

AbstractThe multi-agent paradigm for building

intelligent systems has gradually been accepted by researchers
and practitioners in the research field of artificial intelligence.
There are also attempts of adapting agents and agent-based
systems for creating industrial applications and providing e-
services. In this paper, we present an attempt to use agents for
constructing an online after-sale services system. The system
is decomposed into four major cooperative agents, and in
which each agent concentrates on particular aspects in the
system and expresses intelligence by using various techniques.
The proposed agent-based framework for the system is
presented at both the micro-level and the macro-level
according to the Gaia methodology. UML notations are also
used to represent some software design models. As the result
of this, agents are implemented into a framework for which
exploits Case-Based Reasoning (CBR) technique to fulfil real
life on-line services’ diagnoses and tasks.

Index TermsAgent-based framework, after-sale services,
agent-oriented software engineering

I. INTRODUCTION
In recent years, intelligent agents and multi-agent systems
have received much attention from various researchers. The
agent technology originates from the research of distributed
artificial intelligence, and is gradually becoming a new
paradigm of software development (see e.g. [22], [14], and
[6]). The multi-agent paradigm can provide both an
intelligent solution to difficult problems and a natural way
of decomposing systems into individual cooperative agents.
Therefore, it is very promising that the agent technology
can be widely adopted by the industry for developing
complex software. Actually, several industrial applications
using agent technology have already been reported in the
literature (see e.g. [13], [2], and [11]).

In particular, this agent-based software engineering
approach has been effectively adopted in constructing e-
services systems in order to achieve the objectives as
follows:

• The first objective is to improve the quality of e-
services. As e-services are mainly aiming at

This project was supported by the Department of Trade and Industry under
the Foresight ‘Link’ programme in conjunction with partners Stoves PLC
and NA Software Ltd.

1Department of Computer Science and Technology, Peking University,
Beijing 100871, P.R.China, Email: zhanglu@sei.pku.edu.cn

 2The Department of Computer Science, The University of Liverpool
 Liverpool L69 3BX, United Kingdom, Email: {frans,phl}@csc.liv.ac.uk

3Harrow School of Computer Science, University of Westminster
Northwick Park, Watford Road, HA1 3TP, Greater London, United
Kingdom, Email: huangw@wmin.ac.uk

replacing some previous human-based services, the
lack of intelligence might considerably decrease the
value of those services. It is natural to see some
approaches investigated for artificial intelligence
(such as the agent technology) appearing in e-
services systems.

• The second objective is to reduce the complexity of
the system’ design and development. E-services
systems usually integrate many various related
services, and therefore are typically very difficult to
organise. As the multi-agent paradigm is very
promising for this kind of systems, using agents for
e-services may be quite a natural choice. An
example of an agent-based e-services system can be
found in [2].

In this paper, we propose an agent-based framework for
online after-sale services. This framework is actually
motivated by the practice needs of a manufacturing
company called Stoves PLC. In Stoves, there are 3000
versions of products to be maintained, and a large number
of after-sale services personnel are employed for dealing
with the process of product maintenance. It is clear that
using I.T technology can reduce the labours involvement in
this process and sequentially will be of great benefit to the
company. In our framework, we propose to use software
agents to replace humans to carry out some of their work.
As Stoves is using a typical after-sale services procedure,
we further argue that our framework is not only can be used
to Stoves, but also can be extended to other consumer-
based product manufacturers.

The organisation of the remaining of the paper is as
follows. Section 2 presents the background information for
the research. In section 3, we present the methodology we
exploited in constructing the framework. Section 4
addresses our proposed framework. Section 5 discusses
some attributes of the framework. Section 6 reports the
undergoing implementation work and some planned future
work. The conclusion is drawn in Section 7.

II. BACKGROUND

A. Domain
The problem we are facing originates from the needs of a
manufacturer of domestic appliances in a flexible
manufacturing context. The company concerned (i.e.
Stoves) can deliver more than 3000 versions of its cookers
to customers, aiming at satisfying a very wide range of
different customer requirements. However, sometime it
does create the problems of after-sale services and increase
price of services, due to the high cost of the maintenance of
its after-sale services personnel.

