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Abstract.  
In this paper we extend the problem of mining weighted association rules. A 

classical model of boolean and fuzzy quantitative association rule mining is 

adopted to address the issue of invalidation of downward closure property 

(DCP) in weighted association rule mining where each item is assigned a 

weight according to its significance w.r.t some user defined criteria. Most 

works on DCP so far struggle with invalid downward closure property and 

some assumptions are made to validate the property. We generalize the problem 

of downward closure property and propose a fuzzy weighted support and 

confidence framework for boolean and quantitative items with weighted 

settings. The problem of invalidation of the DCP is solved using an improved 

model of weighted support and confidence framework for classical and fuzzy 

association rule mining. Our methodology follows an Apriori algorithm 

approach and avoids pre and post processing as opposed to most weighted 

ARM algorithms, thus eliminating the extra steps during rules generation. The 

paper concludes with experimental results and discussion on evaluating the 

proposed framework.  

Keywords: Association rules, fuzzy, weighted support, weighted confidence, 

downward closure. 

1   Introduction 

The task of mining Association Rules (ARs) is mainly to discover association rules 

(with strong support and high confidence) in large databases. Classical Association 

Rule Mining (ARM) deals with the relationships among the items present in 

transactional databases [9, 10] consisting binary (boolean) attributes. The typical 

approach is to first generate all large (frequent) itemsets (attribute sets) from which 

the set of ARs is derived. A large itemset is defined as one that occurs more 

frequently in the given data set than a user supplied support threshold. To limit the 

number of ARs generated a confidence threshold is used. The number of ARs 

generated can therefore be influence by careful selection of the support and 



confidence thresholds, however great care must be taken to ensure that itemsets with 

low support, but from which high confidence rules may be generated, are not omitted.  

Given a set of items },...,{ 21 miiiI =  and a database of transactions 

},...,{ 21 ntttD =  where },...,{
21 piiii IIIt = , mp ≤  and II

ji ∈ , if IX ⊆  

with K = |X| is called a k-itemset or simply an itemset. Let a database D be a multi-set 

of subsets of I as shown. Each DT ∈  supports an itemset IX ⊆  if TX ⊆  

holds. An association rule is an expression X � Y, where X, Y are item sets 

and ∅=∩YX holds. Number of transactions T supporting an item X w.r.t D is 

called support of X, ||/}|{|)( DTXDTXSupp ⊆∈= . The strength or 

confidence (c) for an association rule X � Y is the ratio of the number of transactions 

that contain X U Y to the number of transactions that contain X, Conf (X � Y) = 

Supp (X U Y)/ Supp (X).  

For non-boolean items fuzzy association rule mining was proposed using fuzzy 

sets such that quantitative and categorical attributes can be handled [12]. A fuzzy 

quantitative rule represents each item as (item, value) pair. Fuzzy association rules are 

expressed in the following form:   

If X is A satisfies Y is B  

e.g. if (age is young) � (salary is low). 

Given a database T, attributes I with itemsets IYIX ⊂⊂ , and  

},...,{ 21 nxxxX =  and },...,{ 21 nyyyY = and ∅=∩YX , we can define fuzzy 

sets },...,,{ 21 nfxfxfxA = and },...,,{ 21 nfxfxfxB = associated to X and 

Y respectively. For example ),( YX  could be (age, young), (age, old), (salary, high) 

etc. The semantics of the rule is that when the antecedent “X is A” is satisfied, we can 

imply that “Y is B” is also satisfied, which means there are sufficient records that 

contribute their votes to the attribute fuzzy set pairs and the sum of these votes is 

greater than the user specified threshold.  

However, the above ARM frameworks assume that all items have the same 

significance or importance i.e. their weight within a transaction or record is the same 

(weight=1) which is not always the case. For example, [wine � salmon, 1%, 80%] 

may be more important than [bread � milk, 3%, 80%] even though the former holds 

a lower support of 1%. This is because those items in the first rule usually come with 

more profit per unit sale, but the standard ARM simply ignores this difference. 

Table 1. Weigted Items Database Table 2. Transactions 

ID Item Profit Weight … 

1 Scanner 10 0.1 … 

2 Printer 30 0.3 … 

3 Monitor 60 0.6 … 

4 Computer 90 0.9 …  

TID Items 

1 1,2,4 

2 2,3 

3 1,2,3,4 

4 2,3,4 

 

Weighted ARM deals with the importance of individual items in a database [2, 3, 

4]. For example, some products are more profitable or may be under promotion, 



therefore more interesting as compared to others, and hence rules concerning them are 

of greater value.  

