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Abstract. Automatic generation of hierarchies from social tags is a
challenging task. We identified three rules, set inclusion, graph centrali-
ty and information-theoretic condition from the literature and proposed
two new rules, fuzzy set inclusion and probabilistic association to in-
duce hierarchical relations. We proposed an hierarchy generation algo-
rithm, which can incorporate each rule with different data representa-
tions, i.e., resource and Probabilistic Topic Model based representations.
The learned hierarchies were compared to some of the widely used refer-
ence concept hierarchies. We found that probabilistic association and set
inclusion based rules helped produce better quality hierarchies according
to the evaluation metrics.

1 Introduction

Tagging is a popular functionality on many social media platforms. Users can add
“free” words (tags) to describe shared resources to facilitate searching and recom-
mendation. These user-generated tags form a taxonomy of users’ terminologies
called folksonomy. There have been great interests and motivation to automati-
cally induce knowledge structures from social media data. The most challenging
issue is the intrinsic difficulties (e.g., sparse data, weak context, polysemy, con-
catenated tags and typos [10]) to learn large-scale concept hierarchies in various
domains. Even for human being this requires considerable cognitive work [19].
Although there have been some general guidelines to associate semantics to tags
[7], no theoretical consensus were reached on the rules and assumptions to de-
termine semantic relations among tags.

There have been methods using different rules to derive hierarchical struc-
tures from social tags. However, there is no comprehensive research on analysis
and comparison of these rules in a rigorous manner. The work in [16] compared
four clustering and generality based techniques and found that generality-based
methods in general outperform the clustering based ones. It primarily focused
on evaluation techniques and did not analyse how the underlying rules and their
assumptions affected the results. Furthermore, other important rules such as set
inclusion and information-theoretic condition were not discussed.
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A rule in the context of this work is defined as certain conditions that need
to be satisfied to determine whether a pair of words (tags) has a directed hier-
archical or subsumption relation. We summarise existing rules used in learning
hierarchical relations from social tagging data and propose two new rules: prob-
abilistic association and fuzzy set inclusion based rules. Then we evaluate the
performance of these rules in learning relations and compare the results to three
well-know reference hierarchies. We aim to conduct an in-depth study for the
following two questions:

Q1 Which rule can effectively capture the hierarchical relations between social
tags?

Q2 How do rules and data representation techniques affect the quality of the
induced concept hierarchies?

Our contributions can be summarised as follows. First, we performed a thor-
ough analysis on the existing rules and proposed two new rules. Second, we
designed an algorithm that can accommodate different rules to iteratively learn
a knowledge hierarchy. The algorithm ranks all pairwise tag pairs by similarity in
descending order, and passes the tag pairs to a rule to determine their relations.
Third, we used three reference knowledge hierarchies (DBPedia, Microsoft Con-
cept Graph and ACM Computing Classification System) to evaluate the quality
of the learned hierarchies based on standard metrics (taxonomic precision, recall
and F-measure). To our best knowledge, this is the first comprehensive study on
the rules for learning knowledge hierarchies from social tagging data.

2 Hierarchical Relation: Definitions and Rules

Creation of concept hierarchies representing the world knowledge is a difficult
cognitive task that requires lot of effort [19, p. 139]. Hierarchical relation is a
paradigmatic relation, which means that two words should fit into the same
grammatical slot or be of the same semantic type [3]. It is different from syntag-
matic relations which exist between concepts in specific documents or other con-
texts [15]. In this way, co-occurrence of tags is syntagmatic relation, but provides
great source for paradigmatic relations, as stated in [14, p. 223]. Hierarchical re-
lations can be divided into hyponymy and meronymy. In some ontology models,
they are merged and referred to as broader/narrower relations (e.g., SKOS1).