 The existing system in use employs a large after-sale
services department consisting of customer call receivers

Towards an Agent-Based Framework for Online After-Sale Services

Lu Zhang 1, Frans Coenen 2 , Wei Huang 3 and Paul Leng2

and field engineers. When a customer calls to report a fault,
the customer call receiver tries to solve that case through a
telephone dialogue. If he/she fails to do so, he/she will
record the case in an after-sale services information system
as an unsolved case. He/She will also assign the recorded
unsolved case to a field engineer with the help of browsing
task load of each engineer. Every morning field engineers
get their assigned cases and go to the corresponding
customers to solve the cases one after another. After
solving a case, the field engineer will feedback to the after-
sale services department to report the solved cases with
accomplished records. All the data about previous cases are
stored in the system for quite a long period of time. The
whole process is quite complicated; it can be depicted in
Figure 1. These data are used to facilitate the upcoming
diagnosis requirements and/or to adjust the assignment
strategies.

 Generally speaking, the current system does provide a
practical framework for organising the company’s after-
sale services personnel. However, this system is lack of
effectiveness and is not flexible enough, and there have to
be many staffs involved to carry out those routeing tasks to
complete the entire service process in daily basis. Ideally,
we should introduce more intelligence to the system and to
find more effective ways of organising and managing our
work whilst reducing the costs of services. Some previous
research in this domain has been discussed in [7], [8], [23]
and [24].

Users report via phone

Can be solved via phone?

Service persons record the case into the system

The system assigns cases to field engineers

Engineers go to customers’ to solve assigned cases
Begin

End

Engineers report solved cases via phone

Service persons solve cases via phone

Service persons complete the case into the system

Yes

No

Fig. 1. Stoves’s After-Sale Services Process

B. Requirements
To provide intelligent support for the process that is
described in Figure. 1, the new proposal in such a system
should provide intelligence in the following four parts.

• Customer Requirements Collection
 Under the current process, there have to be customer

call receivers to deal with customer requirements.
Customers are usually not familiar with cookers, and they
should be induced to report the real problems. As the
current software system cannot provide intelligent
interactions with customers, the customer call receivers
should serve as mediators. It’s a good solution to use
software replacing part or all the responsibilities of the
customer call receivers. For example, a interactive dialogue
can be set up between the service website and a customer.
The e-service providers can use the dialogue tool to acquire
more information about the customers’ requirements. The
major challenge is how to automatically generate

appropriate questionnaire on the individual cookers, which
will lead to discover the real customers’ requirements.

• Engineer Job Planning
The current situation is the call receiver’s responsibility

to assign the received job to an appropriate engineer.
However, this solution is not obvious, neither intelligent
nor flexible. In most cases, a call receiver concentrates on
receiving customer requirements, and just browses the
existing assignments briefly before deciding the final
planning. Rationally speaking, job planning also requests
intelligence, and itself is a topic in the AI research field. In
practice, a good job planner should consider at least the
following aspects when doing the planning: workload,
speciality of jobs, and the availability. The workload of
different field engineers should be balanced. Each engineer
should better be assigned a job in his/her speciality. It is not
likely to assign an engineer any job on his/her absent (due
to illness or holiday) days. The planner should also
consider each engineer’s ability to gain experiences. This
means that an engineer’s speciality is changing all the time.
The planner should try to always track the current
speciality of each engineer and find out their needs and
availability.

• Intelligent Diagnosis Support
 An intelligent diagnosis support may substantially

benefit either the customers or the call receivers or even the
field engineers. A customer may log into the after-sale
services website and diagnose his/her cooker. A call
receiver may also consult this support to solve problems. A
field engineer should be available, although he/she may
encounter some unfamiliar products. In this case,
consulting and support could be helpful for them. There are
three main categories of techniques that have been
proposed to support intelligent diagnosis.

� Rule-Based Reasoning (RBR) is the traditional
paradigm of intelligent systems, and also used in some
diagnosis systems, such as [10], [18] and [16].
� Model-Based and qualitative reasoning (MBR) [5]

[12] uses qualitative models to describe the structure
and/or relationships of components in the target for
diagnosis. A qualitative model can be operated to
simulate the procedure that results in the fault.
� Case-Based Reasoning (CBR) [19] is also applied

for diagnosis. Actually, we mainly adopt the CBR
approach for diagnosis in our framework.

