
Querying Encrypted Graph Databases

Nahla Aburawi, Alexei Lisitsa and Frans Coenen
Department of Computer Science, University of Liverpool, UK

{nahla.aburawi, A.lisitsa, coenen}@liverpool.ac.uk

Keywords: Graph Databases, Database Security, CryptDB, Encryption

Abstract: We present an approach to execution of queries on encrypted graph databases. The approach is inspired
by CryptDB system for relational DBs (R. A. Popa et al). Before processing a graph query is translated
into encrypted form which then executed on a server without decrypting any data; the encrypted results are
sent back to a client where they are finally decrypted. In this way data privacy is protected at the server
side. We present the design of the system and empirical data obtained by experimentation with a prototype,
implemented for Neo4j graph DBMS and Cypher query language, utilizing Java API. We report the efficiency
of query execution for various types of queries on encrypted and non-encrypted Neo4j graph databases.

1 INTRODUCTION

Recently proposed CryptDB approach (Popa
et al., 2011) provides a powerful and elegant mech-
anism for security protection of data against server
based attacks. The key idea of CryptDB is that by
choosing an appropriate encryption scheme, the data
stored on the database server in an encrypted form
never need to be decrypted at the server side, not even
during the execution of the queries. In this way, nei-
ther a curious database administrator, nor an attacker
having full access to the server can learn sensitive
data. To some extent such a mechanism allows the
alleviation security concerns of outsourced computa-
tions, such as those in cloud environments. Another
advantage of CryptDB approach is that it does not re-
quire any changes in the server software. All func-
tionality is implemented in a front-end component
which intercepts users’ queries in transit, rewrites
them and passes to the server for execution.

The original CryptDB system (Popa et al., 2011)
was designed for relational data model and database
management systems. It demonstrated good per-
formance by imposing reasonable overhead on the
server and bringing querying over encrypted data
into the realm of practical applications. This could
be compared favourably with the generic computa-
tions over encrypted data, which, despite the remark-
able recent progress in fully homomorphic encryp-
tion schemes remain computationally expensive and
practically challenging. The good performance of
CryptDB has been achieved by utilizing a collection

of SQL-aware encryption schemes, which is allowed
to reveal only the necessary information to execute
the various types of SQL-queries, still keeping data
itself hidden. One particular challenge was to sup-
port Join operations and this required introduction of
a new cryptographic primitive.

In this paper, we address the development of
CryptDB-like mechanism for graph databases, which
have recently become very popular. The graph data
model with nodes and links bearing data elements
and labels allows for more natural and straightforward
data modeling in many contexts. Furthermore graph
querying mechanisms could be considerably more ef-
ficient than relational ones for some types of queries.

There are several popular implementations of
Graph DBMS available (Robinson et al., 2013;
Vukotic et al., 2014; tit,). In a work reported here we
have used Neo4j, version 2.3.9, by Neo Technology
Inc. Neo4j database management system comes with
the graph query language Cypher. Cypher is a declar-
ative language with a syntax gives a natural way to
express the patterns of nodes and relationships in the
graph to be matched during the query execution. It
is not require to describe how we can do the select,
insert, update or delete from our graph data.

In this paper, we aim to take CryptDB principles
as they are implemented for relational databases and
transfer them to graph databases. We first elabo-
rate requirements for CryptGraphDB component for
Cypher query languages and Neo4j database system.
It has turned out that SQL-aware encryption schemes
can be seamlessly re-used as Cypher-aware schemes,

at the same time preserving the performance advan-
tages of traversal graph queries over equivalent rela-
tional ones.

In the rest of the paper, we present the design
of the system and empirical data obtained by exper-
imentation with a prototype, implemented for Neo4j
graph DBMS and Cypher query language, utilizing
Java API. We report the efficiency of query execution
for various types of queries on encrypted and non-
encrypted Neo4j graph databases.

2 PROPOSED DESIGN

In our project we aim to take CryptDB principles
as they are implemented in relational databases and
apply them to graph databases. We first elaborate re-
quirements for the proposed CryptGraphDB compo-
nent of Cypher query language and Neo4j database
system.

2.1 CryptGraphDB

CryptGraphDB works by enabling the execution of
Cypher queries over encrypted data. We adopt
three ideas originally proposed in CryptDB for re-
lational DBMS: a Cypher-aware encryption strategy,
adjustable query-based encryption, and onion encryp-
tion.

2.1.1 Cypher-aware encryption strategy

CryptGraphDB should enable the applications of dif-
ferent encryption schemes depending on the queries
to be executed, so it maps Cypher queries to the en-
cryption schemes to be used.