In table 1, items are assigned weights (w) based on their significance. These 

weights may be set according to an item’s profit margin. This generalized version of 

ARM is called Weighted Association Rule Mining (WARM). From table 1, we can 

see that the rule Computer � Printer is more interesting than Computer � Scanner 

because the profit of a printer is greater than that of a scanner. The main challenge in 

weighted ARM is that “downward closure property” doesn’t hold, which is crucial for 

efficient iterative process of generating and pruning frequent itemsets from subsets.  

In this paper we address the issue of downward closure property (DCP) in WARM. 

We generalize and solve the problem of DCP and propose a weighted support and 

confidence framework for datasets with boolean and quantitative items for classical 

and fuzzy WARM (FWARM). We evaluate our proposed framework with 

experimental results. 

The paper is organised as follows: section 2 presents background and related work; 

section 3 & 4 gives problem definition 1 & 2 respectively; section 5 details weighted 

downward closure property; section 6 presents FWARM algorithm, section 7 reviews 

experimental results and section 8 concludes paper with directions for future work. 

2   Background and Related Work 

In classical ARM, data items are viewed as having equal importance but recently 

some approaches generalize this where items are given weights to reflect their 

significance to the user [4]. The weights may correspond to special promotions on 

some products or the profitability of different items etc. Currently, two approaches 

exist: pre- and post-processing. Post processing solves first the non-weighted problem 

(weights=1 per item) and then prunes the rules later. Pre-processing prunes the non-

frequent itemsets earlier by considering their weights in each database scan. The issue 

in post-processing weighted ARM is that first; items are scanned without considering 

their weights. Finally, the rule base is checked for frequent weighted ARs. This gives 

us a very limited itemset pool for weighted ARs and may miss many potential 

itemsets. In pre-processing, fewer rules are obtained as compared to post processing 

because many potential frequent super sets are missed.  

In [2] a post-processing model is proposed. Two algorithms were proposed to mine 

itemsets with normalized and un-normalized weights. The K-support bound metric 

was used to ensure validity of the closure property. Even that didn’t guarantee every 

subset of a frequent set being frequent unless the k-support bound value of (K-1) 

subset was higher than (K). 

An efficient mining methodology for Weighted Association Rules (WAR) is 

proposed in [3]. A Numerical attribute was assigned for each item where the weight 

of the item was defined as part of a particular weight domain. For example, soda[4,6] 

� snack[3,5] means that if a customer purchases soda in the quantity between 4 and 6 

bottles, he is likely to purchase 3 to 5 bags of snacks. WAR uses a post-processing 

approach by deriving the maximum weighted rules from frequent itemsets. Post WAR 

doesn’t interfere with the process of generating frequent itemsets but focuses on how 



weighted AR’s can be generated by examining weighting factors of items included in 

generated frequent itemsets.  

Similar techniques were proposed for weighted fuzzy quantitative association rule 

mining [5, 7, 8]. In [6], a two-fold pre processing approach is used where firstly, 

quantitative attributes are discretised into different fuzzy linguistic intervals and 

weights assigned to each linguistic label. A mining algorithm is applied then on the 

resulting dataset by applying two support measures for normalized and un-normalized 

cases. The closure property is addressed by using the z-potential frequent subset for 

each candidate set. An arithmetic mean is used to find the possibility of frequent 

k+1itemset, which is not guaranteed to validate the downward closure property.  

Another significance framework that handles the DCP problem is proposed in [1]. 

Weighting spaces were introduced as inner-transaction space, item space and 

transaction space, in which items can be weighted depending on different scenarios 

and mining focus. However, support is calculated by only considering the transactions 

that contribute to the itemset. Further, no discussions were made on interestingness 

issue of the rules produced  

In this paper we present a fuzzy weighted support and confidence framework to 

mine weighted boolean and quantitative data (by fuzzy means) to address the issue of 

invalidation of downward closure property. We then  show that using the proposed 

framework, rules can be generated efficiently with a valid downward closure property 

without biases made by pre- or post-processing approaches.  