• Knowledge Management and Data Analysis
 Another important issue that should be considered is

the management of previous data and knowledge. First,
maintaining previous data is essential to all the above three
parts. In the customer requirements collection part, an
effective dialogue may be based on tracking the profile of
each individual customer. In the engineer job planning part,
capturing the changes of each engineer’s speciality should
be based on each engineer’s previous experiences. In the
intelligent diagnosis support part, the CBR technique is
totally based on comparing current case with previous cases.
Secondly, key knowledge should be constantly discovered
from the existing data. As the historical data will be
growing all the time, this growth may affect the overall
performance. A possible solution is to exploit an
independent part to discover knowledge off-line constantly,

and supply the knowledge to other parts.

III METHODOLOGY

A. Using Gaia
To construct the framework, we use the Gaia methodology
for agent-oriented analysis and design. This methodology is
originally proposed in [20], and further developed in [21].
It is a general methodology for various kinds of multi-agent
systems. In Gaia, analysis and design issues are addressed
distinctly at the micro-level (agent) and the macro-level
(societal). In the analysis phase, the macro-level aspects are
addressed by the interaction model, and the micro-level
aspects are addressed by the role model. In the design
phase, the above two models will be further refined into
three models: the agent model, the services model and the
acquaintance model. The acquaintance model is a
refinement of the interaction model, which further defines
the communication links between agents. The agent model
is a refinement of the role model. Although the mapping
from roles to agents may not be a one-to-one
correspondence in Gaia, a natural mapping is just to refine
one role into one agent. In this paper, we will also adopt
this natural mapping. The services model further specifies
the functions provided by the agents.

B. Using UML
UML [3] [17] is a comprehensive modelling language for
various software systems. In recent years, UML has
gradually become the dominant analysing and designing
language for especially object-oriented systems. As multi-
agent systems have many attributes similar to object-
oriented systems, many attempts of using UML for
analysing and designing multi-agent systems have been
reported intensively in the literature (see e.g. [1], [4] and
[15]). Therefore, although the original Gaia methodology
does not support UML, we will have to instead present
some Gaia models in UML diagrams.

In this paper, the UML diagrams are mainly used at the
macro-level. We use the notation for objects in UML class
diagrams to represent roles (agents) in the interaction
model. UML class diagrams have been successfully used to
represent object models in object-oriented systems. Due to
the similarity between agents and objects, we think it is
quite natural to use UML notation for objects to represent
roles (agents) in the interaction model. We also adopt the
approach proposed in [15] to use UML activity diagrams to
represent the acquaintance model.

IV. THE PROPOSED FRAMEWORK

A. Micro Level
From the above requirements, we can naturally break the
system into four roles/agents: the customer requirements
collection role (agent), the engineer job planning role
(agent), the intelligent diagnosis support role (agent), and
the knowledge management role (agent). The above four
roles/agents will interact with each other in the actual
system. The specifications of the four roles/agents are as
follows. Due to the limitation of space, we will not present
the liveness and the safety properties in the agent models,

and the pre-conditions and post-conditions in the services
models.

• Customer Requirements Collection Role/Agent
(Customer Handler)

The specification of the customer requirements
collection (role /agent) is depicted in Fig. 2. The
responsibility of this role (agent) is to interact with
customers.

Role/Agent Schema: CustomerHandler

Description:
Receives request from the customer and responses to the customer via
consulting other agents.
Protocols and Activities:

WaitCall, ProduceDiagnosisCase, ProduceEngineerJob,
RespondToCustomer

Permissions:
reads supplied customerDetails

supplied customerRequest
diagnosisResult

generates diagnosisCase
engineerJob
customerResponse

Fig. 2. Role/Agent Model for Customer Handler
The specifications of the functions in Fig. 2 are presented

in the services model for this role (agent), which is depicted
in Table 1. The inputs and outputs of each service are
presented in detail.

TABLE 1. SERVICES MODEL FOR CUSTOMER HANDLER
Service Inputs Outputs

WaitCall customerDetails
customerRequest

customerRequirements

ProduceDiagnosisCase customerRequirements diagnosisCase

ProduceEngineerJob customerRequirements engineerJob

RespondToCustomer diagnosisResult customerResponse

• Engineer Job Planning Role/Agent (Job Planner)
The specification of the customer requirements

collection role (agent) is depicted in Fig. 3. The
responsibility of this role (agent) is to assign the job passed
from the customer handler. It receives the job, and finds the
most suitable engineer for the job. The specifications of the
functions in Fig. 3 are presented in the services model for
this role (agent), which is depicted in Table 2.

