complexity of approximately

O(n× r) where r is the number of iterations required to “fix” the cluster configuration.
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Table 5.5: Comparison of processing time required by K-means using both a centralised
and a MABC approach.

No. Data Set Cen. app. Phase I Phase II Total
time(sec) time(sec) time(sec) time(sec)

1 Breast tissue 0.016 0.171 0.280 0.451
2 Iris 0.000 0.118 0.187 0.305
3 Wine 0.016 0.346 0.078 0.424
4 Heart 0.015 0.874 0.109 0.983
5 Ecoli 0.015 0.327 0.453 0.780
6 Blood Trans. 0.015 1.732 0.015 1.747
7 Pima Indians 0.016 2.451 0.828 3.279
8 Ionosphere 0.015 3.612 1.939 5.551
9 Breast cancer 0.935 10.003 1.376 11.379
10 Yeast 0.125 1.986 0.673 2.659

Table 5.6: Comparison of processing time required by K-NN using both a centralised
and a MABC approach.

No. Data Set Cen. app. Phase I Phase II Total
time(sec) time(sec) time(sec) time(sec)

1 Breast tissue 0.020 0.250 0.829 1.079
2 Iris 0.032 0.201 0.200 0.401
3 Wine 0.015 0.344 0.065 0.409
4 Heart 0.032 0.141 0.973 1.114
5 Ecoli 0.031 0.344 0.812 1.156
6 Blood Trans. 0.078 0.400 0.791 1.191
7 Pima Indians 0.125 0.301 1.371 1.672
8 Ionosphere 0.020 0.312 4.076 4.388
9 Breast cancer 0.234 0.609 10.132 10.741
10 Yeast 0.437 0.921 48.571 49.492

Table 5.7: Comparison of processing time required by divisive hierarchical clustering
using both a centralised and a MABC approach.

No. Data Set Cen. app. Phase I Phase II Total
time(sec) time(sec) time(sec) time(sec)

1 Breast tissue 0.067 0.201 1.048 1.249
2 Iris 0.207 0.261 0.079 0.340
3 Wine 0.515 0.516 0.204 0.720
4 Heart 1.686 1.733 0.179 2.452
5 Ecoli 2.091 2.295 1.380 3.675
6 Blood Trans. 11.078 11.078 0.327 11.405
7 Pima Indians 23.277 23.277 0.671 23.948
8 Ionosphere 9.408 8.615 0.836 9.451
9 Breast cancer 27.316 27.677 3.340 31.017
10 Yeast 198.138 201.256 4.026 205.282
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Table 5.8: Processing times recorded using benefits data set with and without the
application of the negotiation phase.

No. Data Set Phase I Phase II Total
time(sec) time(sec) time(sec)

1 K-means 190.717 45.564 236.281
2 K-NN 19.252 1193.080 1212.332
3 Hierarchical clustering 37445.143 2611.480 40056.623

5.2 Accuracy Comparison Using Different Parameter Val-
ues

To evaluate the operation of the framework using different clustering parameter val-

ues with respect to the number of generated clusters, a number of experiments were

conducted. The recorded outcomes from these experiments are presented here. Five

data sets (Iris, Wine, Heart, Breast T issue and Ecoli) were used with respect to the

three adopted clustering paradigms: K-means, K-NN and divisive hierarchical cluster-

ing. The reason to select these five data sets was that they served to illustrate the use

of a variety different parameter values settings. The Blood Transion, Pima Indian,

Ionosphere and Breast T issue data sets features a known number of clusters of 2, as

in the case of the Iris, Wine and Heart data sets; hence these four data sets were

not used for comparison purpose. The Breast T issue and Ecoli data sets were con-

sidered using higher parameter value (5 ≤ K ≤ 8 for the Breast T issue data set and

7 ≤ K ≤ 10 for the Ecoli data set).

The line graphs presented in Figures 5.1 to 5.5 indicate the accuracies obtained

by the extended MADM framework using K-means with different numbers of clusters

(K values). The horizontal axis represents “the desired number of clusters”. The

vertical axis represents the “accuracy” (in terms of the overall percentage) of the cluster

configuration generated by the extended MABC framework in Phase 1 and Phase 2.

In the case of the Iris data set, Figure 5.1, it can be seen that there is an accuracy

improvement when the negotiation phase was appended to the clustering process. The

exception was that when K was set to 2 there would be no accuracy improvement;

this was because the known number of clusters was 3, consequently some records that

should have been in a third cluster were included in the two clusters. For the same

reason (namely that the Iris data set features three cluster) the best record accuracy

was when K = 3. In the case of the Wine data set, which also has a known number

of clusters equal to 3, there is a slight accuracy improvement up until K = 4, after

which accuracy tends to “drop off”. In the case of Heart data set, there is a slight

accuracy improvement up until K = 4 after which accuracy again “drops off”. Note

that the known number of clusters with respect to the Heart data set is 2. This means

that if the number of clusters is more than 2 the known clusters are distributed over
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Figure 5.1: MABC using K-means with the different number of clusters, K (Iris data
set).
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Figure 5.2: MABC using K-means with the different number of clusters, K (Wine data
set).
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several clusters. In the case of the Breast T issue data set, Figure 5.4, it is interesting

to note that the two phases converge at K = 8. The reason for this is that the agents

are no longer able to identify any records that can be moved to “better” clusters. In

the case of the Ecoli data set, it is interesting to note that for K = 9, although Phase

2 clearly produces an improved accuracy, the recorded accuracy “dips”. There is no

clear explanation for this other that this, can be attributed to the vagaries of the data,

and further evidence of the challenge associated with producing effective clustering

mechanism.

The comparison of the framework’s operation, in terms of accuracy, using different

numbers of clusters and K-means, demonstrates that the selection of the correct value

of K is important. However, in some cases, if K is close to or more than the known

number of clusters, this can also produce a good quality cluster configuration. Note

that the selection of the initial cluster centroids can affect the cluster configuration

accuracy because the operation of the K-means algorithm is dependent on the order

in which records are presented to it. Recall that the K-means algorithm used in the

conducted experiments, in the same manner as in the centralised case, initialised the

cluster centroid associated with each Clustering Agent according to the first record

presented to it.
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Figure 5.3: MABC using K-means with the different number of clusters, K (Heart
data set).

Figures 5.6 to 5.10 give a comparison of accuracies obtained using MABC when
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Figure 5.4: MABC using K-means with the different number of clusters, K
(Breast T issue data set).
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Figure 5.5: MABC using K-means with the different number of clusters, K (Ecoli data
set).
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K-NN was used for Phase 1 but with different τ thresholds. The thresholds used

in the conducted experiments were selected with respect to the generated number of

clusters. Typically, there is a range of thresholds that can generate the same clustering

results when using the K-NN algorithm. However, the thresholds were selected using

the threshold generating method described in Chapter 6 to identify the appropriate

thresholds. The threshold generating method runs the K-NN algorithm multiple times

with the possible threshold values which were generated from the distance between

records in a given data set. The first value in the range that can generate the same

clustering result was selected. The line graphs are presented in Figures 5.6 to 5.8,

Figure 5.9 and Figure 5.10 compare the accuracies of the clustering result using different

threshold values, with the number of generated clusters, ranging from: (i) 2 to 5 clusters,

(ii) 5 to 8 clusters and (iii) 7 to 10 clusters respectively.
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Figure 5.6: MABC using K-NN with different threshold values on Iris data set.

