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Abstract

Mining association rules in relational databases is a significant computational task with

lots of applications. A fundamental ingredient of this task is the discovery of sets of

attributes (itemsets) whose frequency in the data exceeds some threshold value. In this

paper we describe two algorithms for completing the calculation of frequent sets using a

tree structure for storing partial supports, called interim-support tree. The first of our

algorithms (TTF) uses a novel tree pruning technique, based on the notion of (fixed-prefix)

potential inclusion, which is specially designed for trees that are implemented using only

two pointers per node. This allows to implement the interim-support tree in a space efficient

manner. The second algorithm (PTF) explores the idea of storing the frequent itemsets

in a second tree structure, called the total support tree (T -tree); the main innovation lies

in the use of multiple pointers per node which provides rapid access to the nodes of the

T -tree and makes it possible to design a new, usually faster, method for updating them.

Experimental comparison shows that these techniques result in considerable speedup for

both algorithms comparing to earlier approaches that also use interim-support trees [8, 10].

Further comparison between the two new algorithms, shows that PTF is generally faster on

instances with a large number of frequent itemsets, provided that they are relatively short,

while TTF is more appropriate whenever there exist few or quite long frequent itemsets; in

addition, TTF behaves well on instances in which the densities of the items of the database

have a high variance.

Keywords: association rules, frequent itemsets, data mining, set-enumeration trees.

1 Introduction

An important data mining task initiated in [3] is the discovery of association rules over huge

listings of sales data, also known as basket data. This task initially involves the extraction

of frequent sets of items from a database of transactions, i.e. from a collection of sets of such

items. An example of a database with transactions that are subsets of {a, b, c, d, e, f, g, h} is

given in Table 1. The number of times that an itemset appears in transactions of the database

is called its support. The minimum support an itemset must have in order to be considered

as frequent is called the support threshold, a nonnegative integer denoted by t. The support

of an association rule A =⇒ B, where A and B are sets of items, is the support of the set

A∪B. The confidence of rule A =⇒ B is equal to support(A∪B)/support(A) and represents

the fraction of transactions that contain B among transactions that contain A. A valid rule

is one with support at least the support threshold t and with confidence at least a confidence

threshold c.

Examples of association rules. Let D be the database shown in Table 1. Let also t = 4 be

the support threshold and c = 0.5 be the confidence threshold. Rules {b} =⇒ {c} and {a} =⇒

{d} have both adequate support, because support({b, c}) = 7 and support({a, d}) = 9. How-

ever, the former rule is not valid since confidence({b, c}) = support({b, c})/support({b}) =
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7/17 < 0.5; on the other hand, the latter rule is valid since confidence({a, d}) = support({a, d})/support({a}) =

9/15 > 0.5.

a b c d e f g h

1 1 0 1 1 0 1 1

1 1 0 0 1 1 1 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

1 1 1 0 0 1 1 0

1 1 0 1 1 0 1 0

0 1 0 1 1 1 1 1

1 0 0 1 0 1 1 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0

0 0 0 1 0 0 1 0

a b c d e f g h

1 1 1 1 1 1 0 0

0 0 0 1 0 1 0 0

0 1 1 0 0 1 0 0

0 1 0 0 1 1 1 0

0 0 1 1 1 1 0 0

1 0 1 1 1 0 1 1

0 1 0 0 0 0 1 1

0 1 1 1 0 1 0 1

0 0 1 1 0 0 1 0

1 0 0 1 1 0 0 0

1 0 0 0 1 0 1 1

a b c d e f g h

0 1 1 0 1 1 1 1

0 1 0 1 1 1 0 1

1 0 0 0 1 0 1 0

1 1 0 1 1 0 0 0

0 0 1 1 0 1 0 0

0 1 1 1 0 1 1 0

0 1 0 0 1 0 0 0

1 0 0 0 1 0 1 0

1 0 1 0 1 0 0 0

0 0 0 0 1 0 0 1

Table 1: A database containing 32 transactions. Each transaction is described by a subset of

{a, b, c, d, e, f, g, h}.

Association Rule Mining, in general, involves the extraction from a database of all valid

rules. The major part of this task is the discovery of the frequent itemsets; once the support

of all these sets has been counted, determining valid rules can be done as follows. For each

frequent itemset X (support(X) ≥ t), consider all itemsets Y ⊆ X (all such subsets are

necessarily frequent as well). If support(X)/support(Y ) ≥ c it turns out that the following

rule is valid:

Y =⇒ X \ Y

It is not hard to see that the above procedure finds all valid rules.

Of course, there is no polynomial-time (w.r.t. the input size) algorithm for generating all

frequent itemsets, since their number can be exponential in the size of the database. For

example, consider a database with n items and n transactions; if there exist m transactions of

the form 111 . . . 1, then all 2n−1 possible itemsets have support at least m and are consequently

frequent if m > t. Therefore, this problem has motivated a continuing search for effective

heuristics.