We take a mixed view of hierarchical relations, with a focus on hyponymy.
Although it seems intuitive to tell whether there is a hierarchical relation be-
tween two words, the idea of hyponymy is not straightforward. In the linguistic
domain, Cruse [3] gave three definitions of hyponymy and proposed a prototype-
theoretical characterisation to derive hyponymy. In the first definition, hyponymy
was conceptualised in a logical way both extensionally and intensionally. Ex-
tensionally, X is a hyponym of Y iff the form ∀x[X ′(x) → Y ′(x)] is satisfied,
but none of the form ∀x[Y ′(x)→ X ′(x)] holds, where X ′ and Y ′ are the logical
1 https://www.w3.org/TR/skos-primer/
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constants corresponding to the concepts X and Y, and x can be understood as
an instance object. This is equivalent to say that the extension of X ′ should be
included in the extension of Y ′. Intensionally, “X is a hyponym of Y iff F(X)
entails, but is not entailed by F(Y)”, where F(-) is a sentential function satisfied
by X or Y. The second definition utilises the collocational property. The more
restricted a word is through the collocational normality, then the more specific it
is, or more formally, “X is a hyponym of Y iff the normal context of X is a subset
of the normal context of Y”. The third idea for defining hyponymy is compo-
nential. “X is a hyponym of Y iff the features defining Y are a proper subset of
features defining X”. Based on this idea, to analyse the degree of inclusion be-
tween X and Y, “prototypes” of characterisation of hyponymy were proposed [3].
Stock also pointed out a case that holds in most occasions: there is reciprocity
between the extension and intension of concepts in a hierarchical chain [15], in
other words, specific terms, with further restrictive properties, tend to have less
number of objects than general terms.

Moving from linguistic definitions to machine computation, we summarised
the main rules found in literature below. We adapted the fuzzy set theory with
probabilistic topic representation and named it fuzzy set inclusion. We also pro-
posed another new rule called probabilistic association, which has a strong prob-
abilistic foundation. We use R1 to R5 to refer to these rules.

Data Representation A tag can be represented as a vector over all resources.
Let v[Ri] refer to the number of times the tag used to annotate the resource
Ri, and i be the index for resources. This resource-based representation can
capture co-occurrence of tags and is usually high dimensional and sparse. Anoth-
er representation is based on a Probabilistic Topic Model (PTM), representing
a tag as a vector over latent (or hidden) topics. PTM is generally a dimension
reduction technique and each topic can be represented as a probabilistic dis-
tribution of the vocabulary. We used the standard Latent Dirichlet Allocation
(LDA) [8] for PTM representation. With LDA inference, we can obtain two ma-
trices, the distribution of hidden topics for each document, p(Topic|Doc) and the
distribution of tags for each hidden topic p (Tag|Topic). Using the Bayesian’s
Theorem, we can estimate p(Topic|Tag).

R1: Set Inclusion The logical extension of a tag can be quantified using its
contexts, i.e., the set of resources it annotated or the set of users who used it
for annotation. Through measuring the degree of inclusion between the contexts
of two tags, Mika [13] generated a lightweight taxonomy from social tags. De
Meo [12] defined this formally as Inclusion measure, set-inc(A,B) = |RA∩RB |

|RA| ,
where R is the set of resource annotated by the tag A or B. Formally, tag A is
a hyponym of tag B if set-inc(A,B) > p∧ set-inc(B,A) < p∧ sim(A,B) >
s, where p is experimentally set as 0.5. For all the rules R1-R5, the function
sim(A,B) measures the similarity (cosine similarity in this study) between A
and B; and s is a similarity threshold to be determined by the researcher (see
Data Collection in Sect. 4).
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R2: Graph Centrality Graph centrality measures the influence or popularity
of an object in a social network. The work in [9] assumed that there is a latent
taxonomy underlying the similarity graph of social data, and centrality can be
used to mine the taxonomy. A tag similarity graph is generated through linking
each pair of tags having similarity greater than a threshold. It is assumed that in
such a graph, nodes with higher centrality are more popular and thus are more
general. Both degree and betweenness centrality can be used [1, 9]. The rule states
that tag A is a hyponym of tag B if graph-cent(A) < graph-cent(B) ∧
sim(A,B) > s, where graph-cent() computes the centrality of a node, we used
degree centrality in this study.

R3: Fuzzy Set Inclusion We propose this rule adapting the set inclusion rule
to the PTM representation. We define a fuzzy set of a tag A as a pair (U,m),
where U is the set of topics for the tag andm:U → [0, 1] is a membership function
defined by p(Tag|Topic): for each topic z ∈ U , m(z) = p(A|z). Therefore, the
inclusion degree [17] of a fuzzy set SA of SB for a pair of tags A and B is defined
as fuzzy-set-inc(SA, SB) =

∑
i min(SAi,SBi)∑

i SBi
. Instead of measuring the resource

set inclusion between a pair of tags, the fuzzy set inclusion rule measures the
topic set inclusion in a low dimensional space. We assume that tag A is a
hyponym of tag B if fuzzy-set-inc(SA, SB) > p ∧ fuzzy-set-inc(SB , SA) <
p ∧ sim(A,B) > s, where p is set as 0.5.