The line graphs presented in Figure 5.6 to 5.10 include histograms illustrating the

number of clusters, because the chosen value of τ greatly influences the number of

generated clusters. With respect to the conducted experiments described in Section

5.1, a τ value which provides the closest number of clusters to the known number of

clusters was used. Hence, to compare the obtained accuracies when using different τ

values the number of generated clusters was considered. Recall that the K-NN algorithm

does not require the number of clusters to generate a cluster configuration but uses the

τ parameter for the creation of new clusters.

In the case of the Iris data set presented in Figure 5.6, no threshold value could be
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Figure 5.7: MABC using K-NN with different threshold values on Wine data set.
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Figure 5.8: MABC using K-NN with different threshold values on Heart data set.

94



identified that resulted in the generation of precisely 3 clusters. Using the range of τ

values considered, either 2, 4 or 5 clusters were produced. Best accuracy was obtained

when τ resulted in 4 clusters. Recall that the known number of clusters in this case

is equal to 3. Inspection of the results indicated that some records were assigned to

the wrong clusters. Consequently, the accuracy of the cluster configuration, when the

number of generated clusters was 2, was much less than the accuracy of the cluster

configuration when the number of generated clusters was 4 or 5. Note that there is no

difference in accuracy, when τ = 1.4, between the application of Phase 1 on its own,

and Phase 1 and 2 sequentially (for reasons that were presented above).
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Figure 5.9: MABC using K-NN with different threshold values on Breast T issue data
set.

In the case of the Wine data set, the known number of clusters is 3. By varying

the τ value it was found that configurations resulting in 2, 3, 4 and 5 clusters could

be produced. However, using the threshold that generates 3 clusters (the “correct”

number of clusters) does not, as might be expected, produce the best accuracy. The

best accuracy obtained was recorded when τ was set so that 4 clusters were produced.

From the figure it can be seen that, except when the value of τ results in a five cluster

configuration, there is a small improvement in accuracy when Phase 2 is applied (and

not just Phase 1 on its own).

In the case of the Heart data set the range of τ values again produced configurations

of between 2, 3, 4 and 5 clusters. In this case there was a significant difference between

the accuracy obtained using Phase 1 only and that obtained when Phase 2 was also

applied. Note that when τ values of less than 100 are used there is no significant
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Figure 5.10: MABC using K-NN with different threshold values on Ecoli data set.

difference between the application of Phase 1 only and Phase 1 and 2 sequentially.

In the case of the Breast T issue data set, comparing Figure 5.4 and Figure 5.9

the accuracy recorded using K-NN was not as good as when using K-means, although

as τ is reduced slightly better accuracy is recorded, but not significantly so. With

respect to Figure 5.10 it was not possible to identify a τ threshold that generated eight

clusters (the known number of clusters). However from 5.10 it can be seen that the

best accuracy lies somewhere between τ = 0.40 (9 clusters) and τ = 0.42 (7 clusters).

Table 5.9: Individual cluster cohesion values for a range of K values from 2 to 5 (Iris
data set).

K Acc. WGAD WGAD WGAD WGAD WGAD
(%) C1 C2 C3 C4 C5

2 67 0.88 0.95 - - -
3 83 0.88 0.59 0.77 - -
4 83 0.88 0.59 0.49 0.83 -
5 83 0.88 0.59 0.49 0.54 0.85

In the case of divisive hierarchical clustering, as already mentioned above, a cohe-

sion threshold was required for cluster configuration generation purposes; the number of

generated clusters depends on the nature of the cohesion threshold used. There are no

established guidelines to support the selection of the most appropriate cohesion thresh-

olds. However, the cohesion threshold values used to evaluate the proposed MABC

approach were selected so as to be equivalent to the least cohesion within the cluster
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Table 5.10: The number of records in each cluster using Iris data set.

K Acc. no. of rec. no. of rec. no. of rec. no. of rec. no. of rec. Total
(%) C1 C2 C3 C4 C5

2 67 60 90 - - - 150
3 83 60 49 41 - - 150
4 83 60 49 24 17 - 150
5 83 60 49 24 9 8 150

configuration generated as a result of the application of Phase 1 using K-means. To

investigate the accuracy associated with the divisive hierarchical clustering paradigm

using comparison of different cohesion threshold values for divisive hierarchical cluster-

ing, the experiments were set up in a different manner from the conducted experiments

in the cases of K-means and K-NN. To determine the cohesion threshold, the centralised

divisive hierarchical clustering was run with a different number of clusters in order to

investigate each cluster cohesion value and then the cluster cohesion value was deter-

mined to identify an appropriate cohesion threshold value with respect to the number

of generated clusters.

Tables 5.9, 5.11, 5.13, 5.15 and 5.17 present the accuracies obtained using centralised

divisive hierarchical clustering and the cluster cohesion of each cluster using a different

number of clusters. From tables 5.9, 5.11 and 5.13 it can be seen that, again regardless

of which of the three data sets we are considering, the number of records in C1 stays

constant, the remaining number of records are distributed over the remaining number

of available clusters. When K = 3, K = 4 and K = 5 the number of records in cluster

C2 is also constant. Generally speaking, it is only the final Kth cluster that is split

when moving from K to K+ 1 clusters. Consequently, the accuracy is not significantly

affected when the majority of records are grouped in the same clusters. With respect

to Tables 5.15 and 5.17, A WGAD value of 0.00 for a cluster occurs when there is only

one record in the cluster.

Table 5.11: Individual cluster cohesion values for a range of K values from 2 to 5 (Wine
data set).

K Acc. WGAD WGAD WGAD WGAD WGAD
(%) C1 C2 C3 C4 C5

2 69 103.20 183.64 - - -
3 69 103.20 98.31 123.22 - -
4 69 103.20 98.31 70.17 154.18 -
5 69 103.20 98.31 70.17 68.60 250.65

To determine an appropriate threshold value with respect to the number of gener-

ated clusters, in the case of the Iris data set with K = 2, the smallest cluster cohesion

is 0.95 and hence the threshold used for generating two clusters should be more than
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Table 5.12: The number of records in each cluster using Wine data set.

K Acc. no. of rec. no. of rec. no. of rec. no. of rec. no. of rec. Total
(%) C1 C2 C3 C4 C5

2 69 107 71 - - - 178
3 69 107 39 32 - - 178
4 69 107 39 20 12 - 178
5 69 107 39 20 7 5 178

0.95. Similarly, to generate three clusters the threshold should be more than 0.88 and

less than 0.95 because if the threshold value is more than 0.95 the algorithm will gen-

erate two clusters. However, in the case of K = 4 and K = 5, the smallest cluster

cohesion is 0.88, therefore the range of cohesion threshold values to generate four or

five clusters is more than 0.88. There is an overlap value for the cohesion threshold and

as a consequence there is the limitation of the divisive hierarchical clustering algorithm

using a cohesion threshold as an input parameter. The algorithm will never split C3

into C3 and C4 when K = 4 because all cluster cohesion values are less than the cohe-

sion threshold; in this case the cohesion threshold value will be between 0.89 and 0.95.