The best-known algorithm, from which most others are derived, is Apriori [5]. Apriori

performs repeated passes of the database, successively counting the support for single items,

pairs, triples, etc.. At the end of each pass, itemsets that fail to reach the support threshold

are eliminated, and candidate itemsets for the next pass are constructed as supersets of the

remaining frequent sets. As no frequent set can have an infrequent subset, this heuristic ensures
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that all sets that may be frequent are considered. The algorithm terminates when no further

candidates can be constructed.

Apriori remains potentially very costly because of its multiple database passes and, espe-

cially, the possible large number of candidates in some passes. Attempts to reduce the scale

of the problem include methods that begin by partitioning [16] or sampling [17] the data, and

those that attempt to identify maximal frequent sets [7, 6] or closed frequent sets [18] from

which all others can be derived. A number of researchers have made use of set-enumeration

tree structures to organise candidates for more efficient counting. The FP-growth algorithm

of Han et al. [13, 12] counts frequent sets using a structure, the FP-tree, in which tree nodes

represent individual items and branches represent itemsets. FP-growth reduces the cost of

support-counting because branches of the tree that are subsets of more than one itemset need

only be counted once. In contemporaneous work, commencing with [11], we have also employed

set-enumeration tree structures to exploit this property. Our approach begins by constructing

a tree, the P -tree, [10, 9], which contains an incomplete summation of the support of sets found

in the data. The P -tree, described in more detail below, shares the same performance advan-

tage of the FP-tree but is a more compact structure. Results presented in [8] demonstrate that

algorithms employing the P -tree can achieve comparable or superior speed to FP-growth, with

lower memory requirements.

Unlike the FP-tree, which was developed specifically to facilitate the FP-growth algorithm,

the P -tree is a generic structure which can be the basis of many possible algorithms for com-

pleting the summation of frequent sets. In this paper we describe and compare two algorithms

for this purpose, namely:

1. The T -Tree-First (TTF) algorithm.

2. The P -Tree-First (PTF) algorithm.

Both algorithms make use of the incomplete summation contained in the P -tree to construct

a second set-enumeration tree, the T -tree, which finally contains frequent itemsets together

with their total support. The algorithms differ in the way they compute the total support:

algorithm T -Tree-First iterates over the nodes of T -tree, and for each of them it traverses the

P -tree; algorithm P -Tree-First starts by traversing the P -tree and for each node that it visits,

it updates all relevant nodes at the current level of the T -tree.

Earlier algorithms that use similar tree structures are Apriori-TFP [8] and an anonymous

algorithm presented in [10]; here we will refer to the latter as “Interim-Support”.

The contribution of this work lies in the introduction of techniques that can considerably

accelerate the process of computing frequent itemsets. In particular, the main innovation in

the first of our algorithms (TTF) is a tree pruning technique, based on the notion of fixed-

prefix potential inclusion, which is specially designed for trees that are implemented using only

two pointers per node. This allows to implement the interim-support tree in a space efficient
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manner. The second algorithm (PTF) introduces the use of multiple pointers per node in the

T -tree; this accelerates the access of the nodes of the T -tree and makes it possible to find and

update appropriate T -tree nodes following a new, usually faster, strategy.

We perform experimental comparison of the two algorithms against the earlier algorithms

Interim-Support and Apriori-TFP and show that in most cases the speedup is considerable. We

also compare the two new algorithms to each other and discuss the merits of each. Our results

show that PTF is faster than TTF if there are a lot of frequent itemsets in the database (small

support threshold), provided that they are short, i.e., that they contain few items. On the

other hand TTF gains ground as the support threshold increases and behaves even better for

instances of variable item density which have been pre-sorted according to these densities; it

also behaves much better than PTF in instances with long frequent itemsets.

2 Notation and Preliminaries

A database D is represented by an m × n binary matrix. The columns of D correspond to

items (attributes), and the rows correspond to the transactions (records). The columns are

indexed by consecutive letters a, b, . . . of the alphabet (see Table 1 for an example). The set

of columns (items) is denoted by C. An itemset I is a set of items I ⊆ C. For an itemset I we

define:

• E(I) (E-value of I) is the number of transactions that are exactly equal to I. This value

is also called exact support of I.

• P (I) (P -value of I) is the number of transactions that have I as a prefix. Also called

interim support of I.

• T (I) (T -value of I) is the number of transactions that contain I. Also called total support

or, simply, support of I.

Both the terms P-value and P-tree have been used in other contexts with other meanings. Here,

the derivation is the notion of a partially counted support value. In this paper we consider

the problem of finding all itemsets I with total support T (I) ≥ t, for a given database D and

threshold t, starting with a P -tree containing P -values for all sets present as transactions in

D.

For an item x we define the density of x in D to be the fraction of transactions of D that

contain x, that is T ({x})/m. We also define the density of a database D to be the average

density of the items of D; note that the density of D is equal to the fraction of the total number

of items appearing in the transactions of D over the size of D (= nm).

We will make use of the following order relations:

• Inclusion order: I ⊆ J , the usual set inclusion relation,
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• Lexicographic order: I ≤ J , I is lexicographically smaller or equal to J if seen as

strings,

• Prefix order: I ⊑ J , I is a prefix of J if seen as strings. Note that I ⊑ J ⇔ I ⊆

J & I ≤ J .