R4: Information-Theoretic Condition The hierarchical relations between
tags were captured using the information-theoretic principle which measures the
difference of relative entropy, i.e., Kullback-Leibler (KL) Divergence, from one
tag topic distribution to another [18]. KL Divergence is defined asDKL(PA||PB) =∑

i PAi log
PAi

PBi
, where PA and PB are probabilistic distributions of hidden topics

for a pair of tags A and B, based on the PTM representation. It represents the
information wasted by encoding events with one distribution PA with a code
based on another distribution PB . It is elaborated as the average “surprise” re-
ceived from a tag A, when it is expected to receive B. The information-theoretic
condition [18] is constructed as follows, tag A is a hyponym of tag B if
DKL(PB ||PA) − DKL(PA||PB) < f ∧ sim(A,B) > s, where f is a noise factor
with a very small value (0.05 in this study).

R5: Probabilistic Association We propose another rule called probabilis-
tic association, which quantifies the (relative) componential features (in this
case, topics) of a tag. Based on the PTM-representation, the probabilistic as-
sociation [8], p(A|B), can be computed by marginalising over topics, p(A|B) =∑

z p(A|z)p(z|B), where p(z|B) ∝ p(B|z)p(z). Based on the fact that tag A and
B are conditionally independent given a topic z, p(z) can be estimated using
either uniform distribution or the fraction of tag annotations assigned to the
topic z to all tag annotations. The rule is defined as: tag A is a hyponym of
tag B if p(A|B) < p(B|A) ∧ sim(A,B) > s. This measures the relative topic
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components of a tag given another tag. If a tag A is highly associated by the
topics contained in another tag B, while B is less associated from the topics
contained in tag A, then tag B tends to be more general.

3 Methodology: Algorithm for Hierarchy Generation

To facilitate comparison of the rules R1-R5, we designed an algorithm for hier-
archy generation. A hierarchy in this work is defined as a Directed Acylic Graph
G, G = {V,E}, where V is a set of vertices (tags) and E ⊆ V × V is a set of
edges. Algorithm 1 incorporates a rule to select candidate hierarchical tag pairs
whose similarity exceeds the threshold. Starting from tag pair with highest sim-
ilarity, an edge is iteratively added to the graph G if the rule is satisfied. The
algorithm assumes the learned hierarchies have a single parent tag for each tag
(i.e. mono-hierarchies) and all established relations are direct and transitive.

Algorithm 1: Hierarchy generation algorithm using any rules.
Input: LPairSim is a pre-computed list of tag pairs < ti, tj > ranked in

descending order by similarity. s is a similarity threshold for a tag pair.
sim(ti, tj) computes the cosine similarity between ti and tj ;
hasParent(t, G) returns a boolean indicating whether tag t has a parent
node in G; isHypo(ti, tj) determines whether ti is a hyponym of tj .

Output: G, an induced hierarchy as a directed graph.
1 Initialise G;
2 for i← 1 to |LPairSim| do
3 < ti, tj >← LPairSim[i];
4 if sim(ti, tj) < s then
5 continue to the next i;
6 end
7 if NOT hasParent(ti, G) then
8 if isHypo(ti, tj) then
9 G← G ∪ < ti, tj >;

10 end
11 end
12 end

To answer Q1, we replaced the isHypo(ti, tj) with different rules to gener-
ate different hierarchies. To answer Q2, we represented tags using resource-based
and PTM representations respectively to generate two different sets of LPairSim.
Different s for the two representations were used to ensure the same number of
tag pairs passed to a rule. The set inclusion rule is based on resource-based repre-
sentation; fuzzy set inclusion, information-theoretic condition and probabilistic
association rules are based on the PTM representation; and graph centrality can
be based on any of the two representations.
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4 Experiments

In this section, we present the experiments and evaluation results and discuss
our findings in relation to the two research questions.