Thus, 3 initial clusters will be generated after Phase 1 and before commencing Phase 2.

Typically, for a given clustering task, the chosen threshold defines implicitly the num-

ber of clusters that will be formed. A large threshold leads to a smaller number of large

clusters and vice-versa. In the case when using the Wine, Heart, Breast T issue and

Ecoli data sets presented in Tables 5.11 to 5.18 an appropriate threshold value, with

respect to the number of generated clusters, can be determined in a similar manner to

that used for the Iris data set.

Table 5.13: Individual cluster cohesion values for a range of K values from 2 to 5
(Heart data set).

K Acc. WGAD WGAD WGAD WGAD WGAD
(%) C1 C2 C3 C4 C5

2 60 34.32 48.52 - - -
3 62 34.32 29.37 69.62 - -
4 64 34.32 29.37 37.05 99.92 -
5 64 34.32 29.37 37.05 37.81 110.14
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Table 5.14: The number of records in each cluster using Heart data set.

K Acc. no. of rec. no. of rec. no. of rec. no. of rec. no. of rec. Total
(%) C1 C2 C3 C4 C5

2 60 146 124 - - - 270
3 62 146 73 51 - - 270
4 64 146 73 29 22 - 270
5 64 146 73 29 13 9 270
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The limitation of use of the cohesion threshold as the parameter for divisive hi-

erarchical clustering is that the algorithm will generate the clustering result with a

small number of clusters because the algorithm finds that the cohesion of all clusters

is less than the cohesion threshold. However, an alternative is to use the number of

clusters, K, as the input parameter which can be identified. Further investigation is

required concerning a mechanism for appropriate clustering parameter identification

(see Chapter 6).

5.3 Summary

The proposed extended MADM framework founded on intra-agent negotiation to sup-

port enhanced data clustering has been evaluated in this chapter in context of MABC.

The framework espouses a two phase approach; an initial cluster configuration phase

followed by a negotiation phase. Three distinct clustering paradigms, K-means, K-

NN and divisive hierarchical clustering, were revised and adopted for generation of an

initial cluster configuration in a decentralised manner. The reported evaluation was

conducted using ten data sets taken from the UCI repository and a welfare benefits

data set to illustrate an exemplar application. The operation of the MABC frame-

work was evaluated by comparing its operation with and without the inclusion of the

negotiation phase and with equivalent centralised clustering techniques. An extensive

evaluation of the framework has been conducted, which clearly demonstrates that in

the majority of cases negotiation (Phase 2) facilitates a much improved configuration.

This is because there is no single “one size fits all” best clustering algorithm. In a small

number of cases no improvement was recorded because, by chance, the initial cluster

configuration was the “best” configuration. However, overall the reported evaluation

clearly demonstrates the advantage that can be obtained from the extended MADM

framework. Of course, negotiation is suited to autonomous processes, such as those

featured in MASs, where the processes (agents) are free to decide whether they want

to take part in the negotiation process or not.
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Chapter 6

Experiments to Automatically
Identify Clustering Parameters

A criticism that might be levelled at work described so far in this thesis is that param-

eters are not automatically identified. With respect to the three clustering paradigms

adopted to demonstrate the proposed MABC framework: K-means, K-NN and divisive

hierarchical clustering, all require users to provide input parameters; namely the de-

sired number of clusters (K) for K-means, the threshold (τ) used to identify the nearest

neighbour for K-NN and the cohesion threshold used to control the number of clusters

for divisive hierarchical clustering. In the case of the latter, the number of clusters

(K) can be used as an alternative parameter to the cohesion threshold used in divisive

hierarchical clustering. Thus with respect to the work presented in this chapter the K

parameter has been used in the context of the divisive hierarchical clustering algorithm

(see Chapter 5, Section 5.2). Whatever the case, the algorithms require users to provide

input parameters. Consequently, the resulting cluster configurations may be sensitive

to such parameters. Identification of the most appropriate clustering parameters to

produce a cluster configuration that “best” fits the underlying data is difficult when

prior knowledge is unavailable, and is normally achieved through a “trial and error”

process conducted by the user.

In the experiments described in the foregoing chapters the evaluation was conducted

using the best parameter setting in each case, the fundamental idea was that no single

technique should be disadvantaged in any way. It would of course be desirable for the

system to select optimum parameters, but as it turns out there is no obvious mecha-

nism for doing this. This chapter reports on ideas concerning mechanisms whereby this

might be achieved. Two approaches to determine an appropriate clustering parameter

are described. The first proposed approach for automatically identifying appropriate

clustering parameters adopts a generate and test process, whereby a cluster config-

uration is generated using a particular parameter value and then tested using some

clustering metric, as a result the parameter value is adjusted. Finally, the parameter

generating the best cluster configuration will be arrived at. The desired cluster configu-
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Table 6.1: Algorithm to identify the most appropriate parameter for generating the
best cluster configuration using a heuristic generate and test method.

Algorithm: Generate and Test

Input: a data set D = {x1, ..., xN}, a parameter value (p)
Output: the most appropriate parameter

1. p′ = 0, e′ = 0
2. c = Cluster configuration generated using p
3. e = Evaluation of c
4. LOOP
5. IF (e > e′)
6. e′ = e, p′ = p
7. IF (p cannot be incremented further) Exit with p′

8. ELSE
9. p = Increment p
10. c = Cluster configuration generated using p
11. e = Evaluation of c
12. END IF ELSE
13. ELSE Exit with p′

14. END IF ELSE
15.END LOOP

ration is defined in terms of some clustering evaluation metric that must be optimised.

The second approach is founded on the idea of a running a sequence of clustering runs

with different parameter values, and then selecting the best parameter value according

to some criterion. Again, some clustering metric must be adopted so as to identify

a best cluster configuration. The associated parameter can then be identified. Three

clustering metrics were considered for the purpose of identifying a best cluster config-

uration: the Silhouette Coefficient (Sil. Coef.), the Davies-Bouldin (DB) index and

a combination of the WGAD and BGAD metrics (WGAD-BGAD) (see Chapter 2,

Section 2.2 for further details). Recall also that the last was derived by the author.

The rest of this chapter is organised as follows. Sections 6.1 and 6.2 describe the two

mechanisms considered to identify the most appropriate clustering parameters. Some

evaluation and comparison is then presented in Sections 6.3 and 6.4, followed by some

conclusions at end of this chapter in Section 6.5.

6.1 Generate and Test Identification of Parameters

As mentioned above, the adopted clustering paradigms in the proposed MABC ap-

proach require the user to identify the input clustering parameter, such as K or τ .