We will also use the corresponding operators without equality: I ⊂ J , I < J and I < J .

Notice that for any itemset I:

T (I) =
∑

J :I⊆J

E(J)

and therefore:

T (I) =
∑

J :I⊆J & I≤J

E(J) +
∑

J :I⊆J & J<I

E(J) = P (I) +
∑

J :I⊆J & J<I

E(J) (1)

This property will play an important role in our algorithms.

3 The Interim-Support Tree

Both new algorithms TTF and PTF have a common first part which is a pre-processing of the

database that results in the storage of the whole information into a structure called the P -tree

or interim-support tree. The P -tree is a set-enumeration tree the nodes of which are distinct

itemsets of the database as well as some common prefixes of these itemsets. For each node,

the interim support (P -value) of the corresponding itemset is also stored.

The notion of interim-support trees was introduced in [10], where details of the construction

of the P -tree were given, and more fully in [9]. The algorithm is summarised below.

Algorithm P -Tree-Build

Input: Database D.

Output: P -Tree of itemsets in D.

(* Start with P -tree of a single node representing the empty set *)

for each transaction i in D do

c := P -tree rootnode

inserted := false

while not inserted do

if c = i then increment P (c); inserted := true

else if c ⊂ i then increment P (c); c :=eldest child of.c

else if c < i then c :=next sibling of.c

else create new node for i; inserted := true

return P -tree;
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Note that in this algorithm, for clarity, we use the notation i and c to denote an itemset

which also is or will become the label of a node in the tree. The tree is constructed in a single

pass of D. As each transaction is examined, the tree is traversed in a top-down (preorder)

manner until either a node with identical itemset is found or the traversal passes the position

in the tree at which the new itemset should be located. During this traversal, the support of

all ancestors (preceding subsets) of the itemset is incremented.

If the itemset is not found in the tree, a new node is added to the tree to represent it.

At this point the traversal has reached a node c which is either null (ie a nonexistent child

or sibling) or lexicographically follows the new itemset i. A node labelled i is inserted at

the position in the tree structure occupied by c. The following three different cases apply for

dealing with the previous node c and recording the interim support of i:

• c is null: The new node i is given support P (i) = 1.

• i ⊂ c: c becomes the child of i. P (i) = P (c) + 1.

• Otherwise: c becomes the next sibling of i. P (i) = 1.

Finally, if i has been added as a sibling of c, and i and c share a leading substring d that is

not already in the tree, a node d is inserted at the position now occupied by i, with i and c

becoming its children, and P (d) = P (i) + P (c).

In any case, during the insertion of an itemset at most two new nodes will be created in

the P -tree. On the other hand, if the database contains several identical itemsets, the P -tree

can be much smaller than the original database.

The P -tree that corresponds to the database of Table 1 is shown in Figure 1. Note that

figure 1 shows the logical structure of the P -tree. However, for the sake of memory efficiency

the P -tree is implemented using two pointers per node: down and right. For a node v, its

down pointer links v to one of its children — the lexicographically smaller. This child’s right

pointer points to another child of v, and so on. For example, in the implementation of a P -tree

containing itemsets ‘a’, ‘ab’, ‘ac’, and ‘abc’ node ‘a’ points down to ‘ab’ which in turn points

down to ‘abc’ and right to ‘ac’.

The significance of the P -tree is that it performs a large part of the counting of support

totals very efficiently in a single database pass. The size of the P -tree is linearly related to

the original database, and will be smaller in cases where the data includes many duplicated

itemsets. Most importantly, it involves no loss of relevant information, so the P -tree can be

used as a surrogate for the original database in any chosen algorithm.

The FP-tree of Han et.al. [13, 12] was developed independently and contemporaneously

with our P -tree [11, 10] and shares similar performance advantages. There are three significant

differences between the two structures. Firstly, the construction of the FP-tree requires two

database passes, the first of which eliminates attributes that fail to meet the required support

threshold, so it no longer contains a complete representation of the information in the database.
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Figure 1: P -tree with interim supports for the database of Table 1.

Secondly, the nodes of the FP-tree correspond to individual items, whereas in the P -tree a

sequence of items which is partially closed (i.e. which has no leading subsequence with greater

support in the tree) will be stored as a single tree node. Thus, for example, two transactions

{a, b, c, d, e} and {a, b, c, x, y}, which share a common prefix {a, b, c}, would require in all 7

nodes in the FP-tree. In the P -tree, conversely, only 3 nodes would necessarily be created: a

parent for {a, b, c}, and child nodes for {d, e} and {x, y}. Finally, in order to implement the FP-

growth algorithm, the FP-tree must store pointers at each node to link all nodes representing

the same item, and also to link a node to its parent and child nodes. The nodes of the P -

tree, conversely, requires only pointers to the eldest child and next sibling. Both the latter

differences lead to a more compact tree structure and hence faster traversal.