Role/Agent Schema: JobPlanner

Description:
Receives an engineer job and assign the job to a field engineer
according to his/her workload, speciality and availability etc.
Protocols and Activities:

GetEngineerJob, CheckEngineerWorkload,
CheckEngineerSpeciality, CheckEngineerAvailability,
CheckEngineerExpectation, ScheduleJob

Permissions:
reads engineerJob

engineerWorkload
engineerSpeciality
engineerAvailability
engineerExpectation

generates jobAssignment
Fig. 3. Role/Agent Model for Job Planner

• Intelligent Diagnosis Support Role/Agent (Fault
Diagnoser)

The specification of the customer requirements
collection role (agent) is depicted in Fig. 4. The
responsibility of this role (agent) is to diagnose the case
passed from the customer handler. It receives the formatted
case from the customer handler, tries to find similar cases

in the previous cases obtained through the knowledge
management agent. Then it uses the retrieved similar cases
to synthesise the fault for this case. The diagnosed fault
will be passed back to the customer handler as the result of
diagnosis. This result may also be presented to field
engineers.

TABLE 2. SERVICES MODEL FOR JOB PLANNE

Role/Agent Schema: FaultDiagnoser

Description:
Receives fault diagnosis request and produces one or more possible
faults.
Protocols and Activities:

GetDiagnosisCase, GenerateDiagnosisResult,
GetPreviousCases

Permissions:
reads diagnosisCase

previousDiagnosedCases
generates diagnosisResult
Fig. 4. Role/Agent Model for Fault Diagnoser

The specifications of the functions in Fig. 4 are presented
in the services model for this role (agent), which is depicted
in Table 3.

TABLE 3 SERVICES MODEL FOR FAULT DIAGNOSER
Service Inputs Outputs

GetDiagnosisCase - diagnosisCase

Generate
DiagnosisResult

diagnosisCase
previousDiagnosedCases

diagnosisResult

GetPreviousCases - previousDiagnosedCases

• Knowledge Management Role/Agent (Knowledge
Manager)

The specification of the customer requirements
collection role (agent) is depicted in Fig. 5. The
responsibility of this role (agent) is to constantly discover
useful knowledge from previously acquired data, and
passes the knowledge to other agents whenever it is asked
for.

The specifications of the functions in Fig. 5 are presented
in the services model for this role (agent), which is depicted
in Table 4.

B. Macro Level
At the macro level, we just present the interaction model
and its refinement – the acquaintance model.

Interaction Model
From the specifications of the four roles/agents, we can

represent the relationships between them as Fig. 6. In Fig. 6,
the above-discussed roles (agents) are represented in the
notation in UML for classes. The arrows represent the
directions of data flow. For example, the arrowed line
between the Knowledge Manager and the Customer

Handler means that the Customer Handler will read
information from the Knowledge Manager.

Role/Agent Schema: KnowledgeManager

Description:
Maintains various kinds of data and discovers knowledge from the
data.
Protocols and Activities:

GenerateEngineerWorkload, GenerateEngineerSpeciality,
GenerateEngineerAvailability, GenerateEngineerExpectation,
GeneratePreviousDiagnosedCases, DiscoverKnowledge

Permissions:
reads rawData
generates engineerWorkload

engineerSpeciality
engineerAvailability
engineerExpectation
previousDiagnosedCases
keyKnowledge

Fig. 5. Role/Agent Model for Knowledge Manager
TABLE 4. SERVICES MODEL FOR KNOWLEDGE MANAGER

Customer

Job Planner

Customer Handler

Fault Diagnoser

Knowledge Manager Field Engineer

WaitCall
ProduceDiagnosisCase
ProduceEngineerJob
RespondToCustomer

GetEngineerJob
CheckEngineerWorkload
CheckEngineerSpeciality
CheckEngineerAvailability
CheckEngineerExpectation
ScheduleJob