It is well known that this parameter significantly affects the quality of a cluster con-

figuration. To obtain the best cluster configuration, one mechanism for identifying

appropriate parameters is to adopt a heuristic generate and test method comprising a
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“generate and test” loop whereby a cluster configuration is “generated” using a partic-

ular parameter value which is then “tested” (evaluated) using some clustering metric

(such as those discussed in Chapter 2, Subsection 2.2.2). Subsequently, the parameter

value may be adjusted. The process repeats until a best cluster configuration is ar-

rived at. As a result, the best performing associated parameter can be identified. A

number of clustering metrics can be applied to identify a best cluster configuration,

however with respect to the evaluation presented in Section 6.3 and as already noted,

three clustering metrics (Silhouette Coefficient, the DB index and WGAD-BGAD) are

adopted. The proposed generate and test algorithm is presented in Table 6.1. The

main disadvantage associated with generate and test procedures is that they are very

much susceptible to local maxima and minima.

6.2 Alternative Approach to Identifying Best Parameters

An alternative approach to identifying the parameter setting associated with a best

cluster configuration to that described in Section 6.1 above is to simply generate a

sequence of cluster configurations using a range of parameter values and, on completion,

select the parameter value that produced the best cluster configuration. The idea is

to avoid the issue of local maxima and minima associated with the generate and test

method. The range of parameter values will depend on the nature of the adopted

clustering paradigm.

In the case of the K-means algorithm and the divisive hierarchical clustering algo-

rithm a sequence of values for K ranging from 2 to d
√

N
2 e, where N is the number

of records in the given data set, was used. The results were then automatically anal-

ysed and the best parameter setting identified. “Best” in this case was again defined

using the Silhouette Coefficient, the DB index and WGAD-BGAD. The algorithm is

presented in Table 6.2.

In the case of the K-NN algorithm a simple range of τ values was applied. Any τ

value that did not generate a number of clusters of between 2 and d
√

N
2 e was ignored. As

a result, the best identified τ setting could be determined. The algorithm is presented

in Table 6.3.

An issue with K-means is that the initial points (records/objects) used to define

the initial centroids of the clusters are randomly selected. The selection of the start

points can greatly influence the operation of K-means, to the extent that different best

values of K can be produced depending on where in the data set the K-means process

starts. Therefore the above approach to identify a most appropriate value for K would

be very much dependent on the ordering of the input data. However, the τ parameter

selection process can be used to determine the most appropriate value for K.

A general issue with respect to the above approach is that as a result of applying

the process for identifying a best value for τ (and by extension K) using K-NN we have
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Table 6.2: Algorithm to identify the most appropriate K generating the best cluster
configuration using K-means.

Algorithm: KmeansIdentifiesK

Input: a data set D = {x1, ..., xN}
Output: K

1. For K = 2 to K = d
√

N
2 e Do

2. Do K-means clustering using K
3. Evaluate the clustering result (a set of clusters) using a chosen clustering
metric
4. Keep K and the goodness of cluster configuration value
5. Return K which provides the “best” cluster configuration

Table 6.3: Algorithm to identify the most appropriate K and τ , generating the best
cluster configuration using K-NN.

Algorithm KNNIdentifiesK

Input: a data set D = {x1, ..., xN}
Output: τ , K

1. Calculate distance between each record in D and every other record in D
and place in Dist
2. Sort Dist to remove duplicates and order according to ascending magnitude
3. Dist = {distinct distances in ascending order}
4. ∀disti ∈ Dist (i = 1 to |Dist|)
5. τ = disti
6. Do K-NN clustering using τ
7. If the result generated from step (8) is different from the last result

and the no. of clusters < d
√

N
2 e

8. Evaluate a clustering result using a chosen clustering metric
9. Keep τ , K and the goodness of cluster configuration value
10. Return τ which provides the “best” cluster configuration

also identified a best cluster configuration. However, it may be the case that, once we

have an appropriate parameter setting, a better configuration can be produced using

K-means or divisive hierarchical clustering instead.

6.3 Evaluation of the generate and test approach

To evaluate the generate and test method three sets of experiments were conducted.

The first used the Silhouette Coefficient (Sil. Coef.) as the reference parameter, the

second the Davies-Bouldin (DB) index and the third the WGAD-BGAD. Figures 6.1

to 6.6 show the results obtained using the Iris data set taken from the UCI data

repository [38] (similar results were obtained using other data sets).

In Figure 6.1 the X-axis gives the K parameter used by K-means. Note that the
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results obtained for the first and second set of experiments have been combined in the

same figures. From the figure it can clearly be seen that there are local maxima and

minima; this means that a generate and test procedure, where either the Silhouette Co-

efficient was maximised or the DB index was minimised, is unlikely to prove successful.

In Figure 6.2 the X-axis gives the τ parameter used by the K-NN, while in Figure 6.3

the X-axis gives the K parameter used in the case of divisive hierarchical clustering.

Figures 6.2 and 6.3 show similar trend line graphs including local maxima and minima

when using K-NN and divisive hierarchical clustering. However, as shown in Figure 6.3

using the DB index as the reference parameter, the best K value that can be identified

is 2.

Figure 6.4 shows the result using K-means and WGAD-BGAD as the reference

index. Recall that in this case the WGAD-BGAD value should be minimised. From

the figure it can be seen that the identified best K value is 2, likewise using the divisive

hierarchical clustering (in Figure 6.6). Figure 6.5 shows the result using the K-NN

algorithm and the WGAD-BGAD measure as the reference parameter. In this case it

is apparent from the figure that a range of “best” τ values were produced, making it

difficult to select one. Thus the use of the WGAD-BGAD measure as the reference

parameter cannot serve to provide the best clustering parameter in all cases when

different clustering algorithms were applied. Therefore it was concluded that a generate

and test process would not find the most appropriate parameters in the majority of

cases and was thus unsuitable.
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Figure 6.1: K-means clustering K parameter plotted against a range of K values using
the Iris data set (Silhouette Coefficient and DB index).
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Figure 6.2: K-NN clustering τ parameter plotted against a range of τ values using the
Iris data set (Silhouette Coefficient and DB index).
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Figure 6.3: Divisive hierarchical clustering K parameter plotted against a range of K
values using the Iris data set (Silhouette Coefficient and DB index).

108



0 2 4 6 8 1 0 1 2 1 40

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

WG
AD

-BG
AD

T h e  n u m b e r  o f  c l u s t e r s  ( K )
Figure 6.4: K-means clustering K parameter plotted against a range of K values using
the Iris data set (WGAD-BGAD).
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Figure 6.5: K-NN clustering τ parameter plotted against a range of τ values using the
Iris data set (WGAD-BGAD) .
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Figure 6.6: Divisive hierarchical clustering K parameter plotted against a range of K
values using the Iris data set (WGAD-BGAD).

6.4 Evaluation of Alternative Approach

To evaluate the alternative approach used to identifying clustering parameters, a num-

ber of experiments were conducted using a collection of data sets taken from the UCI

repository. Some statistical information concerning these data sets was presented in Ta-

ble 3.3. The desired number of clusters, K, was identified by repeated runs of K-means

and divisive hierarchical clustering. K-NN was used to identify the most appropriate

value for τ . However, it should be recalled that the K-NN approach could equally well

be used to identify a best setting for K. Three sets of experiments were conducted

using K-means, K-NN and divisive hierarchical clustering. The results are presented in

Tables 6.4 to 6.8. A summary is presented in Table 6.9.

