
Towards Keystroke Continuous
Authentication Using Time Series Analytics

Abdullah Alshehri, Frans Coenen and Danushka Bollegala

Abstract An approach toKeystroke Continuous Authentication (KCA) is described
founded on a time series analysis based approach that, unlike previous work on KCA
(using feature vector representations), takes the sequencing of keystrokes into con-
sideration. The significance of KCA is in the context of online assessments and
examinations used in eLearning environments and MOOCs, which are becoming
increasingly popular. The process is fully described and analysed, including compar-
ison with established feature vector approaches. Our proposed method outperforms
these other approaches to KCA (with a detection accuracy of 94%, compared to
79.53%), a clear indicator that the proposed time series analysis based KCA has
significant potential.

Keywords Keystroke Pattern Recognition · Keystroke Time Series · Behavioural
Biometrics · Continuous Authentication

1 Introduction

Keystroke patterns (typing patterns) are a recognised behavioural biometric for estab-
lishing the security credentials of users in the context of static user authentication.
The fundamental idea is that the rhythm of typing a predefined text by a legitimate
user can be learned, and consequently used for authentication purposes [1].Keystroke
Static Authentication (KSA) has been applied with respect to applications such as
password, username and pin number authentication [2–5]. However, KSA is unsuited
to applications that require continuous authentication such as in the context of the
online assessments and examinations frequently used in eLearning environments

A. Alshehri (B) · F. Coenen · D. Bollegala
Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
e-mail: a.a.alshehri@liverpool.ac.uk

F. Coenen
e-mail: coenen@liverpool.ac.uk

D. Bollegala
e-mail: danushka.bollegala@liverpool.ac.uk

© Springer International Publishing AG 2016
M. Bramer and M. Petridis (eds.), Research and Development
in Intelligent Systems XXXIII, DOI 10.1007/978-3-319-47175-4_24

325

326 A. Alshehri et al.

and MOOCs, where Keystroke Continuous Authentication (KCA) is required. KCA
is significantly more challenging than KSA because the process relies on detecting
patterns from free text (unlike in the case of KSA where we are looking for a single
fixed pattern).

Work on KCA to date has been predominantly focussed on feature vector based
binary classification where the features are statistics, such as the average hold time
(duration of a key press) and digraph latency (duration between the start or end
of pairs of common consecutive key presses) [6–11]. These systems operate by
continuously measuring the similarity between a learnt user statistical profile and
previously unseen profiles presented in the form of a data stream. However, there
is a great deal of variability in the statistical features used to make up the feature
vectors and consequently the reported results to date have tended to not be as good
as anticipated. The overriding disadvantage of the feature vector based approaches is
that the sequencing of key presses is largely lost. In addition, classifiers (predictors)
need to be built for each user and this in turn adversely affects the efficiency of
the application of KCA in real environments. The idea presented in this paper is to
conceptualise the keystroke process in terms of a ongoing time series from which
KCA can be realised through a time series analysis process rather than using a feature
vector based classification approach. More specifically the idea is to view keystrokes
in terms of press-and-release temporal events such that a series of successive events
can be recorded. Each keystroke is defined in terms of a pair P = (t, k), where
t is a time stamp or temporal identifier of some form; and k is some keystroke
attribute (such as flight time between keys or key-hold length). The intuition is that
the time series paradigm can be more readily used to dynamically identify “suspect
behaviour”, in real time, because it serves to capture keystroke sequences (unlike in
the case of statistical techniques).

The rest of this paper is organised as follows. In Sect. 2 a brief state-of-the-art
review of KCA is presented. This is followed in Sect. 3 with a description of the
proposed keystroke time series representation, while in Sect. 4 we introduce the
proposedKCAapproach. Keystroke time series similarity is then discussed in Sect. 5.
The evaluation and comparison of the proposed approach is reported on in Sect. 6.
Finally, the paper is concludedwith a summary and some recommendations for future
work in Sect. 7.