GetDiagnosisCase
GenerateDiagnosisResult
GetPreviousCases

GenerateEngineerWorkload
GenerateEngineerSpeciality
GenerateEngineerAvailability
GenerateEngineerExpectation
GeneratePreviousDiagnosedCases

Fig. 6. Interaction Model

Acquaintance Model

WaitCall

ProduceDiagnosisCase ProduceEngineerJob

RespondToCustomer

Customer Handler

<<send>>

<<send>>

GetDiagnosisCase

GetPreviousCases

GenerateDiagnosisResult

<<receive>>

<<receive>>

<<send>>

Fault
Diagnoser <<receive>>

<<receive>>

GetEngineerJob

GetEngineerWorkload

GetEngineerSpeciality

GetEngineerAvailability

GetEngineerExpectation

ScheduleJob

Job Planner

GeneratePreviousDiagnosedCases

<<receive>>

DiscoverKnowledge

GenerateEngineerWorkload

GenerateEngineerSpeciality

GenerateEngineerAvailability

GenerateEngineerExpectation

<<receive>>

Knowledge Manager

<<send>>

Fig. 7. Acquaintance Model

Based on the interaction model in Fig. 6, we can get the
refined acquaintance model in Fig. 7, represented in UML
activity diagrams. Communication channels between agents

Service Inputs Outputs
GetEngineerJob - engineerJob
GetEngineerWorkload - engineerWorkload
GetEngineerSpeciality - engineerSpeciality
GetEngineer
Availability

- engineerAvailability

GetEngineer
Expectation

- engineerExpectation

ScheduleJob engineerJob
engineerWorkload
engineerSpeciality
engineerAvailability
engineerExpectation

jobAssignment

Service Inputs Outputs

GenerateEngineerWorkload keyKnowledge engineerWorkload
GenerateEngineerSpeciality keyKnowledge engineerSpeciality

GenerateEngineerAvailability keyKnowledge engineerAvailability

GenerateEngineerExpectation keyKnowledge engineerExpectation
GeneratePreviousDiagnosedCases keyKnowledge previousDiagnosedCases

DiscoverKnowledge rawData keyKnowledge

are represented as synchronisation points labelled with
<<send>> and <<receive>>. These channels do not belong
to any single agent, and therefore is depicted outside all the
agents. In the Customer Handler, there is an internal
synchronisation point. This means ProduceDiagnosisCase
and ProduceEngineerJob can work parallel. The internal
synchronisation point in the Knowledge Manger is also
similar.

V. IMPLEMENTATION &FURTHER DEVELOPMENT
The research reported in this paper is still an ongoing one.
In this section, we will briefly describe the implemented
part, and the planned development.

A.. Fault Diagnoser
Our implementation is mainly focused on the fault
diagnosis agent. The reason of this is that agents are
comparatively independent in the framework. It can even
work alone by attaching a human-friendly interface for
entering symptom information and a database for storing
relevant data.

C a s e B a s eC a s e B a s e

E n te r N e w C a s eE n te r N e w C a s e

N e w C a s eN e w C a s e

M a tc h C a s e sM a tc h C a s e s

S im i l a r C a s e sS im i l a r C a s e s

V ie w C a s e sV ie w C a s e s

C a s e D e ta i l sC a s e D e ta i l s

S to r e N e w C a s eS to r e N e w C a s e

Fig. 8. Overview of the Fault Diagnosis Agent

In our implementation, we adopt the case based
reasoning technique in this agent. The overview of this
agent is depicted in Fig. 8. In the centre of the agent is the
case base storing the history of the previously occurred
cases of faults. When encountering a new case, the field
engineer will provide a structured description of the new
case. This description will be matched with the cases in the
case base. Some most similar cases will be retrieved, which
can be viewed in detail by the field engineer to help
him/her to identify the fault of the new case. After the new
case has been solved, the field engineer can store it into the
case base for future diagnosis. Detailed reports of this agent
can be found in [8] and [24].

In fact, as in Fig. 8 illustrated that it only depicts the case
when this agent works alone. After the whole framework is
implemented, a new case will not be entered directly by a
person but by the customer requirements collection agent.
This agent will not access previous cases directly but via
the knowledge management agent.