Table 6.4 shows the evaluation results produced with respect to the K parameter

when applied to the selected UCI data sets. The comparison was conducted by con-

sidering the number of clusters (K) associated with the best cluster configuration and

the known value for K. In the table the values in bold indicate where the identified

number of clusters (K) exactly matches the “known” value of K. Tables 6.5 to 6.7

present a similar comparison using the K-NN algorithm. K in Tables 6.5 to 6.7 is

the number of generated clusters using the best τ values. The results produced using

divisive hierarchical clustering are presented in Table 6.8.

Table 6.9 summarises and compares the results obtained using the K-means, K-

NN and divisive hierarchical clustering algorithms in terms of the identified number of

clusters (K) in comparison to the known K value taken from the UCI data repository
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Table 6.4: Results using K-means to identify the best K parameter value.

No. Data Set Known K Sil. K DB K WGAD-
K Coef. Index BGAD

1 Breast Tissue 6 2 0.86 4 0.18 2 61204.25
2 Iris 3 2 0.68 4 0.31 2 3.93
3 Wine 3 2 0.66 12 0.21 2 583.02
4 Heart 2 2 0.38 12 0.67 2 81.75
5 Ecoli 8 4 0.43 12 0.67 2 0.57
6 Blood Trans. 2 2 0.70 15 0.20 2 3044.25
7 Pima Indians 2 2 0.57 3 0.51 2 223.53
8 Breast cancer 2 2 0.70 20 0.29 2 1331.33
9 Yeast 10 3 0.27 26 0.78 2 0.29

10 Ionosphere 2 5 0.31 18 0.90 2 3.07

Table 6.5: Results using Sil. Coef. with K-NN to identify the best τ parameter value.

No. Data Set τ K Sil. Coef.

1 Breast Tissue 23904.43 2 0.95
2 Iris 1.49 2 0.69
3 Wine 195.07 3 0.61
4 Heart 81.63 2 0.76
5 Ecoli 0.53 2 0.39
6 Blood Trans. 2000.02 2 0.83
7 Pima Indians 193.36 2 0.79
8 Breast cancer 992.39 2 0.80
9 Yeast 0.60 2 0.74

10 Ionosphere 5.30 2 0.41

Table 6.6: Results using DB Index with K-NN to identify the best τ parameter value.

No. Data Set τ K DB Index

1 Breast Tissue 23904.43 2 0.03
2 Iris 1.49 2 0.38
3 Wine 75.78 14 0.33
4 Heart 81.63 2 0.16
5 Ecoli 0.28 10 0.39
6 Blood Trans. 250.27 18 0.12
7 Pima Indians 193.36 2 0.23
8 Breast cancer 992.39 2 0.13
9 Yeast 0.26 21 0.31

10 Ionosphere 5.30 2 0.46
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Table 6.7: Results using WGAD-BGAD with K-NN to identify the best τ parameter
value.

No. Data Set τ K WGAD-BGAD

1 Breast Tissue 23904.43 2 168762.21
2 Iris 1.49 2 3.97
3 Wine 206.37 2 810.82
4 Heart 81.63 2 316.67
5 Ecoli 0.53 2 0.79
6 Blood Trans. 2000.02 2 7404.08
7 Pima Indians 193.36 2 682.60
8 Breast cancer 992.39 2 3888.91
9 Yeast 0.60 2 0.74

10 Ionosphere 5.30 2 5.98

(again values in bold indicate best results). Note that to identify a best parameter

setting, the selected clustering metric must be optimised. From Table 6.9 it can be ob-

served that the DB index does not perform well, particularly when used in conjunction

with K-means and divisive hierarchical clustering. The use of the DB index produced

higher values of K than the known values. The Silhouette Coefficient when used in con-

junction with K-NN was found to be the most effective mechanism for finding the most

appropriate τ and K parameters. The WGAD-BGAD measure produced K = 2 in all

cases. Inspection of the nature of the data sets where the identified K matched the

known value (see Table 3.3) indicated that the proposed alternative approach operates

best where data sets feature a small number of clusters (classes).

Table 6.8: Results using divisive hierarchical clustering to identify the bestK parameter
value.

No. Data Set Known K Sil. K DB K WGAD-
K Coef. Index BGAD

1 Breast Tissue 6 6 0.69 5 0.26 2 20995.64
2 Iris 3 2 0.64 2 0.49 2 3.77
3 Wine 3 2 0.62 11 0.42 2 540.96
4 Heart 2 2 0.33 9 0.70 2 70.13
5 Ecoli 8 3 0.36 8 0.87 2 0.49
6 Blood Trans. 2 19 0.63 19 0.25 2 2113.82
7 Pima Indians 2 2 0.49 7 0.71 2 177.59
8 Breast cancer 2 2 0.62 9 0.45 2 1140.02
9 Yeast 10 8 0.26 17 0.95 2 0.24

10 Ionosphere 2 15 0.32 2 1.68 2 2.81
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Table 6.9: A comparison of identified value of K with the known value for K using
K-means, K-NN and divisive hierarchical clustering.

K-means K-NN HC
No. Data Set K K K K K K K K K K

UCI Sil. DB WGAD- Sil. DB WGAD- Sil. DB WGAD-
Coef. index BGD Coef. index BGAD Coef. Index BGAD

1 Breast Tis. 6 2 4 2 2 2 2 6 5 2
2 Iris Plants 3 2 4 2 2 2 2 2 2 2
3 Wine 3 2 12 2 3 14 2 2 11 2
4 Heart 2 2 12 2 2 2 2 2 9 2
5 Ecoli 8 4 12 2 2 10 2 3 8 2
6 Blood Trans. 2 2 15 2 2 18 2 19 19 2
7 Pima Indians 2 2 3 2 2 2 2 2 7 2
8 Breast Cancer 2 2 20 2 2 2 2 2 9 2
9 Yeast 10 3 26 2 3 21 2 8 17 2
10 Ionosphere 2 5 18 2 2 2 2 15 2 2

Totals 4 0 5 6 4 5 4 1 5

6.5 Conclusion

It is desirable, with respect to the proposed MADM framework described in this the-

sis, that clustering parameter identification be conducted automatically so as to make

agents more autonomous. In this chapter two clustering parameter identification ap-

proaches have been described. The approaches can be summarised as follows:

• A heuristic generate and test method. Here cluster configurations were iteratively

generated, each using a particular clustering parameter value, and then tested

using some clustering metric. Consequently, the clustering parameter value was

adjusted in an attempt to improve the cluster configuration. However, it was

demonstrated that the generate and test process would tend not to find the most

appropriate parameters values because of the presence of local maxima and min-

ima.

• Alternative approach to identify best clustering parameters. Here a chosen clus-

tering algorithm was run repeatedly with different parameter values and the ap-

propriate parameter value which produced the best cluster configuration chosen.

With respect to the clustering paradigms used in the proposed MABC frame-

work, it was observed that the best τ parameter setting could be used to identify

a most appropriate value for K (thus avoiding the issue associated with the or-

dering of records in the context of the K-means algorithm). It was also observed

that the difficulties in identifying a cohesion threshold to be used in conjunction

with divisive hierarchical clustering can be circumvented by using K instead.