2 Previous Work

Dealing with keystroke patterns, especially KCA, in terms of time series has received
little attention in the literature. Reference is made in [12] where a sequence pattern
mining algorithm is presented for which a potential suggested application is KCA;
an idea that has some similarity with the time series approach proposed in this paper.
The majority of work on keyboard usage authentication has been directed at the idea
of using statistical feature vectors to recognise keystroke patterns. As mentioned in
the introduction to this paper, keystrokes have a range of timing features associated
with them including key-down, key-up and hold time. Also, given sequences of

Towards Keystroke Continuous Authentication Using Time Series Analytics 327

pairs of keystrokes, the flight time between n successive keystrokes can also be
considered. These features have been represented in terms of feature vectors by
computing statistical quantitative equivalents. Such feature vectors have then been
used to recognise typing patterns with a view to keyboard usage authentication. The
similarity, between (say) two typing profiles may be measured, for example, in terms
of the extent of the distance between two vectors.

One of the earliest studies that have considered the idea of keyboard authentication
is [13] where the authors utilized the concept of digraph latency for the feature vector
representation from which a binary classifier was generated. The classifier operated
using the mean and standard deviation of digraph occurrences in a training profile.
Only digraphs that satisfied a predefined threshold of occurrences were used; not all
digraphs were included. The principal disadvantages of the approach were that: (i)
to achieve a reasonable classification performance a substantial amount of data was
required with which to train the classifier, the classifier requires an average of 6,390
digraphs to recognise a useful pattern, and (ii) a dedicated classifier was required
for each individual. The approach would thus be difficult to apply in the context of
eLearning platforms and MOOCs. An alternative approach was presented in Gunetti
and Picardi [9] where the average time for pressing frequent key sequences (n-
graphs) was recorded and stored in arrays, one per n-graph. Common n-graphs were
extracted for corresponding samples (reference and test). The elements of the arrays
were then ordered and the distance between sample pairs computed by comparing
the ordering in the reference array with the ordering in the test array. This measure
was referred to as “the degree of disorder”. However, learning a reference sample
depends on all other samples in the reference profile. This can cause an efficiency
issue when dealing with large numbers of samples. The training of legitimate users
profiles is thus as time consuming as in [13]. Ahmed et al. [6] have used key-down
time information and the average of digraph flight time and monograph to represent
features. An Artificial Neural Network classifier was used. This mechanism worked
reasonably well in a controlled experimental setting, typing of the same text using
the same keyboard layout in an allocated environment. This is not the situation
we would find in uncontrolled environments, such as those used for conducting
eLearning assessments and examinations.

From the above, most KCA studies have been directed at the usage of quantitative
statistical measures to represent keystroke features founded on a feature vector rep-
resentation. However, it is argued here that the feature vector representation may not
necessarily be representative of useful typing patterns. Therefore, it is conjectured
that representing keystroke features as a time series can lead to a better interpretation
of typing patterns with respect to KCA.

3 Keystroke Time Series Representation

Keyboard usage is typically undertaken in a sequential manner key-press by key-
press, on occasion two keys may be pressed together (for example using the shift
or control keys). Thus typing action is well suited to representation in terms of

328 A. Alshehri et al.

time series where each key press describes a point (event) within the time series.
More formally a Keystroke time series Kts is a sequential ordering of a set of
data points that occur within a specified interval of time, Kts = {p1, p2, . . . , pn}
where each point pi corresponds to a tuple of the form 〈ti, ki〉 where ti is a tem-
poral identifier of some description and ki is some associated attribute value. Thus
Kts = {〈t1, k1〉, 〈t2, k2〉, . . . , 〈tn, kn〉}. As such, a time series can be viewed as a 2D
plot with time along the x-axis and attribute value along the y-axis. The value for ti
can be either: (i) key-down time KDt , (ii) key-up time KUt or (iii) a sequential ID
number KN per keystroke. However, when using KDt or KUt the “ticks” along the
time series x-axis are typically irregularly spaced which in turn tends to hinder the
time series analysis. Therefore, in the context of the work presented in this paper,
KN was used for t. For ki we have used flight time Ft . Flight time serves to capture
the duration between keystrokes which is lost if we use KDt or KUt for t. Thus,
Ft was adopted, Kts = {〈KN1,Ft

1〉, 〈KN2,Ft
2〉, . . . }. With respect to the forgoing the

following definitions should be noted:

Definition 1 AKeystroke Time Series Kts is an ordered discrete sequence of points;
Kts = [p1, p2, . . . , pi, . . . , pn] where n ∈ N is the length of the series, and pi is a tuple
corresponding to a feature pairing.