3   Problem Definition One (Boolean) 

Let the input data D  have transactions },,,,{
321

nttttT L= with a set of items 

},,,,{ ||321 IiiiiI L=  and a set of weights },,,{ ||21 IwwwW L=  associated with 

each item. Each i
th
 transaction it  is some subset of I and a weight w  is attached to 

each item ][ ji it  (“j
th
” item in the “i

th
” transaction).  

Table 3. Transactional Database Table 4. Items with weights 

T Items  

t1 A B C D E 

t2 A C E 

t3 B D 

t4 A D E 

t5 A B C D   

Items i Weights (IW) 

A 0.1 

B 0.3 

C 0.6 

D 0.9 

E 0.7  
 

Thus each item ji will have associated with it a weight corresponding to the set 

W , i.e. a pair ),( wi  is called a weighted item where Ii∈ . Weight for the “j
th
” item 

in the “i
th
” transaction is given by ]][[ wit ji .  



We illustrate the concept and definitions using tables 3 and 4. Table 3 contains 

transactions for 5 items. Table 4 has corresponding weights associated to each item i 

in T. In our definitions, we use sum of votes for each itemset by aggregating weights 

per item as a standard approach.  

Definition 1 Item Weight IW  is a non-negative real value given to each item 

ji ranging [0..1] with some degree of importance, a weight ][wi j . 

Definition 2 Itemset Transaction Weight ITW  is the aggregated weights (using 

some aggregation operator) of all the items in the itemset present in a single 

transaction. Itemset transaction weight for an itemset X is calculated as: 

∏
=

∈∀=
||

1

)]][[( ]][[ satisfying for  vote
X

k

kiXwii witXt  (1) 

Itemset transaction weight of itemset (B, D) is calculated as: 

27.09.03.0),( =×=DBITW  

Definition 3 Weighted Support WS is the aggregated sum of itemset transaction 

weight (votes) ITW  of all the transactions in which itemset is present, divided by 

the total number of transactions. It is calculated as: 

( )
n

wit

T

X
XWS

n

i

X

k

kiXwi∑∏
= =

∈∀

== 1

||

1

)]][[( ]][[

in  records ofNumber 

  satisfying  votesof Sum
 

(2)

Weighted Support WS  of itemset (B, D) is calculated as: 

162.0
5

81.0

in  records ofNumber 

 D)B,( satisfying  votesof Sum
),( ===

T
DBWS  

 

Definition 4 Weighted Confidence WC is the ratio of sum of votes satisfying both 

YX∪  to the sum of votes satisfying X . It is formulated (with YXZ ∪= ) as: 

∑
∏

∏

=

=

∈∀

=

∈∀

==→
n

i
X

k

kiXwi

Z

k

kiZwz

wxt

wzt

XWS

ZWS
YXWC

1
||

1

)]][[(

||

1

)]][[(

]][[

]][[

)(

)(
)(  (3) 

Weighted Confidence WC of itemset (B, D) is calculated as: 

89.0
18.0

16.0

)(

)(

)(

)(

)(

)(
),( ==

∪
=

∪
==

BWS

DBWS

XWS

YXWS

XWS

ZWS
DBWC  



4   Problem Definition Two (Quantitative/Fuzzy) 

Let a dataset D  consists of a set of transactions },,,,{
321

nttttT L= with a set of 

items },,,,{ ||321 IiiiiI L= . A fuzzy dataset D′ consists of fuzzy transactions 

},...,,,{ 321 n
ttttT ′′′′=′  with fuzzy sets associated with each item in I , which is 

identified by a set of linguistic labels },...,,,{ ||321 LllllL =  (for example 

}arg,,{ elmediumsmallL = ). We assign a weight w  to each l  in L associated 

with i . Each attribute ][ ji it ′  is associated (to some degree) with several fuzzy sets.  

Table 5. Fuzzy Transactional Database Table 6. Fuzzy Items with weights 

X Y 
TID 

Small Medium Small Medium 

1 0.5 0.5 0.2 0.8 

2 0.9 0.1 0.4 0.6 

3 1.0 0.0 0.1 0.9 

4 0.3 0.7 0.5 0.5 

Fuzzy Items 

i[l] 

Weights 

(IW) 

(X, Small) 0.9 

(X, Medium) 0.7 

(Y, Small) 0.5 

(Y, Medium) 0.3  

The degree of association is given by a membership degree in the range ]1..0[ , 

which indicates the correspondence between the value of a given ][ ji it ′  and the set of 

fuzzy linguistic labels. The “k
th
” weighted fuzzy set for the “j

th
” item in the “i

th
” fuzzy 

transaction is given by ]]][[[ wlit kji
′ . Thus each label kl  for item ji would have 

associated with it a weight, i.e. a pair )]],[([ wli is called a weighted item where 

Lli ∈]][[ is a label associated with i  and Ww∈ is weight associated with label l . 