The main finding of the work presented in this chapter are as follows:

• The overall best cluster configuration metric to identify parameter settings is the

Silhouette Coefficient.
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• K-NN is a much more reliable technique to find the best value for K when using

the the Silhouette Coefficient than K-means and divisive hierarchical clustering

(and can be used to discover the K value required by K-means).

• A generate and test process does not necessarily achieve the desired result.

The findings were applied and incorporated into the evaluation of the proposed

MABC framework described in Chapters 3 and 4 to identify the best τ value. For

example, the method described in this chapter was used with respect to the evaluation

reported in Chapter 5. Overall the work reported in this chapter did not serve to

identify satisfactory techniques for automatically identifying clustering parameters in

all cases. The two considered techniques were either subject to local maxima and

minima or entailed generating a large number of configurations. The quest for an

approach to support the automatic identification of best clustering parameter values

therefore remains a subject for ongoing research.
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Chapter 7

Conclusion and Future Work

This chapter concludes this thesis. The chapter presents an overall summary of the

research presented, the main findings, the research contributions and possible future

work. The overall summary of the research is presented in Section 7.1. The main

findings of the research and the contribution made are then discussed in Sections 7.2

and 7.3 respectively. Section 7.4 presents some considerations for future work.

7.1 Summary

Multi-Agent Data Mining (MADM) seeks to harness the general advantages offered

by Multi-Agent Systems (MASs) with respect to the domain of data mining. The

research described in this thesis was directed at Multi-Agent Based Clustering (MABC),

thus MADM to support clustering. The proposed MABC approach makes use of the

advantages offered by MAS, such as decentralised control, agent autonomy, agent social

capabilities, communication, coordination, cooperation and negotiation, to obtain a

best cluster configuration.

To obtain a best cluster configuration using the full power of MAS to support

clustering, two approaches were proposed in this thesis. The first approach was a

multi-agent based approach to clustering using a generic MADM framework whereby

a collection of agents with different capabilities were allowed to collaborate to produce

a “best” set of clusters. Five principle categories of agent were identified: (i) User

Agents, (ii) Task Agents, (iii) Data Agents, (iv) Data Mining Agents and (v) Valida-

tion Agents. The initial proposed framework allowed a number of Clustering Agents

to perform a clustering task using different clustering algorithms applied to the same

data set. Hence, a number of clustering results were produced and a best cluster con-

figuration chosen by the Validation Agent according to a number of clustering metrics,

namely the F-measure, Within Group Average Distance (WGAD) and Between Group

Average Distance (BGAD). A number of conducted experiments were used to evalu-

ate the performance of the proposed MADM framework when applied to MABC using

benchmark data sets. As a result, the experiments showed that the MADM framework
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could successfully be used to find a best cluster configuration. Thus, the advantage

offered by this first framework is that it allows for the identification of a best cluster

configuration; it is generally acknowledged that there is no best clustering algorithm to

fit to every data set. With respect to the purpose of the research described in the thesis,

a criticism of the proposed MADM framework was that it did not incorporate some

of the most significant features typically associated with MAS such as decentralised

control and intra-agent negotiation.

Hence, an extension of the proposed MABC framework was proposed. The most

significant feature of the proposed extended MABC framework was that it allowed

a collection of agents to negotiate so as to improve an initial cluster configuration.

The revisions were designed to address the criticisms directed at the initially proposed

framework. In the revised framework there was no “coordinator agent” (Task Agent)

who was responsible for controlling and managing clustering tasks. Clustering Agent

capabilities were extended so as to enable them to cooperate with each other when pro-

ducing a clustering result. The extended framework supported a two phase approach

to clustering. Phase one was similar to established centralised clustering approaches

(except that it was conducted in a decentralised manner). Phase two comprised a

negotiation phase where agents “swap” unwanted records. A set of communication

performatives was proposed as a part of a negotiation protocol in order to facilitate

intra-agent negotiation. An extensive evaluation of the framework was conducted using:

(i) benchmark UCI data sets and (ii) a welfare benefits data set that provided an exem-

plar application. The evaluation results clearly demonstrated that, in the majority of

cases, negotiation facilitates the generation of a much improved cluster configuration.

It was thus concluded that the extended MADM framework could successfully be used

to find a best cluster configuration using a process of cooperation and negotiation. It

was thus argued that the proposed extended MABC framework, that featured negoti-

ation, harnesses the true full potential of MASs rather than simply using the concept

of a MAS to achieve a distributed clustering.

7.2 Main Findings

The aim of this thesis, as stated in the introductory chapter, was to investigate the use

of MAS technology with respect to clustering, broadly so as to establish some of the

advantages that MAS can offer clustering. More specifically, the research was designed

to address the following research question:

“How do we obtain a best cluster configuration using the full power of MAS

to support unsupervised learning and specifically clustering?”

The research question had a number of research issues associated with it. These

were considered throughout the preceding chapters. These research issues are revisited
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in this section. The research issues, and how the research attempted to address each

issue, may be summarised as follows:

1. How can a MAS identify the most appropriate number of clusters

with respect to a given data set? Automatically determining the number

of clusters (K) has been one of the most difficult problems within the field of

data clustering. As described in Chapter 6, two approaches were proposed to

automatically identify clustering parameters and consequently identify the “best”

number of clusters (K). The first approach was founded on a heuristic generate

and test method whereby a cluster configuration was generated using a particular

parameter value which was then evaluated using an adopted clustering metric as

a result of which the parameter was adjusted. The process repeats until a best

cluster configuration was arrived at. However, the evaluation of the method

presented in Chapter 6 Section 6.3 illustrated that the method did not prove

successful in finding the most appropriate parameter. Consequently, a second

alternative approach was proposed whereby a number of clustering algorithm

runs were conducted using a range of different parameter values and the best

performing parameter value selected according to some criterion describing the

“goodness” of the cluster configuration. However, as discussed in Chapter 6,

these approaches did not serve to find the most appropriate parameter value in

all cases, and further investigation is thus required.

2. What is the nature of a MAS framework to support data mining and

clustering in particular? The work presented in this thesis clearly demon-

strates the nature of MAS frameworks to support MABC. The design of the

proposed frameworks encompassed a number of considerations. The first is the

structure of the MAS environment comprising a collection of agents that col-

laborate to perform some data mining task with some degree of autonomy. As

described in Chapter 3, five basic types of agents were initially identified: User

Agents, Task Agents, Data Agents, Data Mining Agents (Clustering Agents) and

Validation Agents. However, as discussed in Section 3.4 the role of the Task

Agent was reconsidered later in this thesis where it was concluded that a coordi-

nator or facilitator agent was not essential for a generic approach to multi-agent

based clustering. The second consideration was the agent interaction capabilities

required to support MABC. As presented with respect to the basic MADM frame-

work in Chapter 3, individual agents in a MADM were equipped with different

data mining algorithms which produced separate results from which the best re-

sult could be selected. The data mining task was achieved by using coordination

and communication mechanisms. The proposed agent cooperation and negotia-

tion capabilities allowed agents to be more independent and provide for a much
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greater degree of agent interaction. The proposed extended MADM framework

presented in Chapter 4 whereby a collection of agents were allowed to cooperate to

generate an initial cluster configuration, and subsequently improve on this initial

configuration, using intra-agent negotiation, demonstrated that agent negotiation

can be used effectively to enhance clustering.