2.1.2 Adjustable query-based encryption

The adjustable query-based encryption is the main
feature of CryptGraphDB. Some queries do not re-
quire any checking or comparison, so the nodes prop-
erties will be encrypted with RND (random level of
encryption not revealing any information; different
instances of equal plain texts are likely mapped to dif-
ferent encrypted texts). For the nodes properties that
are required to be checked for equality during query
execution, DET, that is deterministic level of encryp-
tion mapping equal plain texts to equal encrypted
texts, is used. As a result, we need to allow Crypt-
GraphDB to adjust the encryption level of each data
item based on user queries. This could be done ei-
ther in advance, if a set of queries is fixed in advance,
or during run time, in which case an adjustable onion
layered encryption should be used.

Figure 1: Onion layers of encryption.

2.1.3 Onion Layers of Encryptions

Onion Layers of Encryption allow changes to data en-
cryption levels in an efficient way. To implement ad-
justable query-based encryption, the onion of encryp-
tion allows the encryption of each data item. Each
layer of each onion enables some kinds of functional-
ity. As an example, outermost layers such as RND
and HOM give maximum security, while the inner
layers such as OPE provide more functionality. So,
the adjustable query-based encryption dynamically
adapts the layer of encryption on the DBMS server
as illustrated in Figure 1.

Different cryptographic systems are available to
be cascaded into onions layers (here we follow the
original CryptDB design):

• Random (RND). RND provides the maximum
privacy, it was designed to address, that two equal
values will be planned to different ciphertexts.
RND does not allow any efficient computation to
be executed on the ciphertext.

• Homomorphic encryption (HOM). HOM is an
encryption scheme that allows the server to per-
form computations on encrypted data to be secure.

• Word search (SEARCH). SEARCH allows the
implementation of a cryptographic protocol for
keyword searches on encrypted text. SEARCH
allows the server to detect repeating words in a
given node.

• Deterministic (DET). DET only leaks which en-
crypted values match to the same data value, and
no more. DET was implemented to let the equal-
ity checks to be performed.

• Order-preserving encryption (OPE). OPE al-
lows to establish order relations and perform com-
parisons between data values based on their en-
crypted versions.

2.1.4 Graph vs Relational CryptDB

The main requirement for encryption adjustment is
that it has to select an appropriate encryption layer
which would 1) reveal enough information about en-
crypted data for query execution; and 2) do not reveal
more information than necessary. It has been noticed

in (Popa et al., 2011) that the application of DET layer
for execution of SQL queries involving Join operator
may lead to unnecessary leaks of information, such
as cross-column equalities. In order to address the
issue (Popa et al., 2011) proposed a new Join-aware
encryption scheme. We notice that graph database
querying does not require Join operator and it is ab-
sent in the Cypher query language. Nevertheless, un-
der the natural translation of relational databases to
graph databases, such as by work flow proposed by
Neo4j manual (export relational database instance to
CSV file and upload it to Neo4j as a graph DB in-
stance), one may show that the issue of unnecessary
leaks remains. Furthermore the original Join-aware
encryption scheme can be used as a “property-aware”
encryption scheme for Cypher query execution. Re-
lated strategies of encryption adjustment are a subject
of our ongoing work.

Further improvement in security protection in
CryptGraphDB will come from the development of
traversal-aware encryption adjustment applied dy-
namically during the execution of graph traversal
queries. The development of such schemata and
studying the related trade-offs between efficiency and
security protection is another topic of our ongoing re-
search.

2.2 CryptGraphDB principles

The required steps to process the query by Crypt-
GraphDB are illustrated in Figure 2. Processing a
query in CryptGraphDB involves the following steps:

1. The application creates a query, which the proxy
intercepts by anonymizing [Label, Nodes, Proper-
ties] and encrypt the constants.

2. Proxy checks if the DBMS needs to adjust encryp-
tion level, if yes, issue an update query to adjust
the layer.

3. Proxy sends the encrypted query to the DBMS
server, to execute it using standard Cypher and re-
turn the encrypted results.

4. Proxy decrypts the query results, and sends them
back to the application.

In order to rewrite the query in encrypted format.
The syntactical structure of the query remains the
same, but its syntactical components are encrypted/
replaced as follows:

• Property names: (encrypted/renamed).

• Property values: (comes from the current layer
encryption value).

• Node names: (encrypted/renamed).

Figure 2: The CryptGraphDB Design.

• Relationship names: (encrypted/renamed).

• Relationship values: (comes from the current
layer encryption value).

2.3 Implemented Prototype

The first prototype of a fragment of the above Crypt-
GraphDB design is implemented using Java API.
The main focus here is to evaluate the efficiency of
execution of Cypher queries over encrypted Neo4j
database.