More importantly, the simpler and less pointer-rich organisation of the P -tree makes it

a more flexible structure than the FP-tree, which was developed specifically to implement

the FP-growth algorithm. This flexibility, for example, allows us to implement an algorithm,

Apriori-TFP, which applies an Apriori-like procedure to the nodes in the P -tree. In results

presented in [8] both the memory requirements and construction time for the P -tree were

less than for a corresponding FP-tree, and the execution time for Apriori-TFP was similar or

less than FP-growth and much less than Apriori. In this paper we will use Apriori-TFP as a

benchmark against which to measure the performance of the new algorithms proposed.

A further advantage of the relatively simple P -tree structure is that it facilitates scaling to

deal with data that cannot be contained in main memory. In this case, the original database

is segmented into partitions for each of which a separate P -tree is constructed. This process
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again requires only a single pass of the database to produce a set of Partition-P-trees (PP -

trees). Subsequently, algorithms that require to traverse the P -tree can operate by separately

traversing each of the PP -trees, accumulating support counts from each to produce the overall

totals. Partitioning the FP-tree is necessarily more complex, although methods for doing

this are described in [12]. In [1] we described an implementation of Apriori-TFP using a tree

partitioning strategy. The results obtained showed that segmenting the data enabled effective

scaling of the method, and demonstrated improved performance over a partitioned version of

FP-growth. Similar partitioning strategies can be applied to the algorithms decribed in this

paper, and thus, although the experiments described relate to databases that can be contained

in main memory, the methods can be applied on a larger scale.

A number of other researchers have made use of the FP-tree and similar structures. The

CFP-tree described in [15] stores frequent closed itemsets in a form that facilitates subsequent

query processing. The main contribution of this work is a structure that can be re-used

efficiently, rather than the efficiency of the construction algorithm. Reusability is also a feature

of the P -tree, which, as we have mentioned, retains all relevant information from the original

data. In [14] a structure is described, also (coincidentally) called a P -tree, which is quite

similar to our P -tree, but (like the FP-tree) stores only one item at each node. The approach

described constructs FP-trees from the P -tree rather than from the original data, producing

a single overall FP -tree, for which further partitioning might become necessary if the data is

too large to contain in main memory.

4 The T -Tree-First (TTF) algorithm

The T -Tree-First (TTF) algorithm first iterates over the nodes of T -tree and for each of them

it traverses the P -tree. In this section we give a detailed description of TTF.

The algorithm first scans the database and creates the P -tree, as explained in the previous

section.

It then starts building the T -tree (recall that the T -tree will finally contain all frequent

itemsets together with their total supports). Each level of the T -tree is implemented as a

linear list, where itemsets appear in lexicographic order; nodes of such a list neither point

to nor are pointed from nodes that are in the list of another level. In the beginning, the

algorithm builds level 1 of the T -tree, which contains all frequent singletons; to this end it

counts their support traversing the P -tree. It then builds the remaining T -tree level by level

using procedure Iteration(k).

The algorithm is presented below. A fundamental ingredient of TTF is function CountSup-

port which is described separately.
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Algorithm T -Tree-First (TTF)

Input: Database D, threshold t.

Output: The family F of frequent itemsets.

Build P -tree from database D;

(* Build the 1-st level of T -tree *)

for i = 1 to n do

if CountSupport(P -tree, {i}) ≥ t then add {i} to F1;

(* Build the remaining levels of T -tree *)

for k = 2 to n do

Iteration(k);

if Fk = ∅ then exit

else F = F ∪ Fk;

return F ;

Some details of procedure Iteration(k) need to be clarified. Its goal is to build Fk, that

is, the k-th level of the T -tree. The procedure uses the heuristic first described in [5]. Itemsets

in Fk must have all their (k − 1)-size subsets in Fk−1. Therefore, one can start from existing

itemsets in Fk−1 and try to augment them with one more item in order to create all potentially

frequent itemsets. To avoid duplications the algorithm may proceed by considering for each

frequent itemset Xk−1 in Fk−1 all Xk−1’s supersets Xk = {x} ∪ Xk−1 for items x that are

greater than any item of Xk−1.

As observed already in [5], it makes sense to consider such supersets only if Xk−1 and the

node following it, denoted X ′
k−1, differ at the last item. The candidate superset Xk is then the

union of Xk−1 and X ′
k−1. Then it is checked whether all the (k − 2 many) remaining (k − 1)-

subsets of Xk are frequent; this task is carried out by a special function called ExistSubsets,

which we will not describe in detail here. If some of the examined subsets of Xk is not present

in Fk−1, Xk is not added to Fk.

Procedure Iteration(k) (* Building the k-th level of T -tree *)

for each itemset Xk−1 ∈ Fk−1 do

X ′

k−1 := next(Xk−1);

while X ′

k−1 6= NULL do

if Xk−1 and X ′

k−1 differ only at the last item then

Xk := Xk−1 ∪ X ′

k−1;

if ExistSubsets(Xk,Fk−1) then

T (Xk) := CountSupport(P -tree, Xk);

if T (Xk) ≥ t then add Xk to Fk;

X ′

k−1 := next(X ′

k−1);

else exit while;

In order to complete the description of TTF it remains to describe its most critical part, that
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is, function CountSupport, which counts the total support of an itemset X in the P -tree

in a recursive manner. An essential ingredient of CountSupport is the notion of fixed-prefix

potential inclusion:

Fixed-Prefix Potential Inclusion. I
pot
⊆K J : ∃J ′, commonprefix(J, J ′) = K & I ⊆ J ′.