3. How do a group of agents know when they have generated a “best”

cluster configuration? As described with respect to the proposed MABC

frameworks presented in Chapters 3 and 4 a “best” cluster configuration can

be identified using a cluster validity agent that has recourse to a set of clustering

metrics. The basic MABC framework presented in Chapter 3 used Validation

Agents which were equipped with different clustering metrics to identify a “best”

cluster configuration because the framework allowed individual Clustering Agents

to generate different clustering results. However, with respect to the extended

MABC framework described in Chapter 4, each Clustering Agent was able to

evaluate its own cluster configuration in terms of cluster cohesion and cluster

separation and make a decision as to whether to engage in the negotiation pro-

cess to improve its cluster configuration or not. Individual Clustering Agents

can “know” that their clusters are satisfactory within the context of an overall

“best” cluster configuration by determining whether the overall cluster configura-

tion has met the desired cluster cohesion and separation thresholds. The author

also experimented with devising an alternative best cluster configuration metric,

experiments that resulted in the proposed WGAD-BGAD measure.

4. What specific MAS mechanism can usefully be adopted to support

MADM and MABC in particular? It is well established that there is no

clustering algorithm that is suited to all type of data and the selection of ap-

propriate clustering parameters greatly influences clustering results. Thus the

capability incorporated into the initial framework whereby a number of agents

could derive a number of different cluster configurations was seen as a significant

way in which MAS technology could be used to support MABC.

5. What are an most appropriate cooperation and negotiation protocols

for MABC? As described in Chapter 4, agents in the proposed extended MADM

framework were able to communicate explicitly about their associated clustering

activities. Cooperation and negotiation protocols (sets of rules that govern agent

interaction) were presented in terms of a set of performatives and agent state

transition diagrams. A set of performatives was defined and implemented in

order to enable the agents to engage in discussions about the suitability of moving

“unwanted” records between clusters. The agents used the performatives as part

of a protocol that governs the exchange of information between the agents. The
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performatives were described in terms of preconditions and postconditions.

7.3 Contributions

The main contributions of the research work were initially presented in Chapter 1. For

completeness these are reiterated here:

• A generic approach to multi-agent based clustering to identify a best set of clusters

using a collection of “clustering agents”.

• The design of a proposed MABC framework using a generic MADM environment

to clustering.

• The use of clustering metrics to evaluate the quality of cluster configurations and

hence identifying the most appropriate.

• A comparison of two measures, Within Group Average Distance(WGAD) and

Between Group Average Distance(BGAD), which are based on cluster cohesion

and cluster separation measures respectively, to identify the the most appropriate

cluster configuration for a given clustering problem. The comparison showed that

WGAD can be argued as the most appropriate mechanism for identifying best

cluster configuration.

• An attempt at establishing mechanisms to determine the most appropriate pa-

rameters for a given clustering algorithm using clustering metrics.

• A versatile multi-agent based clustering framework.

• A set of communication performatives specifically to support negotiation within

multi-agent based clustering.

• A negotiation protocol whereby agents can interact with one another with the

express aim of exchanging records to improve an initial cluster configuration.

7.4 Future Work

The research described in this thesis has demonstrated that MABC can usefully be

employed to cluster data, in many cases outperforming centralised approaches. How-

ever, the reported research has also served to raise a number of promising directions

for future research.

• Automated identification of the most appropriate clustering parame-

ters. A criticism that might be levelled at work to date described in this thesis
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is that parameters are not automatically identified. The parameter identifica-

tion techniques investigated and reported in this thesis did not serve to find the

most appropriate clustering parameters in all cases. Further investigation and

experimentation into automatic identification of the most appropriate clustering

parameter is thus strongly recommended.

• Unwanted record identification. The reported evaluation highlighted an

anomalous case where a slight reduction in accuracy was recorded. As discussed in

Chapter 5, it was conjectured that the mechanism to identify unwanted records us-

ing K-means resulted in some records that should have been included in the same

cluster but were actually identified as unwanted records and consequently moved

to another cluster. Although there was no clear explanation for this anomaly it

would be interesting to investigate alternative mechanisms to identify unwanted

records for record adoption.

• Application demonstration for the MABC framework. Evaluation of the

framework clearly demonstrated that, in the majority of cases, the negotiation

phase serves to produce a better cluster configuration (in terms of cohesion and

separation) than that produced using a simple centralised approach. The pro-

posed MABC framework was applied to a fictional housing benefits application

using a benefits data set; the intention being to demonstrate a genuine applica-

tion of the proposed MABC framework. It would be interesting to demonstrate

the wider applicability of the proposed framework, and the potential benefits that

can be gained, in the context of other “real” domains, such as cross border polic-

ing and academic adjudication. Such applications operate using distributed data

sets which, for a variety of reasons, cannot be readily combine into a single data

warehouse because of practical and/or security reasons.
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Appendix A

DBSCAN Algorithm

As the proposed initial MADM framework, described in Chapter 3, comprises Data

Mining Agents who are responsible for performing data mining tasks. The Data Mining

Agents are equipped with data mining algorithms. With respect to clustering tasks,

K-means, K-NN and Divisive hierarchical clustering were used for identifying a best

cluster configuration. DBSCAN (Density-Based Spacial Clustering of Application with

Noise) was used in [22, 23] and was incorporated into a Data Mining Agent to evaluate

the proposed initial MADM framework. However, the conducted experiment using

DBSCAN is included here because the appropriate parameters, minPts and ε, are

difficult to determine. The most appropriate parameters were identified by using a

“trial and error” process conducted by users. With respect to K-means and K-NN,

the most appropriate K and τ were derived using a “generate and test” process as

described in Chapter 6.

Table A.1: DBSCAN Algorithm [34]

DBSCAN algorithm:

Input: a data set (D={t1, t2, ... tn})
a minimum size (minPts) and a density threshold (ε)

Output: a set of clusters (C={c1, c2, ... ck})
1. k = 0;
2. FOR (i = 1) to n DO
3. IF ti is not in a cluster THEN
4. X = {tj |distance tj to ti < ε}
5. IF X is a valid cluster THEN
6. k = k + 1;
7. ck = X;
8. END IF
9. END IF

DBSCAN is a density-based clustering algorithm that generates clusters with a

given minimum size (minPts) and density threshold (ε). This feature allows the al-
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gorithm to handle the “outlier problem” by ensuring individual outliers will not be

included in a cluster. The overall number of clusters is determined by the algorithm.

DBSCAN does not perform well with data sets that feature large differences in cluster

densities because it is difficult to establish the most appropriate values of minPts and

ε. Table A.1 presents the DBSCAN algorithm.

Table A.2 lists the results obtained using the initial MADM framework (described

in Chapter 3) to identify a best cluster configuration. The F-measure (F1) was used to

evaluate the goodness of the clusters and hence to identify a best configuration. For the

experiment ten data sets were taken from the UCI machine learning data repository

[38]. Table A.2 gives the number of the clusters produced and the associated F-measure

(F1) for each of three clustering algorithms used, i.e. K-means, K-NN and DBSCAN,

and the required parameters (K, τ , minPts and ε). Recall that, the Task Agent selects

the cluster configuration with highest F1 value to be returned to the user.