We illustrate the fuzzy weighted ARM concept and definitions using tables 5 and 

6. Table 5 contains transactions for 2 quantitative items discretised into two 

overlapped intervals with fuzzy vales. Table 4 has corresponding weights associated 

to each fuzzy item i[l] in T. 

Definition 5 Fuzzy Item Weight FIW  is a value attached with each fuzzy set. It is 

a non-negative real number value range ]1..0[ w.r.t some degree of importance (table 

6). Weight of a fuzzy set for an item ji  is denoted as ]][[ wli kj .  

Definition 6 Fuzzy Itemset Transaction Weight FITW  is the aggregated weights 

of all the fuzzy sets associated to items in the itemset present in a single transaction. 

Fuzzy Itemset transaction weight for an itemset (X, A) is calculated as: 

∏
=

∈∀
′=′

||

1

)]]][[[( ]]][[[ satisfying for  vote
L

k

kjiXwlii wlitXt  (4) 

Let’s take an example of itemset <(X, Medium), (Y, Small)> denoted by (X, 

Medium) as A and (Y, Small) as B. Fuzzy Itemset transaction weight FITW of 



itemset (A, B) in transaction 1 is calculated as 

035.)1.0()35.0()5.02.0()7.05.0(),( =×=×××=BAFITW  

Definition 7: Fuzzy Weighted Support FWS is the aggregated sum of FITW  of 

all the transactions itemset is present, divided by the total number of transactions. It is 

denoted as: 

( )
T

X
XFWS

in  records ofNumber 

  satisfying  votesof Sum
=  

n

wlit
n

i

L

k

kjiXwli∑∏
= =

∈∀
′

= 1

||

1

)]]][[[( ]]][[[

 
(5) 

Weighted Support FWS  of itemset (A, B) is calculated as: 

043.0
4

172.0

in  records ofNumber 

 B)A,( satisfying  votesof Sum
),( ===

T
BAFWS  

Definition 8: Fuzzy Weighted Confidence FWC is the ratio of sum of votes 

satisfying both YX∪  to the sum of votes satisfying X with YXZ ∪= . It is 

formulated as: 

∑
∏

∏

=

=

∈∀

=

∈∀

′

′

==→
n

i
X

k

kiXwi

Z

k

kiZwz

wxt

wzt

XFWS

ZFWS
YXFWC

1
||

1

)]][[(

||

1

)]][[(

]][[

]][[

)(

)(
)(

 

(6) 

FWC (A, B) is calculated as: 19.0
227.0

043.0

)(

)(

)(

)(
),( ==

∪
==

AWS

BAWS

XWS

ZWS
BAFWC  

5   Downward Closure Property (DCP) 

In a classical Apriori algorithm it is assumed that if the itemset is large, then all its 

subsets should also be large and is called Downward Closure Property (DCP). This 

helps algorithm to generate large itemsets of increasing size by adding items to 

itemsets that are already large. In the weighted ARM case where each item is assigned 

a weight, the DCP does not hold. Because of the weighted support, an itemset may be 

large even though some of its subsets are not large. This violates DCP (see table 7). 

Table 7. Frequent itemsets with invalid DCP (weighted settings) 

Large Itemsets Support 

(40%) 

Large? Weighted Support 

(0.4) 

Large 

AB 40% Yes 0.16 No 

AC 60% Yes 0.42 Yes 

ABC 40% Yes 0.4 Yes 

BC 40% Yes 0.36 No 

BD 60% Yes 0.72 Yes 

BCD 40% Yes 0.72 Yes 



 

Table 7 shows four large itemsets of size 2 (AB, AC, BC, BD) and two large 

itemsets of size 3 (ABC, BCD), generated using tables 3 and 4. In classical ARM, 

when the weights are not considered, all of the six itemsets are large. But if we 

consider items’ weights and calculate the weighted support of itemsets according to 

definition 3 and 7, a new set of support values are obtained. In table 7, although the 

classical support of all itemsets is large, if ABC and BCD are frequent then their 

subsets must be large according to classical ARM. But considering the weighted 

support, AB and BC are no longer frequent.  