Several ways for integration Neo4j with client ap-
plications have been proposed. These include Neo4j
Server REST extension, using Neo4j server with
JDBC, using Neo4j’s Embedded Java API().

Embedded Java API provides with the tight inte-
gration of the client Java program with Neo4j server,
that is embedding a server into an application. So
it does not allow for the actual separation of Crypt-
GraphDB component and the server, as assumed by
the design. However, it allows for quick prototyping,
where the client, the proxy and the server are all parts
of the same application, and experimenting with the
execution of the queries on the encrypted store.

For the first prototype only one encryption layer,
that is DET has been implemented. To this end, we
have used an implementation of AES (Advanced En-
cryption Standard) algorithm available in Java Cryp-
tographic Architecture (JCA) package.

Neo4j Native Java API is used to create a Neo4j
database in the chosen path, as shown here:

GraphDatabaseFactory dbFactory = new
GraphDatabaseFactory();
GraphDatabaseService db=
dbFactory.newEmbeddedDatabase("C:/Neo4j");

Note that you will need to include this transaction:

try (Transaction tx =
graphDb.beginTx());tx.success();

in order to start Neo4j database transaction.

To execute the Cypher query we need to call
the function execute, as shown in the following
example:

ExecutionResult execResult =
execEngine.execute("MATCH (n) WHERE not(
(n)-[]-()) RETURN n");

In order to illustrate the procedure that required
to implement CryptGraphDB principles on the query,
we have a simple Cypher query:

MATCH (A:PEOPLE)-[:KNOWS]-(B:PEOPLE)
WHERE A.name= "John"
RETURN B.name;

The prototype of CryptGraphDB performs a set
of procedures:

1. Proxy informs DBMS to update the properties,
DBMS decrypts them to DET layer.

2. Proxy encrypts ”John” to its EQ onion, DET
layer encryption, then the proxy generates query
and sends it to DBMS:
MATCH (AA:PEOPLE1)-[:KNOWS1]-(BB:PEOPLE1)
WHERE AA.name1="c9Yz1Og1PdfVKBrVnOk46Q"
RETURN BB.name1;

3. Proxy receives the encrypted result, then decrypts
it. finally sends it back to the application user.

2.4 Experimental Setup

We have used the implemented prototype system to
conduct the experiments and to study the efficiency
of Cypher queries executed on an encrypted graph
database.

For the first group of the experiments we have
manually created an instance of a graph database with
250 nodes and 200 relationships. Some nodes were
intentionally left orphan, meaning they have neither
incoming, nor outgoing edges. Several types of rela-
tionships were used and the variety of paths lengths
were used from a binary relationship to a path of up
to the lengths of ten was available.

2.5 Queries

The set of queries was designed to test some of the
common types of queries. For example, traversals
are important to define data objects (nodes) originate
from or affected by some starting object or node.
Another popular operation is searching for particular
values within a specific property. The queries were

divided into two types: structural and data queries.

The structural queries:

• S0: Find all orphan nodes. Which means, find all
nodes in the graph with no incoming edges and no
outgoing edges.

• S1: Traverse all nodes, transitive closure/ regular
expression.

• S2: Traverse all the nodes in the graph.

• S3: Find all nodes with the incoming relationship,
and count them.

• S4: Find all nodes with the outgoing relationship,
and count them.

• S5: Find all nodes with the incoming relationship
and outgoing relationship, and count them.

• S6: Traverse Nodes depends on their ID.

The data queries:

• C1: Count the number of nodes whose data is
equal to specific property.

• C2: Get the nodes with a path according to spe-
cific relationships.

• C3: Count the number of nodes in the graph.

2.6 Results/ Analysis

Each query was run 12 times on the database and
execution times were collected. All times are in
milliseconds (ms). We have dropped the longest
times and the shortest times, the remaining ten times
were averaged. We have done this to make sure
that the caching does not affect the timing. The
data values were chosen randomly and in advanced
all the same values were implemented for both the
non-encrypted databases and the encrypted databases.

A summary information on the execution time for
both non-encrypted and encrypted instances of the
same database have been tabulated in table 1. For
the structure queries, S0, S1, S2, S3, S4, S5, and S6,
non-encrypted database was slightly faster, as shown
in table 1 (upper part). On the other hand, there was
also a small difference in the execution time in the
data queries, C1, C2, and C3. Overall slowdown and
acceleration, demonstrated for some of the queries,
were insignificant.