Definition 2 A keystroke time series sub-sequence sk , of length l, is generated from
Kts and starts at the position i, sk = [pki, pk(i+1), . . . , pk(i+j)], where k ∈ N is the
identifier of current sub-sequence, j = l − 1 and 1 < l < n − l. Thus an ordered
subset of Kts can be indicated using the notation sk � Kts (∀pki ∈ sk, ∃pi ∈ Kts).

Definition 3 A profile P is a set of k keystroke time series sub-sequences P =
{s1, s2, . . . , sk}.

In practice each Kts describes a task dependent keyboard session. For example,
in the context of an online assessment where a student is answering an assessment
question, the generated Kts should represent that keyboard session associated with
the student conducting this task. For KCA to operate each time series Kts needs to be
evaluated at the start (by comparison of an initial sub-sequence s1 of the time series
with P, a previously stored “bank” of sub-sequences for the subject). As the session
proceeds continuous comparison needs to be undertaken by comparing the most
recent sub-sequence si with earlier collected sub-sequences S = {s1, s2, . . . , si−1}
(of the time series Kts).

The fundamental idea proposed in this paper is illustrated in Fig. 1 generated
using several randomly selected time series from the sample data used for evalu-
ation purposes as presented later in this paper (see Sect. 6). The figure shows four
keystroke time series sub-sequences representing two subjects, two sub-sequences
from each subject (Subjects 2 and 9). From the figure it can be seen that there are
clear similarities in the keystroke sub-sequences associated with the same subjects
(despite the sub-sequences being related to different texts), and clear dissimilarities
in the keystroke sub-sequences associated with different subjects. It is thus argued
here that such time series can be fruitfully used for KCA.

Towards Keystroke Continuous Authentication Using Time Series Analytics 329

Fig. 1 Examples of keystroke time series: a and b, time series for Subject 2 writing two different
texts; c and d, time series for Subject 9 writing two different texts

4 Proposed KCA Approach

The proposed KCA process is presented in Algorithm1. The inputs are: (i) a desired
sampling frequency f , (ii) a desired keystroke time series sub-sequence lengthm and
(iii) a minimum size l for S (a set in which to hold collected sub-sequences) before
similarity measurements can be made and (iv) a similarity threshold σ value. The
process operates on a continuous loop; after every f ticks (line 4) a keyboard time
series sub-sequence s of length m is constructed (line 5). Not every time series is
usable, for example, there may be sizeable durations between key presses indicating
“away from keyboard” events, thus the generated subsequence s needs to be verified
for its usability (line 6). Recall that for the time stamps keypress indexes, not the
actual time of the key press (for reasons presented earlier) were used. The usability
of a time series can be simply identified from the presence of an excessive flight
time value. If s is usable and we have collected a sufficient number of sub-sequences
(|S| > l) authentication can be undertaken (line 7). This is done by calculating a
similarity index (simIndex); the simplest way of doing this is to obtain an average
of the similarity values between s and the sub-sequences in S. If simIndex ≥ σ ,
then an authentication error has occurred (lines 8 to 10). Note that in a similar
manner to plagiarism checkers (such as Turnitin1) the proposed KCA is essentially
a similarity checker, thus when dissimilarity is found this is an indicator of further
investigation being required. The most recent time series s is then added to S (line
11) and the process continuous until a data stream end signal is received (line 19).

1http://www.turnitinuk.com/.

http://www.turnitinuk.com/

330 A. Alshehri et al.

Note also that Algorithm 1 does not include any “start up comparison” as described
in the foregoing section. However, the similarity checking process is more-or-less
the same; a similarity index can be generated and compared to a value σ . The most
important part of Algorithm 1 is the similarity checking process, the mechanism for
comparing two time series. This mechanism is the central focus, and contribution,
of this paper; and is therefore considered in further detail in Sect. 5.