5.1   Weighted Downward Closure Property (DCP) 

We now argue that the DCP with boolean and fuzzy data can be validated by using 

this new weighted framework. We give a proof and an example to illustrate this. 

Consider figure 1, where items in the transaction are assigned weights and a user 

defined supports threshold is set to 0.01.  

In figure 1, for each itemset, weighted support WS (the number above each 

itemset) is calculated by using definition 3 and weighted confidence WC (the number 

on top of each itemset i.e. above weighted support) is calculated by using definition 4. 

If an itemset weighted support is above the threshold, the itemset is frequent and we 

mark it with colour background, otherwise it is with white background, meaning that 

it’s not large. 

 

Fig. 1. The lattice of frequent itemsets 

It can be noted that if an itemset is with white background i.e. not frequent, then 

any of its supersets in the upper layer of the lattice can not be frequent. Thus 



“weighted downward closure property”, is valid under the “weighted support” 

framework. It justifies the efficient mechanism of generating and pruning significance 

iteratively. 

We also briefly prove that the DCP is always valid in the proposed framework. The 

following lemma applies to both boolean and fuzzy/quantitative data and is stated as: 

 

Lemma  

If an itemset is not frequent them its superset cannot be frequent and 

)()( sueprsetWSsubsetWS ≥  is always true.   

 

Proof  

Given an itemset X not frequent i.e. wsXws min_)( < . For any itemset 

YXY ⊂,  i.e. superset of X, if a transaction t has all the items in Y, i.e. tY ⊂ , then 

that transaction must also have all the items in X, i.e. tX ⊂ . We use tx to denote a 

set of transactions each of which has all the items in X, i.e. 

)},(,|{ tXtxtTtxtx ⊂∈∀⊆ . Similarly we have 

)},(,|{ tYtytTtyty ⊂∈∀⊆ . Since YX ⊂  , we have tytx ⊂ . Therefore 

)()( tyWStxWS ≥ . According to the definition of weighted support, 

n

wit

X

n

i

X

k

kiXwi∑∏
= =

∈∀

= 1

||

1

)]][[( ]][[

)WS(  the denominator stays the same, therefore we have 

)()( YWSXWS ≥ . Because wsXws min_)( < , we get wsYws min_)( < . 

This then proves that Y is not frequent if its subset is not frequent. 

Figure 1 illustrates a concrete example. Itemset AC appears in transaction 1, 5 and 

8, therefore the WS (AC) = 0.018. Intuitively, the occurrence of its superset ACE is 

only possible when AC appears in that transaction. But itemset ACE only appears in 

transactions 1 and 8, thus WS (ACE) = 0.0024, where WS (ACE) <WS (AC). 

Summatively, if AC is not frequent, it’s superset ACE is impossible to be frequent; 

hence there is no need to calculate its weighted support. 

6   FWARM Algorithm 

For fuzzy weighted association rule mining standard ARM algorithms can be used 

or at least adopted after some modifications. The proposed Fuzzy Weighted ARM 

(FWARM) algorithm belongs to the breadth first traversal family of ARM 

algorithms, developed using tree data structures [13] and works in a fashion similar to 

the Apriori algorithm [10].  

The FWARM algorithm is given in Table 8. In the Table: kC is the set of 

candidate itemsets of cardinality k , w  is the set of weights associated to 

items I . F is the set of frequent item sets, R is the set of potential rules and R′ is 
the final set of generated fuzzy weighted ARs.  



Table 8: FWARM Algorithm 

Input: 

T  = data set 

w  = itemset weights 

ws  = weighted support 
wc  = weighted confidence 
Output: 

R′ = Set of Weighted ARs 

1. k = 0;  Ck  = ∅; Fk  = ∅ 

2.  sets item 1 ofSet =kC  

3. 1⇐k  

4. Loop 

5.    if ∅=kC  break 

6.    kCc∈∀  

7.        c.weightedSupport⇐weighted support count  

8.      if min_wsupportw. >eightedSc  

9.           cFF ∪⇐   

10.     1+⇐ kk    

11.     Ck = generateCandidates(Fk-1) 

12. End Loop 

13. Ff ∈∀  

14.     generate set of candidate rules },...,{ 1 nrr  

15.     },...,{ 1 nrrRR ∪⇐  

16. Rr ∈∀  
17.     r.weightedConfidence⇐weighted confidence value 

18.   if r.weightedConfidence>min_wc rRR ∪′⇐′   

7   Experimental Results 

We performed several experiments using a T10I4D100K (average of 10 items per 

transaction, average of 4 items per interesting set, 10K attributes and 100K 

transactions) synthetic data set. The data set was generated using the IBM Quest data 

generator. Two sets of experiments were undertaken with four different algorithms 

namely Boolean WARM (BWARM), Fuzzy WARM (FWARM), Classical Apriori 

ARM and Classical WARM shown in the results below: 