For the sake of comparison, we have executed the
same sets of queries, again over encrypted a non-
encrypted instances using the native Neo4j interface.
The results can be seen in Table 1 (lower part) . Un-
like the case of the Java API, where the wall time was

Table 1: Querying Non-encrypted and Encrypted Databases with Java Interface and Neo4j Interfaces, time in ms

Query S0 S1 S2 S3 S4 S5 S6 C1 C2 C3

Java interface

Non-encrypted DB 5030.8 5115.7 5256.6 5038.1 4931.1 5326 5455.5 5491.2 5248.8 5216.8

Encrypted DB 5058.4 5092.5 5252.1 5081.8 4881.2 5338.3 5471.9 5478.2 5287.1 5510.4

Slowdown 0.54% -0.45% -0.085% 0.86% -1.012% 0.23% 0.3% -0.24% 0.72% -5.33%

Neo4j interface

Non-encrypted DB 278.5 49 76.3 64.3 68.4 89.1 94.8 63.8 71.8 79.2

Encrypted DB 360.7 46.1 80.3 75.1 41 63 85.2 59.5 40.7 53.8

Slowdown 22.78% -5.92% 4.98% 14.38% -40.6% -29.29% -10.13% -6.74% -43.31% -32.07%

measured using Java methods, here processor time re-
ported by Neo4j is shown. That explains one or two
orders of magnitude difference between the tables.
While slowdown is reported for S0 and S2 queries run
over encrypted instance, other queries were in fact ac-
celerated.

The results look encouraging for using CryptDB-
like approach for graph databases. We need more em-
pirical evidence, though on the larger databases.

3 RELATED WORK

Security is an important issue in database manage-
ment systems and the data in a database management
system need to be protected from unauthorized ac-
cess. In this paper we have proposed CryptGraphDB
mechanism inspired by CryptDB (Popa et al., 2011;
Popa, 2014), which provides as a provable and
practical privacy against any attack on the database
server or curious database administrators. CryptDB
works by implementing SQL queries as they are
implementing on the plain database but on encrypted
database. CryptDB does not change the structure of
DBMS, in order to CryptDB consists of two parts,
the first part is a trusted client-side front-end, which
is responsible of non-encrypted database and the
secret Master key. Furthermore, the second part is an
untrusted DBMS server, it follows the schema of the
encrypted database. The database server completely
evaluates queries on encrypted data, then the results
are sent back to the client to decrypt them.

Then in (Xie and Xing, 2014) authors proposed
CryptGraph system, which aims to run graph analyt-
ics on the encrypted graph data structures to keep the
user graph data and the analytic results secure. So
they presented CryptGraph to empower the user of
encrypting their graphs before uploading them to the
cloud, and get the results back after analysis the en-
crypted graph in encrypted form, while only the user
who can decrypt them to extract the plain text form.

They have proposed to query its structure by comput-
ing polynomials. In contrast, in our work we aim to
develop a system using not a specialized graph data
structure and encodings, but rather an extension to ex-
isting general purpose graph databases, more in the
spirit of the original CryptDB system.
Our particular set of queries used in the experiments
was inspired by (Batra and Tyagi, 2012) in which a
comparative analysis of relational and graph database
querying is presented.

4 CONCLUSIONS

We have proposed CryptGraphDB system allow-
ing to execute the queries over encrypted graph
databases. We outlined the design of CryptGraphDB
and reported on experiments with an initial proto-
type system implemented with Embedded Java API
for Neo4j graph DBMS. We have shown that as
performance concerned CryptGraphDB demonstrates
promising results which warrant further development
of the system. We have also outlined the future di-
rections in the development of the encryption adjust-
ment schemes specific for graph databases, such as
property-aware and traversal-aware schemes. The im-
plementation of these schemes and investigation of
related trade-offs between efficiency and security is
a topic for our future research.

REFERENCES

Titan: Distributed graph database.
http://titan.thinkaurelius.com/.

Batra, S. and Tyagi, C. (2012). Comparative analysis of
relational and graph databases. International Journal
of Soft Computing and Engineering (IJSCE), 2(2).

Popa, R. A. (2014). Building practical systems that com-
pute on encrypted data. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2011). Cryptdb: Protecting confidentiality
with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, pages 85–100, New York,
NY, USA. ACM.

Robinson, I., Webber, J., and Eifrem, E. (2013). Graph
Databases. O’Reilly Media, Inc.

Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., and Partner,
J. (2014). Neo4J in Action. Manning Publications Co.,
Greenwich, CT, USA, 1st edition.

Xie, P. and Xing, E. P. (2014). Cryptgraph: Privacy pre-
serving graph analytics on encrypted graph. CoRR,
abs/1409.5021.