Examples: ‘bdf’
pot
⊆ ‘ab’ ‘abc’, ‘bdf’ 6

pot
⊆ ‘ab’ ‘abd’.

In words, I
pot
⊆K J means that there is an itemset greater than J , sharing with J a common

prefix K, that contains I.

A second interesting inclusion relation can be defined in terms of
pot
⊆K :

Potential Inclusion. I
pot
⊆ J

def
= I

pot
⊆ J J , i.e. ∃J ′, J ⊑ J ′ & I ⊆ J ′.

Examples: ‘bdf’
pot
⊆ ‘abde’, ‘bdf’ 6

pot
⊆ ‘abdg’.

In words, I
pot
⊆ J means that there is an extension of J that contains I.

The use of the above inclusion relations can significantly reduce the number of moves needed

to count the support of an itemset in trees with two pointers per node. Suppose that we are

looking for appearances (i.e. supersets) of an itemset I in the P -tree and we are currently

visiting a node that contains itemset J :

• Nodes that are below the current node contain itemsets J ′ which have J as prefix.

Therefore, if I 6
pot
⊆ J there is no point visiting the subtree rooted at the current node.

• Nodes that are to the right of the current node (siblings) contain itemsets that have

par(J) (parent of J) as prefix — and so does J — and are greater than J . If I 6
pot
⊆ par(J) J

there is no point visiting the subtrees rooted at these nodes.

These two tests result in much better tree pruning comparing to the one applied by the

Interim-Support algorithm [10]. As an example, suppose that we are trying to find the support

of itemset X=‘bd’ in a P -tree in which there is a node ‘ab’ with children ‘abde’ and ‘abefg’.

Then, once the tree traversal reaches node ‘abde’ it adds its support to T (X) and does not move

to the right, that is, it avoids visiting ‘abefg’. On the other hand, the Interim-Support algorithm

would also examine ‘abefg’ (and other siblings if such existed) because it only terminates its

search whenever it finds itemsets lexicographically equal or greater than X.
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Function CountSupport(pnode, X): integer

(* Counts the total support of itemset X

in the subtree of P -tree rooted at pnode*)

T := 0;

if pnode 6= NULL then

J := pnode → itemset;

if X
pot

⊆ J then (* makes sense to search children *)

if X ⊆ J then T := T + P (J)

(* inclusion is a special case of potential inclusion *)

else T := T+ CountSupport(pnode → down, X);

if X
pot

⊆ par(J) J then (* makes sense to search right siblings *)

T := T+ CountSupport(pnode → right, X);

return T ;

Finally, let us explain how to check potential inclusion and fixed prefix potential inclusion.

It can be shown that the following tests suffice. The proof is omitted.

• X
pot
⊆ J : if X ⊆ J then X

pot
⊆ J is true. Otherwise let x be the lexicographically smaller

item of X that is not item of J (such x exists). If for all items j of J are lexicographically

smaller than x then X
pot
⊆ J is true otherwise it is false.

• X
pot
⊆K J : assume K ⊑ J (otherwise the inclusion X

pot
⊆K J is obviously false). Let x be

the first item of X \ K and j be the first item of J \ K. If x > j the inclusion X
pot
⊆K J

holds otherwise it is false.

5 The P -Tree-First (PTF) Algorithm

The P -Tree-First (PTF) algorithm also begins by constructing the P -tree exactly as TTF, but

then it follows an inverse approach in order to update the T -tree. In particular, during the

processing of level-k of the T -tree, each node of the P -tree is visited once. Let I be the itemset

of a visited node; the algorithm updates all nodes of level-k that are subsets of I, except for

those that are also subsets of par(I) (parent of I) — the latter have already been updated

while visiting par(I).

Level-k itemsets of the T -tree are constructed from the itemsets of level-(k − 1), by adding

single items to each of them. This is done without checking the frequency of all subsets of a

candidate. This is in contrast to TTF where special care was taken in order to create as few

candidates as possible; here it is more important to save time by avoiding checking the subsets.

Then, the P -tree is traversed as described above in order to compute support for all nodes of

level-k. Nodes with support smaller than the threshold are removed before the generation of

level-(k + 1). An illustration of this process for the database of Table 1 is shown in Figure 2.
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Figure 2: T -tree with total supports for the database of Table 1 .

Algorithm P -Tree-First (PTF)

Input: Database D, threshold t.

Output: The family F of frequent itemsets.