Algorithm 1 Dynamic KCA process
Input: f = sampling freq., m = time series subsequence length, l = min. size of S for sim. calc.,

σ = similarity threshold.
Output: Similarity “highlights”.
1: S = Set of time series sub-sequences sofar (empty at start)
2: ti = 1
3: loop
4: if remainder ti

f ≡ 0 then
5: s = time series {pi, . . . , pm}
6: if usable(s) and |S| > l then
7: simIndex = similarityIndex(s, S)
8: if simIndex >= σ then
9: highlight
10: end if
11: S = S ∪ s
12: end if
13: end if
14: if end data stream then
15: Exit loop
16: else
17: ti = ti + 1
18: end if
19: end loop

5 Measuring the Similarity of Keystroke Time Series

Themost significant part of theKCAprocess described above is the time series analy-
sis element where a current keystroke time series sub-sequences s is compared with
one or more previous series. Given two keystrokes time series sub-sequence s1 and
s2, the simplest way to define their similarity sim is by measuring the corresponding
distances between each point in s1 and each point in s2. In other words the Euclidean
distance is measured between the points in the two series, summed and divided by
the sub-sequence length to give an average distance. However, this approach requires
both sub-sequences to be of the same length and, more significantly, tends to be over
simplistic as it assumes a one-to-one correspondence. By returning to the time series
sub-sequences given in Fig. 1a, b we can notice that the shape of the two series is
similar but the “peaks” and “troughs” are offset to one another. Euclidean distance
measurement will not capture this noticeable similarity. To overcome this limitation,
Dynamic Time Warping (DTW) mechanism was adopted. The idea here being to

Towards Keystroke Continuous Authentication Using Time Series Analytics 331

measure the distance between every point in s1 with every point in s2, and recording
these distances in a |s1| × |s2| matrix. This matrix can then be used to find the “best”
path from the origin along to the opposite “corner”. This path is referred to as the
Warping Path, it length in turn can be used as a similaritymeasure for two time series.

DTW was first used as speech recognition technique to compare acoustic signals
[14]. It has subsequently been adopted in the fields of data mining and machine
learning [15]. Using DTW, the linearity of time series of different length is “warped”
so that the sequences are aligned. Given two keystroke time series sub-sequences
s1 = {p1, p2, . . . , pi, . . . , px} and s2 = {q1, q2, . . . , qj, . . . , qy}, where x and y are the
lengths of the two series respectively, the two corresponding time series are used to
constructed a matrix M of size x × y. The value for each element mij ∈ M is then
computed by calculating the distance from each point pi ∈ s1 to each point qj ∈ s2:

mij =
√

(pi − qj)2 (1)

A Warping Path (WP = {w1,w2, . . . }) is then a sequence of matrix elements (loca-
tions),mij, such that each location is immediately above, to the right of, or above and
to the right of, the previous location (except at the location opposite to the origin,
which is the warping path end point). For each location the following location is
chosen so as to minimise the accumulated warping path length. The “best” warping
path is the one that serves to minimise the distance from m1,1 to m|s1|,|s2|. The idea is
thus to find the path with the shortest Warping Distance WD between the two-time
series

WD =
i=|WP|∑
i=1

if mi ∈ WP (2)

WD is then an indicator of the similarity between the two keystroke time series under
consideration. IfWD = 0, the two time series in question are identical.

Figure2 shows some results of the DTW process when applied to four of the time
series sub-sequences used with respect to the evaluation of the proposed approach
and reported on later in this paper. Figure2(a) shows theWP for two keyboard time
series sub-sequences from the same subject (user), while Fig. 2(b) shows the WP
for two keyboard time series sub-sequences from two different subjects (users). The
line included around the diagonal line in both figures indicates the WP that would
have been obtained given two identical sub-sequences. The distinction between the
generated WP in each can be observed from inspection of the figures.

6 Evaluation

In the foregoing a proposed KCA process was presented (Algorithm1). Central to
this KCA process was the ability to compare keyboard time series sub-sequences.
The proposed mechanism for doing this was the DTW mechanism. To illustrate the

332 A. Alshehri et al.

Fig. 2 Application of DTW: a Depicts WP for same subject where b Illustrates WP for different
subjects

effectiveness of thismechanism this section presents the results obtained froma series
of experiments conducted using DTW to compare keyboard time series. Two sets of
experiments were conducted using a collection of 51 keyboard time series associated
with 17 different subjects. The first set of experiments used DTW to compare time
series in the collection; the objective was to determine how effectively DTW could
be used to distinguish between time series. The second set of experiments compared
the operation of the DTW technique with that when using a statistical feature vector
based approach akin to that used in earlier work on KCA (see Sect. 2). The evaluation
metrics usedwere: (i) accuracy, (ii) FalseRejectionRate (FRR) (iii) FalseAcceptance
Rate (FAR) and Mean Reciprocal Rank (MRR). The remainder of this evaluation
section is organised as follows. We commence, Sect. 6.1, with a discussion of the
data collection process. The outcomes from the experiments conducted to analyse
the operation of the use of DTW within an overall KCA process are reported on in
Sect. 6.2. A summary of the results obtained comparing the usage of DTW with the
feature vector style approach, found in earlier work on KCA, is then presented in
Sect. 6.3. Some discussion is present in Sect. 6.4.