Data Collection The academic social bookmarking data Bibsonomy was used.
The whole dataset2 comprises 3,794,882 annotations, 868,015 distinct resources,
283,858 distinct tags annotated by 11,103 users. We followed the steps in [6] to
clean the dataset and further removed resources annotated with less than 3 tags.
The cleaned dataset contains 7,846 tags and 128,782 resources. Each resource
is a bag-of-tags, to represent tags using PTM, we set the number of topic as
1000 minimising perplexity of LDA model. The similarity threshold s were set
as 0.2 and 0.038 for PTM and resource-based representation resp. to control
same number (2.3 million) of pairwise tag pairs passed to a rule. For reference-
based evaluation, we chose three gold-standard hierarchies of different nature,
the crowd-sourced DBpedia, the web-mined Microsoft Concept Graph (MCG)
and the expert-crafted ACM Computing Classification System (CCS). DBpedia3

is a knowledge base containing structured information from Wikipedia. MCG4

is a knowledge base mined from billions of web pages. ACM computing classifi-
cation system (CCS)5 is a classification system to organise ACM publications by
subjects and support retrieval. In Bibsonomy, there are 6,616 common concepts
overlapped with DBpedia, 6,029 with MCG and 691 with CCS.

Evaluation Metrics With the cleaned dataset, we used Algorithm 1 to gener-
ate several hierarchies based on rules R1-R5 and different data representations.
A number of proposals on evaluation metrics for this purpose are available, see
[4, 5, 11]. We chose the taxonomic precision (TP ), and taxonomic recall (TR) [4].
The basic idea for these metrics is to find common concepts presented in both
hierarchies, and then for each common concept to extract a set of concepts that
characterises it, termed as characteristic excerpt. The similarity of hierarchies is
then computed based on the similarity of these characteristic excerpts.

The common semantic cotopy was proposed to define the characteristic ex-
cerpt in [5]. However, it cannot judge the direction of hierarchical relations.
Thus, we adopted the direct common subconcepts, by traversing from the com-
mon concept to all subconcepts until a subconcept is found, which is contained
in both hierarchies. We restricted this search to one level only in the hierarchy.
This is because that the study requires evaluating the rules’ ability to capture
direct relations and the reference ontologies are generally sparse (especially for
DBpedia and MCG). We named this new characteristic except as common direct
subsumption (cdsub). The taxonomic precision is defined in Equation 1 and 2,

2 http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
3 http://downloads.dbpedia.org/2015-10/core/
4 https://concept.research.microsoft.com/Home/Download
5 http://www.acm.org/about/class/class/2012
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where L is the learned hierarchy and G the referenced one. The taxonomic recall
is computed as TR(L,G) = TP (G,L). Similar to the standard F -measure, the
taxonomic F -measure is the harmonic mean of taxonomic precision and recall
TF (L,G) = 2∗TP (L,G)∗TR(L,G)

TP (L,G)+TR(L,G) . The metrics are defined for non-leaf nodes en-
suring |cdsub(c, L,G)| above zero; leaf concepts (have no direct subconcepts) in
L or G have tpcdsub as zero.

Another two metrics were also used: taxonomic overlap (TO) ([11]) measuring
the quality of hierarchies and taxonomic F’-measure (TF ′, note that it is different
from TF ) [5, 2] measuring the overall quality of the lexical and relation levels.
TO is a symmetric measure and is calculated with Equation 3 and 4. As cdsub
only concerns common concepts, TF and TO are not affected by non-common
concepts in both hierarchies. Thus, to include lexical coverage into evaluation,
taxonomic F’-measure (TF ′) is introduced, computed as the harmonic mean of
Lexical Recall (LR) and TF , TF ′(L,G) = 2∗LR(L,G)∗TF (L,G)

LR(L,G)+TF (L,G) . LR is defined as

LR(L,G) = |VL∩VG|
|VG| , where |V | is the size of vocabulary in a hierarchy.

tpcdsub(c, L,G) =
|cdsub(c, L,G) ∩ cdsub(c,G, L)|

|cdsub(c, L,G)|
(1)

TP (L,G) =
1

|L ∩G|
∑

c∈L∩G

tpcdsub(c, L,G) (2)

tocdsub(c, L,G) =
|cdsub(c, L,G) ∩ cdsub(c,G, L)|
|cdsub(c, L,G)| ∪ cdsub(c,G, L)|

(3)