Build P -tree from database D;

add ∅ to F0; (* create a dummy level with one empty itemset *)

(* Build level-k of the T -tree *)

for k = 1 to n do

Iteration(k);

if Fk = ∅ then exit for

else F = F ∪ Fk;

return F ;

Our innovation here is the use of multiple pointers at each node of the T -tree in contrast to

earlier approaches (e.g. Apriori-TFP [8]) where two pointers per node are used. In particular,

each node of the T -tree contains n − k pointers, where n is the number of items and k is the

level of the node; there is one pointer for each item that is lexicographically greater than the

greatest item of the node. For example, in the T -tree for the database of Table 1, a node that

contains itemset ‘bde’ must also contain three pointers, one for each of ‘f’, ‘g’, ‘h’. If ‘bdeg’ is

found to be frequent, it will be stored in the node pointed by the ‘g’ pointer of node ‘bde’.

The use of multiple pointers provides rapid access to the nodes of the T -tree, allowing for a

new strategy for T -tree update. In particular, while building level k, once a node I of the P -tree
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is visited, all its k-subsets (subsets of size k) are generated; once such a k-subset is generated,

it is sought in the T -tree and, if present, its support is updated accordingly. Whenever such

an itemset J has a prefix J ′ which is not frequent (hence neither J can be frequent) the

algorithm discovers this quite early and the update process terminates. For example, if the

algorithm visits a node of the P -tree with itemset ‘acdfghk’ and the current level of the T -tree

is level-6 the algorithm should update all size-6 subsets of ‘acdfghk’. Consider ‘acdfgh’; the

algorithm will try to find this node starting from ‘a’ in level-1, continuing to ‘ac’ in level-2,

and then to ‘acd’, ‘acdf’ and ‘acdfg’. If ‘acd’ is non-frequent, i.e. does not exist in level-3, the

algorithm stops and considers the lexicographically next size-6 subset of ‘acdfghk’. In fact,

PTF saves even more comparisons by considering ‘acfghk’ as next subset because there is no

need to check any subset that contains ‘acd’. Note that, in such a case, we use a ‘non-frequent’

itemset, called NF , which keeps the last prefix that was found to be missing from the T -tree.

On the other hand, Apriori-TFP traverses a potentially large list of candidate itemsets in order

to check whether any of them is a k-subset of I (note that this also happens in the original

Apriori algorithm [5] where I is the current transaction scanned). This could be much slower

than the above described procedure, especially if I has few k-subsets in that list. A detailed

description of the update of level-k of the T -tree is given below.

Procedure Iteration(k) (* Building k-th level of T -tree *)

for each itemset Xk−1 ∈ Fk−1 do

for each item x greater than all items of Xk−1 do

add Xk := Xk−1 ∪ {x} to Fk;

let the x-th down pointer of Xk−1 point to Xk;

(* Update total supports of nodes in Fk *)

for each node I of the P -tree do

NF := {};

for each itemset J ⊆ I with |J | = k in lex. order do

if J ⊆ par(I) or (NF ⊆ J and NF 6= {}) then

proceed to the lex. next J ⊆ I such that

J is not subset of par(I) and does not contain NF

else

repeat

descend the T -tree following prefixes of J

until J is found or some J ′ ⊑ J is missing;

if J is found then T (J) := T (J) + P (I)

else NF := J ′; (* J ′ is missing and NF is set so that

no itemset J containing J ′ will be considered

in any subsequent inner for-loop *)

remove from Fk all nodes with support < t (threshold);

14



6 Complexity of the algorithms

We will next provide some bounds on the complexity of algorithms TTF and PTF. Let us first

remind the reader that there can be no algorithm for this problem that runs in time polynomial

w.r.t. the size of the database (equivalently, w.r.t. m and n), since there are instances in which

the number of frequent itemsets is 2n − 1. We shall therefore examine whether our algorithms’

running time is polynomial w.r.t. m, n and the number R of frequent itemsets; note that the

output size is at most Rn. We will prove that this holds for TTF, but probably not for PTF.

Theorem 1 TTF has time complexity O(mn2R) and PTF has time complexity O(mn2n).

Proof: The dominating term in the complexity, for both algorithms, is the frequency cal-

culation process.

We first show that the complexity of this process is O(mn2R) for TTF. The proof is based

on the fact that for each frequent itemset Ik of size k, at most n−k supersets of size k+1 may

be added to the list of potentially frequent itemsets of size k+1. This is because these itemsets

are of the form Ik+1 = {x} ∪ Ik where x can be any item lexicographically greater than all

items of Ik. Thus, the total number of potentially frequent itemsets of size k+1 is bounded by

Rk+1 ≤ Rk(n − k) ≤ Rkn and their overall number is thus bounded by Rn. TTF, for each of

the (at most Rn) potentially frequent itemsets, examines a part of the P -tree, which contains

at most 2m nodes in total. Again, comparison of the corresponding itemsets requires O(n)

time and the bound follows.

On the other hand, during Iteration(k), PTF does the follwing: for any of the (at most 2m

many) nodes of the P -tree that contains, e.g., an itemset It of size t, it considers all possible

k-size subsets of It, i.e.
(

t
k

)

≤
(

n
k

)

many itemsets. For each of these itemsets, it performs at

most k moves in the T -tree in order to locate the itemset and update its frequency (if present).