6.1 Data Collection

Keystroke timing data was collected (in milliseconds) using aWeb-Based Keystroke
Timestamp Recorder (WBKTR) developed by the authors in JavaScript.2 An HTML
“front end” was used and subjects asked to provide answers to discussion questions.
The idea was to mimic the situation where students are conducting online assess-
ments.We therefore wished to avoid imposing constraints such as asking the subjects

2The interface can be found at: http://cgi.csc.liv.ac.uk/~hsaalshe/WBKTR3.html.

http://cgi.csc.liv.ac.uk/~hsaalshe/WBKTR3.html

Towards Keystroke Continuous Authentication Using Time Series Analytics 333

to use a specific keyboard or operating system. The idea was to allow subjects to type
in the same manner as they would given an on line learning environment, in other
words using different platforms, browsers and so on. JavaScript was used to facilitate
the collection of data because of its robust, cross-platform, operating characteristics.
This also offered the advantage that no third-party plug-ins were required to enable
WBKTR to work. Another advantage of using JavaScript was that it avoided any
adverse effect that might result from network delay when passing data to the “home”
server, which might have affected the accuracy of recorded times, because the script
function works at the end user station to record time stamp data within the current
limitations of the accuracy end users’s computer clock. The ability to paste text was
disabled.

The subjects recruited were students and instructors working on online pro-
grammes (thus a mixture of ages). The data was collected anonymously. Additional
information concerning the subjects was not recorded (such as gender and/or age).
This was a deliberate decision so as minimise the resource required by subjects
providing the data. Also because this data was not required, we are interested in
comparing user typing patterns with themselves, not in drawing any conclusions
about the nature of keyboard usage behaviour in the context of (say) age or gen-
der. The subjects were also asked to type at least 100 words in response to each of
three discussion questions (with no maximum limitation) so that adequate numbers
of keystrokes could be collected. In [9] it was suggested that 100 keystrokes was
sufficient for KCA (for convenience the WBKTR environment included a scripting
function to count the number of words per question). Samples with a total number
of keystrokes of less than 300 would have been discarded. During each session a
JavaScript tool, with JQuery, transparently operated in the background to record the
sequencing events KN and the flight time Ft between those events. A PHP script was
used to store the identified attributes in the form of a plain text file for each subject.
Once the keystroke data had been collected, time series were generated of the form
described in Sect. 4 above. In this manner data from a total of 17 subjects were col-
lected, three keyboard time series per subject, thus 17 × 3 = 51 time series in total.
The data was used to create three data sets such that each data set corresponded to
a discussion question. In the following the data sets are referred to using the letters
(a), (b) and (c).

6.2 Effectiveness of DTW for Keyboard Usage Authentication

From the foregoing three keyboard time series data sets were collected. For the set
of experiments used to determine the effectiveness of DTW each time series in each
data set was compared with the time series in each other data set pair: (i) a. ∨ {b, c},
(ii) b. ∨ {a, c} and (iii) c. ∨ {a, b}.

For each experiment we refer to the first data set as data set 1, and the two
comparator datasets as data sets 2 and 3. In each case we have 17 subjects numbered
from1 to 17.Consequently individual time series can be referenced using the notation

334 A. Alshehri et al.

Table 1 Ranked average recorded WD values for DTW analysis (a ∨ b, c), correct matches high-
lighted in bold font

S1 S2 S3 S4 . . . S13 S14 S15 S16 S17

All samples
(m − 1) in
the dataset a

0.042 0.084 0.057 0.064 . . . 0.069 0.040 0.035 0.087 0.030

0.045 0.085 0.060 0.067 . . . 0.073 0.041 0.040 0.091 0.042

0.048 0.090 0.062 0.068 . . . 0.074 0.042 0.041 0.093 0.042

0.049 0.090 0.063 0.070 . . . 0.075 0.046 0.042 0.094 0.043

0.050 0.094 0.064 0.071 . . . 0.076 0.048 0.042 0.095 0.044

0.051 0.098 0.065 0.073 . . . 0.076 0.048 0.043 0.097 0.045

0.053 0.099 0.065 0.075 . . . 0.078 0.049 0.043 0.099 0.045

0.053 0.099 0.066 0.075 . . . 0.080 0.050 0.045 0.100 0.046

0.055 0.100 0.067 0.078 . . . 0.081 0.054 0.045 0.101 0.046

0.051 0.101 0.068 0.080 . . . 0.082 0.058 0.047 0.110 0.048

. .