The interface for entering a new case for diagnosis in the
tool is depicted in Fig. 9, in which a field engineer can
input the structured description of a case under diagnosis.
This case will be matched with the cases in the case base,
and the results will be displayed in the interface depicted in
Fig. 10.

Fig. 9. Interface for Entering Cases for Diagnosis

Fig. 10. Interface for Displaying Retrieved Cases

B. Planned Implementation
The development of the other three agents is planned. We
think the key issues in the future implementation are as
follows:
♦ For the customer requirements collection agent, we may

apply natural language recognition techniques and/or
human intention recognition techniques for our purpose.

♦ For the engineer job planning agent, the main difficulty
is a job scheduling problem. Optimisation techniques
have been used to tackle this kind of problems.

♦ For the Knowledge Management agent, we will use data
mining techniques to discover relevant knowledge from
the vast volume of data. Besides the three agents, we will
also implement the communications between the three
agents. This can be based on an existing agent
communication language, such as KQML [9].

VI. DISCUSSION

A. Property of the Framework
The main property of this framework is its generality.
Although the framework is designed for the requirements
of Stoves PLC, it also matches the needs and demands in
other industrial organizations and business partners. The
identified four agents are not unique in Stove’s product
maintenance process. They are typical and identical for any
online after-sale services system. The system not only is
able to deal with customer requests, but also provide instant

help to customers, as the fault diagnosis agent does in this
framework. Further more, it should be able to trigger the
traditional human-based maintenance process in case the
provided e-services are not satisfactory. The engineer job
planning agent takes this responsibility in this framework.
Finally, there should be an agent to maintain the vast
volume of data, and provide relevant knowledge for other
agents. Based on the above reasons, we think this
framework will be adopted in other online after-sale
services systems.

B. Benefits of Using Agents
According to our implementation, the benefits of using
agents can be easily discovered as follows:
♦ First, the multi-agent paradigm can naturally reflect the
nature of the problem. In our framework, the four agents
come out naturally during the stage of problem analysis.
Therefore, we can focus on how to develop each individual
agent rather than on how to divide the system into agents.
♦ Secondly, this paradigm may reduce the complexity of
developing the intelligent system. Providing intelligence in
a system is usually a difficult task. This difficulty will be
entangled with the complexity of software development.
The case is even worse when there are several parts in the
system that needs intelligence. The multi-agent paradigm
can separate different parts requiring intelligence into
different agents, and therefore can effectively deal with the
complexity of developing intelligent systems.
♦ Thirdly, this paradigm can incorporate flexibility into
development. The implementation of the entire framework
may require quite a long time. However, the multi-agent
paradigm makes it possible for us to apply the developed
agents into operation with other agents still under
development.

VII. CONCLUSION
In this paper, we have presented a general framework for
agent-based online e-services. The requirements for this
framework rise from the product maintenance process of
our partner; the created framework itself also suits the
needs of other manufacturers and can cope with diversity of
changes in providing online services in industry. The
framework is presented and designed in compliance with
the Gaia methodology; The UML notations have
contributed to produce the interaction model and the
acquaintance model for the system’s analysis and design.
The fault diagnosis agent in the framework has been
successfully implemented by using the Case-Based
Reasoning technique and clearly shows their great usability
and productive potential.

VIII. ACKNOWLEDGEMENTS
The research described in this paper is supported by the
Department of Trade and Industry under the Foresight ‘Link’
programme. We wish to express our thanks to our partners in the
project, Stoves PLC and NA Software Ltd, and in particular to
Colin Johnson, Prof Mike Delves, and the Project Monitor, Stan
Price.

REFERENCES
[1] Bauer, B. UML Class Diagrams Revisited in the Context of Agent-

Based Systems. In: M. Wooldridge, G. Weiss, and P. Ciancarini

(eds.) Agent-Oriented Software Engineering II. Springer-Verlag
Lecture Notes in Computer Science 2222, Canada,(2001) 101-110

[2] Beer, M.D, Huang, W., Using Agents to Build a Practical
Implementation of the INCA (Intelligent Community Alarm)
System. In: Proceedings of UKMAS2000, Oxford University,
UK. December 2000.