Table A.2: The clustering results as produced by the MADM framework

No. Data sets K-means K-NN DBSCAN
Num F1 t Num F1 Min ε Num F1
Cls. Cls. Pts Cls.

1 Lenses 3 0.50 1.00 1 0.60 1 1.0 4 0.62
2 Iris 3 0.89 1.00 4 0.78 1 5.0 4 0.87
3 Zoo 7 0.58 2.00 9 0.73 2 4.0 7 0.77
4 Wine 3 0.71 135.00 4 0.69 10 2700.0 7 0.33
5 Heart 2 0.59 94.00 3 0.67 3 55.0 3 0.02
6 Ecoli 8 0.70 0.45 6 0.46 1 0.4 7 0.71
7 Blood Trans. 2 0.71 1100.00 6 0.69 15 120.0 8 0.19
8 Pima Indians. 2 0.64 135.00 4 0.67 10 300.0 5 0.03
9 Yeast 10 0.42 0.35 9 0.41 2 0.5 9 0.54
10 Car 4 0.48 1.45 5 0.58 2 35.0 5 0.66

Table A.3 gives the best result in each case. The results were generated by a

Validation Agent. From the table it can be seen that there is no obvious link between

particular clustering algorithms and the features associate with individual data sets.

The only thing that can be said is that DBSCAN and K-means tend (in many cases)

to outperform K-NN.

Tables A.4, A.5 and A.6 present the results using K-means, K-NN and DBSCAN

respectively. Each row in the table includes the number of classes generated, WGAD

and BGAD values. Note that the separation (BGAD) for the Lense data set, using

K-NN, is 0.00 because K-NN allocated all records to a single cluster!

Table A.7 gives a comparison of the best cluster configurations when selection made

using: (i) minimising the WGAD or (ii) maximising the BGAD.

Table A.8 gives the actual accuracy, using all three algorithms. The overall accuracy

is calculated as described in Chapter 3, Section 3.3. By cross referencing Table A.7
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Table A.3: The “best” cluster result provided by the MADM framework

No. Data sets Overall F-Measure Best clustering algo.

1 Lenses 0.62 DBSCAN
2 Iris 0.89 K-means
3 Zoo 0.77 DBSCAN
4 Wine 0.71 K-means
5 Heart 0.67 K-NN
6 Ecoli 0.71 DBSCAN
7 Blood Transfusion 0.71 K-means
8 Pima Indians. 0.67 K-NN
9 Yeast 0.54 DBSCAN

10 Car 0.66 DBSCAN

Table A.4: Muti-Agent Based Clustering Results using the K-means algorithm.

No. Data Set K-means
Num WGAD BGAD
Cls.

1 Lenses 3 2.41 1.41
2 Iris Plants 3 1.95 3.62
3 Zoo 7 7.32 5.99
4 Wine 3 21.14 24.81
5 Heart 2 10.71 10.78
6 Ecoli 8 1.67 1.07
7 Blood Trans. 2 30.62 31.96
8 Pima Indians 2 44.06 21.18
9 Yeast 10 1.67 0.75
10 Car 4 8.52 3.31

Table A.5: Muti-Agent Based Clustering Results using the K-NN algorithm.

No. Data Set K-NN
Num WGAD BGAD
Cls.

1 Lenses 1 1.17 0.00
2 Iris Plants 4 2.34 4.26
3 Zoo 9 6.76 9.88
4 Wine 3 22.97 41.80
5 Heart 3 13.84 19.09
6 Ecoli 13 1.47 1.78
7 Blood Trans. 2 31.08 35.03
8 Pima Indians 3 38.93 96.64
9 Yeast 9 1.46 1.62
10 Car 5 10.40 3.76
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Table A.6: Muti-Agent Based Clustering Results using the DBSCAN algorithm.

No. Data Set DBSCAN
Num WGAD BGAD
Cls.

1 Lenses 2 1.65 0.94
2 Iris Plants 3 3.22 2.16
3 Zoo 7 6.69 6.80
4 Wine 4 10.63 16.75
5 Heart 4 4.56 15.14
6 Ecoli 10 2.41 1.16
7 Blood Trans. 5 33.93 45.05
8 Pima Indians 9 53.26 40.19
9 Yeast 9 2.11 0.57
10 Car 5 6.69 3.48

Table A.7: A comparison of WGAD and BGD measures.

No. Data Set Num WGAD Best Num BGD Best
Classes clustering Classes clustering

algo. algo.

1 Lenses 1 1.17 K-NN 3 1.41 K-means
2 Iris Plants 3 1.95 K-means 4 4.26 K-NN
3 Zoo 7 6.69 DBSCAN 9 9.88 K-NN
4 Wine 4 10.63 DBSCAN 3 41.80 K-NN
5 Heart 4 4.56 DBSCAN 3 19.09 K-NN
6 Ecoli 13 1.47 K-NN 13 1.78 K-NN
7 Blood Trans. 2 30.62 K-means 5 45.05 DBSCAN
8 Pima Indians 3 38.93 K-NN 3 96.64 K-NN
9 Yeast 9 1.46 K-NN 9 1.62 K-NN
10 Car 5 6.69 DBSCAN 5 3.76 K-NN
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and Table A.8 it can be seen that with respect to the Lenses, Pima and Car data

sets both metrics identify the most appropriate clustering configuration (although not

necessarily using the same algorithm). In three cases (Wine, Ecoli and Y east) neither

approach finds the most appropriate cluster configuration.

Table A.8: Comparison of the accuracy values obtained using the K-means, K-NN, and
DBSCAN algorithms.

No. Data Set K-means K-NN DBSCAN Best
Accuracy Accuracy Accuracy clustering algo.

1 Lenses 0.62 0.62 0.62 K-means,K-NN,DBSCAN
2 Iris 0.89 0.84 0.67 K-means
3 Zoo 0.78 0.83 0.85 DBSCAN
4 Wine 0.54 0.41 0.16 K-means
5 Heart 0.62 0.67 0.09 K-NN
6 Ecoli 0.83 0.71 0.87 DBSCAN
7 Blood 0.76 0.76 0.25 K-means, K-NN
8 Pima 0.65 0.65 0.12 K-means,K-NN
9 Yeast 0.53 0.34 0.64 DBSCAN
10 Car 0.70 0.70 0.70 K-means,K-NN,DBSCAN

A criticism of DBSCAN is the requirement for user-supplied parameters. It is

difficult to identify the most appropriate ε. Another issue is that DBSCAN does not

work well on small data sets because DBSCAN relies on a density-based notion of

clusters. If DBSCAN is used to cluster a small data set, some genuine data objects

are categorised as noisy data and therefore not included in any clusters. Most of

clustering algorithms are designed for numeric data by using distance measure for a

similarity function. The all include non-numeric attributes Lense, Zoo and Car data

sets. Lense is a small data set containing 24 records and including 4 nominal data

attributes, whereas Zoo comprises 15 boolean attributes and 1 numeric attribute. Car

comprises 6 attributes of nominal. These ideally data sets require clustering approach

that are designed to operate specifically with data types such as boolean or nominal.
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