Rank 4 2 10 3 . . . 1 1 10 1 1

Table 2 WD rankings for subjects when compared to themselves across datasets

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

Ranking
list in
Group a

4 2 10 3 4 5 5 2 4 2 3 10 1 1 10 1 1

Ranking
list in
Group b

1 4 10 15 3 3 2 2 2 2 6 3 1 1 4 1 1

Ranking
list in
Group c

1 10 10 5 1 5 1 3 10 1 3 6 1 2 7 5 3

sij where i is the data set identifier and j is the subject number. For each time series s1j
we comparedwith all time series in data sets 2 and 3 and a set of warping distanceWD
values obtained. For each pair of comparisons an average WD value was obtained
and these values were then ranked in ascending order. Thus each comparison has a
rank value r. The ranking outcome is shown in Table1. Note that because of space
limitation, the complete table is not shown in its entirely. In the table the rows and
columns represent the subjects featured in the data sets. The values highlighted in
bold font are the values where a subject is compared to itself. Ideally we would wish
this comparison to be ranked first (recall thatWD = 0 indicates an exact match). The
last row in the table gives the ranking r′ of each desired match (highlighted in bold
font). All ranking values of corresponding samples of the same subject are listed in
Table2 with subjects represented by columns and data sets by the rows.

Towards Keystroke Continuous Authentication Using Time Series Analytics 335

With respect to the above, the overall accuracy was computed as the ratio
between the number of incorrect matches � ranked prior to a correct match (� =∑i=m

i=1

∑j=n
j=1 (r′

ij − 1) where: (i) m is the number of data sets, (ii) n is the number
of subjects and (iii) r′

ij is the ranking of the desired match for subject sij). The total
number of comparisons τ is given by τ = m × n. Thus, with respect to the results
presented in Tables1 and 2, � = 52 and τ = 867, giving an accuracy of 94.00%
(867−52

867 × 100 = 94.00).
The False Rejection Rate (FRR) and False Acceptance Rate (FAR) were also

calculated with respect to the outcomes of the time series analysis of typing pat-
terns presented above. According to the European Standard for access control, the
acceptable value for FRR is 1%, and that for FAR is 0.001% [16]. Thus, we used the
FRR and FARmetrics to measure how far the operation of our proposed method, as a
biometric authentication method, compared with this standard. For each averageWD
comparison, in each dataset grouping, we calculated FRR by computing the number
of subjects nwhere the corresponding desired rank r′ did not equal to 1,

∑j=n
j=1 r

′
j = 1.

If the equivalent sample’s rank is not equal to 1, this means that the sample has been
falsely rejected. In contrast, FAR is calculated by computing the number of subjects
that are ranked higher than the desired sample. The subjects ranked before the desired
subject can be considered to have been accepted as real users. Average FRR and FAR
values, across the three data set groupings, of 5.99% and 1.48% were obtained.

6.3 Effectiveness of Feature Vector Approach for Keyboard
Usage Authentication

To compare the operation of our proposed approach with the statistical feature vector
style of operation found in earlier work on KCA (see Sect. 2), the keystroke data was
used to define a feature vector representation. This was done by calculating the
average flight time μ(f t) for the most frequently occurring di-graphs found in the
data

μ(f t) = 1

d

i=d∑
i=1

Fti (3)

where d is the number of identified frequent di-graphs and Ft is the flight time
value between the identified di-graphs. Each identified di-graph was thus a feature
(dimension) in a feature space with the range of averageμ(f t) values as the values for
the dimension. In thismanner feature vectors could be generated for each sample. The
resulting representation was thus similar to that found in more traditional approaches
to KCA [6, 9, 11, 13].