[3] Booch G., Rumbaugh J., Jacobson I.: The Unified Modeling
Language User Guide. Addison-Wesley. (1999)

[4] Caire G., Coulier W., Garijo F., Gomez J., Pavon J., Leal F.,
Chainho P., Kearney P., Stark J., Evans R., Massonet P.: Agent
Oriented Analysis Using Message/UML. In: M. Wooldridge, G.
Weiss, and P. Ciancarini (eds.) Agent-Oriented Software
Engineering II. Springer-Verlag Lecture Notes in Computer Science
2222, Canada, May (2001) 119-135

[5] Chantler M. J., Coghill G. M., Shen Q., Leitch R. R.: Selecting Tools
and Techniques for Model-Based Diagnosis. Artificial Intelligence
in Engineering, 12, (1998) 81-98

[6] Ciancarini, P., Wooldridge, M.J. (eds.): Agent-Oriented Software
Engineering. Springer-Verlag Lecture Notes in Computer Science
1957, January (2001)

[7] Coenen, F., Leng, P., Weaver, R., Zhang, W.: Integrated Online
Support for Field Service Engineers in a Flexible Manufacturing
Context. In: Applications and Innovations in Intelligent Systems VIII
(Proc ES2000 Conference, Cambridge), eds A Macintosh, M
Moulton and F Coenen, Springer, London, (2000) 141-152

[8] Coenen, F., Leng, P., Zhang. L.: Flexible Field Service Support
using Multiple Diagnostic Tools. In Proceedings of 5th IEEE
International Conference on Intelligent Engineering Systems, (2001)
225-229

[9] Finin T., Fritzson R.: KQML — A Language and Protocol for
Knowledge and Information Exchange. In: Proceedings of the 13th
International Distributed Artificial Intelligence Workshop,
Seattle,WA, USA, (1994) 127–136

[10] Huang, W., Beer, M.D: Towards Intelligent Health Care System -
An Introduction to Agent-based Community Care System INCA. In:
Proceedings of PERP 2001, the University of Keele, UK
April (2001) 95-99

[11] Huang.W, “Developing Advanced Agent Systems with UML and
Gaia Methodology” invited speaker and paper in conference
proceedings of the 6th World Multi-conference on Systemic,
Cybernetics, and Informatics (SCI2002), Orlando, Florida, USA,
July, 2002

[12] Hunt J. E., Lee M. H., Price C. J.: Progress in Applying Model
Based and Qualitative Reasoning to industrial applications, The
MONET Newletter 1(1) (1998)

[13] Jennings, N. R., Wooldridge, M.J., Applications of Agent
Technology. In: N. R. Jennings and M. Wooldridge, editors, Agent
Technology: Foundations, Applications, and Markets. Springer-
Verlag, March (1998)

[14] Jennings N. R.: Building Complex, Distributed Systems: The Case
for an Agent-Based Approach, Communications of the ACM, 44(4),
April (2001) 35-41

[15] Moulton M.: A Rule-Based Incident Tracking System, In: A.
Macintosh and R. Milne (eds), Applications and Innovations in
Expert System V, SGES publications, London. (1997)

[16] Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling
Language Reference Manual. Addision-Wesley. (1999)

[17] Vazquez E., Chancon O. L., Altuve H. J.: An On-line Knowledge-
Based System for Fault Section Diagnosis in Control Centers, In:
Proceedings of 1996 International Conference on Intelligent Systems
Applications to Power Systems, Orlando, FLA, (1996) 232-236

[18] Watson I.: Applying Case-Based Reasoning: Techniques for
Enterprise Systems. Morgan Kaufman, London, (1997)

[19] Wooldridge, M. J, Jennings. & Kinny, D.: The Gaia Methodology
for Agent-Oriented Analysis and Design. Journal of Autonomous
Agents and Multi-Agent Systems, 3(3). (2000) 285-312

[20] Wooldridge, M.J, Reasoning about Rational Agents. The MIT Press,
July 2000.

[21] Zhang, L., Coenen, F., Leng, P.,: On-Line Support for Field Service
Engineers in a Flexible Manufacturing Environment: the Stoves
Project. In: Proceedings of IeC ‘2000 Conference, Manchester
(2000) 31-40

[22] Zhang, L., Coenen, F., Leng, P.,: A Case Based Diagnostic Tool in a
Flexible Manufacturing Context. In: Proceedings of the Sixth UK
CBR Workshop, 10 December (2001) 61-69