TO(L,G) =
1

|L ∩G|
∑

c∈L∩G

tocdsub(c, L,G) (4)

Results and Discussion From Fig. 1 it can be seen that in terms of the quality
of hierarchies (measured by TF and TO, left column), with PTM representation,
the set inclusion rule (set-inc) outperformed the others. With resource-based
representation, the results were rather inconsistent. Probabilistic association rule
(prob-asso) had comparable performance to set inclusion rule with DBpedia
and MCG. The results obtained on CCS were more inconsistent compared to
the other two due to the low overlapping with the learned hierarchy. For CCS,
information-theoretical condition (info-theo) and fuzzy set inclusion (fuzzy-set-
inc) with resource-based representation performed the best.

In terms of overall quality of the learned hierarchies (measured by TF ′), due
to the huge size of DBpedia, there is little difference among rules. Notable dif-
ference was found with MCG: using the PTM representation, the set inclusion
rule showed the best TF ′; with the resource-based representation, prob-asso has
the best TF ′; fuzzy-set-inc performed well with both representation techniques.
Again, the results using CCS demonstrated considerable inconsistency, with the
PTM representation, the set inclusion performed quite well, while graph centrali-
ty rule has the lowest TF ′. With the resource-based representations, information
theoretic condition and fuzzy set inclusion rule performed almost equally well,
both slightly better than the set inclusion rule. The hierarchy learned using set
inclusion rule showed high overall quality with both representations.
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Fig. 1. Results of the reference-based evaluation. The figures illustrate the quality of
each learned hierarchical structure based on its similarity to three gold-standard tax-
onomies (rows: DBpedia, Microsoft Concept Graph (MCG) and the ACM Computing
Classification System ToC (CCS)), with different rules and data representation tech-
niques (PTM and Resource-based). Three metrics were used for evaluation: in left col-
umn, taxonomic F1-measure (TF), taxonomic overlap (TO) that measure the quality
of concept hierarchies; and in right column taxonomic F’-measure (TF’) that measures
the overall lexical and relational quality of the learned hierarchy.

With regard to Q1 and Q2, the set inclusion rule generated the best re-
sult with PTM representations, while the probabilistic association and fuzzy set
inclusion rules with the resource-based representation generated competitive re-
sults. This finding is interesting as the simplest rule produced the best result. It
is probably because the set theory provides the most precise simulation to the
extension of a concept. The probabilistic association rule simulated the seman-
tic association of concepts and achieved best results when the resource-based
representation is used. In terms of the overall quality of hierarchy taking into
consideration lexical coverage, results were considerably inconsistent. This can
be attributed to different nature of reference hierarchies and also demonstrated
the usefulness of different rules for this task. There might be issues with the
reference-based evaluation, as it only measures the global similarity between the
learned hierarchy to the reference hierarchy. However, it is possible that some
branches of the learned hierarchy were very similar to the reference hierarchy
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Fig. 2. Hierarchies learned with the two proposed rules. (We suggest to view the figures
by zooming in on the digital version of this paper.)

[16]. Two excerpts (due to the limited space) of the learned hierarchies are illus-
trated in Fig. 2 with fuzzy set inclusion and probabilistic association rule.

We also realised that the current evaluation strategies might not be perfect
due to the significantly different nature of the datasets. In general, quality of
the learned hierarchies from social data cannot be compared to those created
by human beings or learned from sentential data using lexico-syntactic patterns.
Nevertheless, useful and unseen concepts and relations can still be discovered.

5 Conclusion and Future Study

Hierarchical relations are essential to Knowledge Organisation Systems and re-
search has shown these relations can be learned from folksonomies. This work
summarised the representative rules used to induce such relations and conducted
an in-depth comparison on these rules. We believe that with a deeper under-
standing of the rules, it is possible to design methods to extract valuable in-
formation even from low-quality social data to enrich existing knowledge bases.
The reference-based evaluation showed that with the proposed hierarchy genera-
tion algorithm, the set inclusion rule and probabilistic association rule can derive
useful hierarchical knowledge with resource-based and PTM representations. For
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future studies, we plan to include more fine-grained rules and evaluate them with
other folksonomies. We are also combining these rules with machine learning ap-
proaches to generate hierarchies with higher quality. Other representations, such
as neural word embeddings, are also to be explored.
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