In the same manner as described in Sect. 6.2, we measured the similarity of each
feature vector in the first data set with every other feature vector in the other two data
sets using Cosine Similarity (CS) (note that this was done for all three data pairings
as before). The CS values were calculated using Eq.4, where x · y is the dot product

336 A. Alshehri et al.

Table 3 Ranking lists of all samples in different groups when applying CS

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

Ranking
list in
Group a

5 20 8 13 20 2 20 10 25 20 14 15 1 3 8 1 1

Ranking
list in
Group b

5 18 15 13 15 2 20 11 25 18 20 10 2 3 8 8 5

Ranking
list in
Group c

4 19 7 7 20 8 18 3 15 20 20 13 1 8 10 5 1

between two feature vectors x and y, and ||x|| (||y||) is the magnitude of the vector x
(y). Note that in case of using CS, the feature vectors need to be of the same length
(unlike in the case of DTW). As before averages for pairs of CS values were used,
and as before the values were ranked but in this case in descending order (CS = 1
indicates a perfect match).

CS(x, y) = x · y
||x|| × ||y|| (4)

Table3 presents an overview of the ranking results obtained using the feature
vector approach in the same way as Table2 presented an overview of the DTW
rankings obtained. Detection accuracy was calculated in the same way as for the
DTW experiments reported above. In this case � = 163 and, as before, τ = 867.
Thus an accuracy of 81.20% (867−163

867 × 100 = 81.20). The average FRR and FAR
values obtainedusing the feature vector representation, calculated as described above,
20.59% and 1.69% respectively.

6.4 Discussion

In the foregoing three sub-sections both the proposedDTWbased and the established
feature vector based approaches to keyboard authentication were analysed in terms
of accuracy, FRR and FAR. A summary of the results obtained is presented in Table4
with respect to the three data set combinations considered. Mean values are included
at the bottom of the table together with their associated Standard Deviation (SD).
The table also includes Mean Reciprocal Rank (MRR) values for each approach
and data set combination. MRR is an alternative evaluation measure that can be
used to indicate the effectiveness of authentication systems [17]. MRR is a standard
evaluation measure used in Information Retrieval (IR). It is a measure of how close
the position of a desired result (identification) is to the top of a ranked list. MRR is
calculated as follows:

Towards Keystroke Continuous Authentication Using Time Series Analytics 337

Table 4 Results obtained by representing keystroke features in the two approaches: (i) Time series,
and (ii) Feature vector

Representation
method

Time series Feature vector

Metrics

Dataset FRR (%) FAR (%) MRR Acc (%) FRR (%) FAR (%) MRR Acc (%)

Group(a) →
a. ∨ {b, c}

6.11 1.52 0.438 93.88 20.58 1.64 0.283 79.41

Group(b) →
b. ∨ {a, c}

5.17 1.41 0.520 94.82 21.64 1.76 0.155 78.35

Group(c) →
c. ∨ {a, b}

6.70 1.51 0.454 93.29 19.17 1.64 0.225 80.82

Mean 5.99 1.48 0.471 94.00 20.59 1.69 0.221 79.53

SD 0.77 0.06 0.04 0.77 1.24 0.07 0.06 1.24

MRR = 1

|Q| .
|Q|∑
i=1

1

ri
(5)

where: (i) Q is a set of queries (in our case queries as to whether we have the
correct subject or not), and (ii) ri is the generated rank of the desired response
to Qi. An MRR of 1.00 would indicate that all the results considered are correct,
thus we wish to maximise MRR. With reference to Table4, the average MRR with
respect to the proposed time series based approach to KCA proposed combination, is
0.471; while for the feature vector based approach it is 0.221. Returning to Table4,
inspection of the results indicates that the proposedDTWbased approach to keyboard
authentication outperforms the exciting feature vector based approach by a significant
margin.