Summing over all levels, the frequency calculation costs at most 2mΣn
k=1

(

n
k

)

k = mn2n. 2

Although the above result suggests that TTF is of lower complexity than PTF this is not always

the case, as can be demonstrated by appropriate examples. In fact, the presented bounds are

not directly comparable because if R is large (e.g., Θ(2n)) then the complexity of PTF is

smaller, whereas if R << 2n then it is larger but probably too overestimated. Experimental

comparison of the two algorithms is therefore meaningful.

7 Experimental Comparison

We implemented four algorithms in ANSI-C: TTF, Interim-Support (IS), PTF and Apriori-TFP

(ATFP). We run several experiments using a Pentium 1.6 GHz PC. We have used four types of

datasets: synthetic, synthetic of variable-density, realistic datasets, and sparse datasets. The

obtained results are presented below.
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Synthetic datasets. We first experimented with datasets created by using the IBM Quest

Market-Basket Synthetic Data Generator (described in [5]). We follow a standard notation

according to which a dataset is described by four parameters: T represents the average trans-

action length (roughly equal to the database density times the number of items), I represents

the average length of maximal frequent itemsets, N represents the number of items, and D rep-

resents the number of transactions in the database. We generated datasets T10.I4.N50.D10K

and T10.I4.N20.D100K and run experiments with all four algorithms. The execution time

of each algorithm for these two datasets and threshold varying from 1% to 5% is shown in

Figure 3.
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Figure 3: Results for datasets T10.I4.N50.D10K (top) and T10.I4.N20.D100K (bottom).

These results show that both algorithms TTF and PTF are faster than the earlier algorithms

IS and ATFP, except for rather large thresholds. As regards TTF and IS (which also iterates

over the T -Tree first), the reason for this behaviour is that IS performs fewer tests at each

P -tree node that it visits; thus, whenever a contiguous part of the tree is traversed by both

TTF and IS, it is IS the one that does it faster. Now, whenever the frequent itemsets are few,
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they are also (most probably) of small size; a small itemset has higher chances to appear in a

contiguous part of the P -tree which therefore cannot be pruned by TTF. As regards PTF and

ATFP (which iterates over the P-tree first), we observe that ATFP can be faster than PTF if

there are only few frequent itemsets because in such a case it can be faster to traverse the list

of candidate itemsets than generating all subsets of a node.

Comparing now the two new algorithms, we observe that PTF is faster than TTF for small

thresholds (≤ 2%). This is due to the fact that whenever the number of frequent itemsets

is large, TTF performs a lot of P -tree traversals, while PTF performs only one full P -tree

traversal per T -tree level. Since the size of the P -tree can be rather large (even comparable

to the size of the database) its traversal is quite slow; hence, whenever TTF performs many

traversals, even partial, the overall slowdown is considerable. On the other hand, PTF performs

several T -tree traversals at each level but these are fast thanks to the use of multiple pointers.

The two algorithms have comparable running time for thresholds above 2%. This is because

for relatively sparse T -tree the P -tree traversals performed by TTF are few; in this case the

economizing techniques of TTF balance, or even beat the advantages of PTF.

Variable-Density Datasets. To further compare TTF and PTF we implemented a proba-

bilistic generator in order to create datasets of variable item density (each item has a different

expected density). This generator fills the i-th item of a row with probability pf − (i − 1)ps,

i.e., the probability decreases linearly as we move from the first to the last item of a row; pf

represents the probability of appearance of the first item and ps is the decrement step. The

expected density of the database is equal to pf − (n−1)
2 ps =

pf−pl

2 , where pl is the probability

of appearance of the last item and n is the number of items in each row.

We have generated four variable-density datasets, one for each of the following four types

(where letter ‘V’ stands for ‘variable-density’): V.T4.N20.D10K, V.T6.N20.D10K, V.T4.N20.D100K,

and V.T6.N20.D100K; the corresponding first item selection probabilities and decrement steps

(in parentheses) are 0.4 (0.02), 0.6 (0.03), 0.4 (0.02), and 0.6 (0.03) respectively.

We run experiments with support thresholds ranging from 0.5% to 5%. For each dataset

type / threshold combination we have measured the execution time of PTF and TTF, averaging

over ten experiments, one for each dataset of the type.

Results for the datasets with 10K transactions appear in Figure 4. Figure 5 shows results

for the datasets with 100K transactions.

The comparison of the two algorithms is much more interesting when it comes to variable-

density data sets. As before, PTF behaves better for small thresholds (roughly smaller than

2%) but TTF is faster for larger thresholds. Besides, PTF exhibits almost constant running

time in most experiments. Now, whenever the T -tree is small and sparse, it happens that

the few full P -tree traversals performed by PTF can take longer than the (more but not too

many) partial P -tree traversals of TTF. The main reason is that potentially frequent itemsets

consist mainly of lexicographically smaller items, hence the partial P -tree traversals of TTF are
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Figure 4: Results for datasets V.T4.N20.D10K (top) and V.T6.N20.D10K (bottom).

limited to a small part of the P -tree and are therefore much faster. On the other hand, TTF

performs a full P -tree traversal at each level of the T -tree that contains potentially frequent

itemsets, regardless of the number of these itemsets, hence it needs almost the same time as

before, since it considers a similar number of levels.