1. In the first experiment we tested algorithms using both boolean and fuzzy 

datasets and compared the outcome with classical ARM and WARM algorithms. 

Experiments show (i) the number of frequent sets generated (using four 



algorithms), (ii) the number of rules generated (using weighted confidence) and 

(iii) execution time using all four algorithms. 

2. Comparison of execution times using different weighted supports and data sizes. 

7.1.  Experiment One: (Quality Measures) 

For experiment one, the T10I4D100K dataset described above was used with 

weighted attributes. Each item is assigned a weight range between ]1..0[ . With fuzzy 

dataset each attribute is divided into five different fuzzy sets. Figure 3 shows the 

number of frequent itemsets generated using (i) weighted boolean dataset and (ii) with 

weighted quantitative attributes with fuzzy partitions (iii) classical ARM with boolean 

dataset and (iv) and WARM with weighted boolean datasets. A range of support 

thresholds was used.  

 

  

Fig. 2. No. of frequent Itemsets Fig. 3. No. of Interesting Rules 

As expected the number of frequent itemsets increases as the minimum support 

decreases in all cases. In figure 2, BWARM shows the number of frequent itemsets 

generated using weighted boolean datasets. FWARM shows the number of frequent 

itemsets using attributes with fuzzy linguistic values, Classical Apriori shows the 

number of frequent itemset using boolean dataset and classical WARM shows number 

of frequent itemsets generated using weighted boolean datasets with different 

weighted support thresholds. More frequent itemsets and rules are generated because 

of large itemset pool.  

We do not use Apriori ARM to first find frequent itemsets and then re-prune them 

using weighted support measures. Instead all the potential itemsets are considered 

from beginning for pruning using Apriori approach in order to validating the DCP. In 

contrast classical WARM only considers frequent itemsets and prunes them (using pre 

or post processing). This generates less frequent itemsets and misses potential ones. 

Figures 3 shows the number of interesting rules generated using weighted 

confidence, fuzzy weighted confidence and classical confidence values respectively. 

In all cases, the number of interesting rules is less as compared to figure 2. This is 

because the interestingness measure generates fewer rules. Figure 4 shows the 

execution time of four algorithms.  



 

Fig. 4.  Execution time to generate frequent itemsets 

The experiments show that the proposed framework produces better results as it 

uses all the possible itemsets and generates rules using the DCP. Further, the novelty 

is the ability to analyse both boolean and fuzzy datasets with weighted settings. 

7.2. Experiment Two: (Performance Measures) 

Experiment two investigated the effect on execution time caused by varying the 

weighted support and size of data (number of records). A support threshold from 0.1 

to 0.6 and confidence 0.5 was used. Figures 5 and 6 show the effect on execution time 

by increasing the weighted support and number of records. To obtain different data 

sizes, we partitioned T10I4D100K into 10 equal horizontal partitions labeled 10K, 

20K... 100K. 

 

  

Fig. 5. Performance: weighted support Fig. 6. Performance: fuzzy weighted support 

Different weighted support thresholds were used with different datasets. Similarly 

from figures 5 and 6, the algorithms scales linearly with increasing weighted support 

and fuzzy weighted support thresholds and number of records, similar behaviour to 

Classical ARM.  



8   Conclusion and future work 

In this paper, we have presented a weighted support and confidence framework for 

mining weighted association rules with (Boolean and quantitative data) by validating 

the downward closure property (DCP). We used classical and fuzzy ARM to solve the 

issue of invalidation of DCP in weighted ARM. We generalized the DCP and 

proposed a fuzzy weighted ARM framework. The problem of invalidation of 

downward closure property is solved using improved model of weighted support and 

confidence framework for classical and fuzzy association rule mining.  

There are still some issues with different measures for validating DCP, 

normalization of values etc which are worth investigating.  
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