7 Conclusion

Anapproach toKCAusing time series analysis has been presented that takes into con-
sideration the ordering of keystrokes. The process operates by representing keystroke
timing attributes as discrete points in a time series where each point has a timestamp
of some kind and an attribute value. The proposed representation used a sequential
keypress numbering systemas the time stamp, andflight time as the attribute (distance
between key presses). DTW was adopted as the time series comparison mechanism.
For evaluation purposes data was collected anonymously using a bespoke web-based
tool designed to mimic the process of conducting online assessments (responding
to discussion questions). The evaluation was conducted by comparing every subject
to every other subject to determine whether we could distinguish between the two
using: (i) the proposed technique and (ii) a feature vector based approach akin to

338 A. Alshehri et al.

that used in established work on KCA. With respect to the first set of experiments,
an overall accuracy of 94.00% was obtained. This compared very favourably with
an accuracy of 79.53%, obtained with respect to the second set of experiments. The
results demonstrated that the proposed time series based approach to KCA had sig-
nificant potential benefit in the context of user authentication with respect to online
assessments such as those used in online learning and MOOCS. The authors belief
that further improvement can be realised by considering n-dimensional time series
(time series that consider more than one keystroke attribute). Future work will also
be directed at confirming the findings using larger datasets.

Acknowledgments We would like to express our thanks to those who participated in collecting
the data and to Laureate Online Education b.v. for their support.

References

1. Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke timing: some
preliminary results, no. RAND-R-2526-NSF. RAND Corp., Santa Monica, CA (1980)

2. Bleha, S., Slivinsky,C.,Hussien,B.: Computer-access security systems using keystroke dynam-
ics. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 1217–1222 (1990)

3. Joyce, R., Gupta, G.: Identity authentication based on keystroke latencies. Commun. ACM
33(2), 168–176 (1990)

4. Ogihara, A., Matsumuar, H., Shiozaki, A.: Biometric verification using keystroke motion and
key press timing for atm user authentication. In: Intelligent Signal Processing and Communi-
cations, 2006. ISPACS’06, pp. 223–226. IEEE

5. Syed, Z., Banerjee, S., Cukic, B.: Normalizing variations in feature vector structure in keystroke
dynamics authentication systems. Softw. Qual. J. 1–21 (2014)

6. Ahmed, A.A., Traore, I.: Biometric recognition based on free-text keystroke dynamics. IEEE
Trans. Cybern. 44(4), 458–472 (2014)

7. Bours, P.:Continuous keystroke dynamics: a different perspective towards biometric evaluation.
Inf. Secur. Tech. Rep. 17(1), 36–43 (2012)

8. e Silva, S.R.D.L., Roisenberg, M.: Continuous authentication by keystroke dynamics using
committee machines. In: Intelligence and Security Informatics, pp. 686–687. Springer, Berlin
(2006)

9. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACMTrans. Inf. Syst. Secur. (TISSEC)
8(3), 312–347 (2005)

10. Messerman, A., Mustafic, T., Camtepe, S.A., Albayrak, S.: Continuous and non-intrusive iden-
tity verification in real-time environments based on free-text keystroke dynamics. In: 2011
International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE (2011)

11. Shepherd, S.J.: Continuous authentication by analysis of keyboard typing characteristics. In:
European Convention on Security and Detection, 1995, pp. 111–114. IET (1995)

12. Richardson, A., Kaminka, G.A., Kraus, S.: REEF: resolving length bias in frequent sequence
mining using sampling. Int. J. Adv. Intell. Syst. 7(1), 2 (2014)

13. Dowland, P.S., Furnell, S.M.: A long-term trial of keystroke profiling using digraph, trigraph
and keyword latencies. In: Security and Protection in Information Processing Systems, pp.
275–289. Springer, US (2004)

14. Rabiner, L., Juang, B.H.: Fundamentals of speech recognition. Prentice Hall (1993)
15. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD

Workshop, vol. 10, no. 16, pp. 359–370

Towards Keystroke Continuous Authentication Using Time Series Analytics 339

16. Polemi, D.: Biometric techniques: review and evaluation of biometric techniques for identifi-
cation and authentication, including an appraisal of the areas where they are most applicable.
Reported prepared for the European Commision DG XIIIC, 4 (1997)

17. Craswell, N.: Mean reciprocal rank. In: Encyclopedia of Database Systems, pp. 1703–1703.
Springer, US (2009)

	Towards Keystroke Continuous Authentication Using Time Series Analytics
	1 Introduction
	2 Previous Work
	3 Keystroke Time Series Representation
	4 Proposed KCA Approach
	5 Measuring the Similarity of Keystroke Time Series
	6 Evaluation
	6.1 Data Collection
	6.2 Effectiveness of DTW for Keyboard Usage Authentication
	6.3 Effectiveness of Feature Vector Approach for Keyboard Usage Authentication
	6.4 Discussion

	7 Conclusion
	References