Comparing the performance of the two algorithms with respect to uniformity of item den-

sities one observes that while PTF exhibits roughly the same performance for both uniform

and variable item densities, TTF is considerably faster on instances of variable item density;

indeed, our results show that for variable-density datasets, TTF outperforms PTF for support

thresholds above 3%, even above 2% or 1% in some cases. This is due to the fact that the

performance of PTF is mainly determined by the rank of the higher level of frequent itemsets,

while the performance of TTF depends heavily on the part of the P -tree that must be visited

each time — which is much smaller for variable density instances, because frequent itemsets

consist mainly of lexicographically smaller items.

Let us note here that for our experiments we built the variable-density datasets in such a
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Figure 5: Results for datasets V.T4.N20.D100K (top) and V.T6.N20.D100K (bottom).

way that the lexicographically greater items are of smaller density. This property is essential

for the performance of TTF, since it guarantees that most frequent itemsets consist mainly of

lexicographically small items which appear in a small part of the P -tree. Therefore, to make

TTF work well for real datasets, a sorting of the items in order of decreasing density should

be performed in a preprocessing step.

Realistic datasets. In a third set of experiments we tested the behavior of both algorithms

against widely used datasets, such as the ones contained in UCI Irvine Machine Learning

repository. We have used two UCI datasets, namely chess and mushroomwith typical suggested

support threshold values (70, 75, 80, 85 % for chess and 20, 25, 30, 35 % for mushroom). Figures

6 and 7 show the time performance of the TTF algorithm. We observe that the decrease on

execution time, when increasing the support threshold, is much steeper on chess than it is on

mushroom dataset. This is due to the lower similarity between transactions mushroom compared

to transactions of chess. This results to a larger variety of itemset frequencies for the former
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dataset, while for the latter the vast majority of itemsets has a frequency of around 20%.

Unfortunately, we did not manage to obtain results for the PTF algorithm on these datasets

because of memory overflow. This is mainly due to the particular structure of these datasets:

both datasets (especially chess) contain transactions that are very similar to each other and

so there are many frequent itemsets that are quite long (i.e. contain a large number of items)

even in the case of large thresholds. Therefore, the T -tree becomes too large to fit into the

main memory, since the whole tree must be stored and there are multiple pointers for each

node; recall that, in contrast, in the case of TTF only the last level of the T -tree needs to be

kept. Moreover, the existence of ‘deep’ levels in the T -tree results in huge numbers of generated

subsets while traversing nodes of the P -tree which causes considerable slowdown.
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Figure 6: TTF performance on chess dataset
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Sparse datasets. PTF however, behaves very well when we have to do with large datasets

of smaller density than the one of chess and mushroom datasets. We used the IBM Quest

Generator in order to generate datasets of such structure. Figure 8 shows the behavior of both

algorithms; the superiority of PTF is clear when we have to do with such datasets.
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Figure 8: PTF and TTF peformance on synthetic datasets with 100 items

8 Conclusions

In this work we have developed and implemented two Apriori-style algorithms for the problem of

frequent itemsets generation, called T -Tree-First (TTF) and P -Tree-First (PTF), that are based

on the interim-support tree approach [10]. The two algorithms follow inverse approaches: TTF

iterates over the itemsets of T -tree, and for each of them traverses the relevant part of the

P -tree in order to count its total support; PTF starts by traversing the P -tree and for each

visited node it updates all relevant nodes at the current level of the T -tree.

We have introduced several new techniques that result in faster algorithms comparing to

earlier attempts that use similar tree structures [8, 10]. The most important of them are

the fixed-prefix potential inclusion technique, which is used in algorithm TTF, and the use of

multiple pointers in the T -tree, employed by PTF. The former allows faster support counting

for P -trees that are built using only two pointers per node, thus being particularly memory-

efficient. The latter provides fast access to the T -tree and makes PTF a generally efficient

algorithm. We show experimentally that our new algorithms achieve considerable speedup

comparing to the earlier algorithms.

The main difference between the two algorithms is that TTF performs a partial P -tree

traversal for each potentially frequent itemset, while PTF performs only one, but full, P -tree

traversal for each level of potentially frequent itemsets. As a result, PTF is considerably faster

than TTF in instances where there are a lot of frequent itemsets, while TTF gains ground in
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instances where there are fewer potentially frequent itemsets, especially if for each of them

it suffices to check only a small part of the P -tree. For example, the latter case may occur

whenever item densities have a high variance. However, PTF fails to perform well in the case of

long frequent itemsets because the size of the T -tree becomes prohibitive; this calls for further

optimizisation techniques.

In conclusion, each of the two heuristics has its own merits and deserves further exploration.

As a suggestion for further research, it would be interesting to investigate possible combinations

of the two inverse approaches of TTF and PTF. For example, it seems reasonable to use PTF

as long as the current level of the T -tree contains a lot of frequent itemsets and the level depth

is small, while it may be wise to turn to TTF once the current level becomes sparse or if the

level depth increases above a certain value.
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