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Abstract. A banded pattern in “zero-one” high dimensional data is
one where all the dimensions can be organized in such a way that the
“ones” are arranged along the leading diagonal across the dimensions.
Rearranging zero-one data so as to feature bandedness allows for the
identification of hidden information and enhances the operation of many
data mining algorithms that work with zero-one data. In this paper an
effective ND banding algorithm, the ND-BPM algorithm, is presented
together with a full evaluation of its operation. To illustrate the utility of
the banded pattern concept a case study using the GB Cattle movement
database is also presented.

Keywords: Banded Patterns, Zero-One data, Pattern Mining.

1 Introduction

Zero-one data occurs in many real world datasets, ranging from bioinformatics
[3] to information retrieval [6]. The identification of patterns in zero-one data is
an important task within the field of data mining, for example association rule
mining [1]. In this paper, we study banded patterns in high dimensional zero-one
data. Examples illustrating 2D and 3D bandings are presented in Figures 1 and 2.
In practice data can typically not be perfectly banded, but in many cases some
form of banding can be achieved. This paper presents a novel N-dimensional
Banded Pattern Mining algorithm (ND-BPM) for the identification of banded
patterns in zero-one ND data. The operation of the ND-BPM algorithm differs
from previous work on banded patterns, such as the MBA [12] and BC [16]
algorithms, that allowed for the discovery of banding in only 2D data.
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While the concept of banded matrices has its origins in numerical analysis [17],
it has been studied within the data mining community [12,11]. The advantages
of banding may be summarized as follows:

1. Banding may be an indication of some interesting phenomena which is oth-
erwise hidden in the data.

2. Working with banded data is seen as preferable from a computational point
of view; the computational cost involved in performing certain operations
falls significantly for banded matrices leading to significant savings in terms
of processing time [10].

3. Related to 2, when a matrix is banded, only the non-zero entries along the
diagonal needs to be considered. Thus, when using banded storage schemes
the amount of memory required to store the data is directly proportional to
the bandwidth. Therefore finding a banding that minimizes the bandwidth
is important for reducing storage space and algorithmic speed up [15].

The main issue with the identification of banding in data is the large number
of permutations that need to be considered. There has been some research in
the context of 2D data focused on minimizing the distance of non-zero entries
from the main diagonal of the matrix (bandwidth) by reordering the original
matrix [5,10,17]. The current (2D) state-of-the-art algorithm, MBA [13], focuses
on identifying banding in binary matrices by flipping zero entries (0s) to one
entries (1s) and vice versa, assuming a fixed column permutation.

The rest of this paper is organized as follows. Section 2 discuss related work.
A formalism for the banded pattern problem is then presented in Section 3.
Section 4 provide an overview of the proposed scoring mechanism and the ND-
BPM algorithm is presented in Section 5. Section 6 provides a worked example
illustrating the algorithm in the context of 2D. The evaluation of the ND-BPM
Algorithm with respect to both 2D and 3D zero-one data is reported in Section
7. Finally, in Section 8 some conclusions are presented.

2 Related Work

From the data analysis perspective banded patterns can occur in many appli-
cations, examples can be found in paleontology [4], Network data analysis [7]
and linguistics [13]. The property of bandedness with respect to data analysis
was first studied by Gemma et al. [12]. They addressed the minimum banding
problem by computing how far a 2D data “matrix” is from being banded. The
authors in [12] defined the banding problem as: given a binary matrix M , find
the minimum number of 0 entries that needs to be modified into 1 entries and
the minimum number of 1 entries that needs to be modified into 0 entries so that
M becomes fully banded. Gemma et al. fixed the column permutations of the
data matrix before executing their algorithm [12]. As noted in the introduction
to this paper the current state of the art algorithm is the Minimum Banded
Augmentation (MBA) algorithm [13] which uses the principle of assuming “a
fixed column permutation” over a given Matrix M . The basic idea is to solve
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optimally the consecutive one property on the permuted matrix M and then re-
solve “Sperner conflicts” between each row of the permuted matrix M , by going
through all the extra rows and making them consecutive. While it can be argued
that the fixed column permutation assumption is not a very realistic assumption
with respect to many real world situations, heuristical methods were proposed in
[12] to determine a suitable fixed column permutation. Another banding strategy
that transposes a matrix is the Barycentric (BC) algorithm that was originally
designed for graph drawing and more recently used to reorder binary matrices
[16]. The distinction between these previous algorithms and that presented in
this paper is that the previous algorithms were all directed at 2D data, while
the proposed algorithm operates in 3D. It should also be noted that Bandwidth
minimization of binary matrices is known to be NP-Complete [10] as it is related
to the reordering of binary matrices [15].

Given the above the MBA and BC algorithms are the two exemplar banding
algorithms with which the operation of the proposed ND-BPM algorithm is
compared and evaluated as discussed later in this paper (see Section 7).

3 Problem Definition

Let Dim be a set of dimension {Dim1, Dim2, . . . , Dimn}. Each dimension com-
prises a set of k indexes such that Dimi = {ai1 , ai2 , . . . , aik}. Thus in 2D space
the indexes associated with Dim1 might be record numbers and the indexes as-
sociated with Dim2 may be attribute value identifiers. In 3D Dim3 might equate
to time and the indexes to discrete time slots, and so on. Note that we will indi-
cate a particular index j belonging to a dimension i using the notation aij . Note
also that dimensions are not necessarily of equal size. Given a zero-one data set
D that corresponds to the data set defined by Dim we can think of this data
space in terms of an ND grid with the “ones” indicated by “dots” (ND spheres)
and the “zeroes” by empty space. Individual dots can thus be referenced using
the ND coordinate system defined by Dim. Such a data space can be “perfectly
banded” if there exists a permutation of the indexes such that: (i) ∀aij ∈ dimi

the dots occur consecutively at indexes {a, a + 1, a + 2, . . .} and the “starting
index” for dimi is less than or equal to the starting index for dimi+1.

4 The N Dimensional Banding Mechanism

The discovery of the presence of banding in a zero-one ND space requires the
rearrangement of the indexes in each dimension so as to “reveal” a banding
(or at least an approximate banding). This is a computationally expensive task
especially in the context of ND space. In the case of the ND-BPM algorithm
it is proposed that this be achieved using the concept of banding scores. Given
a particular dimension Dimi each index aij will have a banding score BSij

associated with it. These banding scores are then used to rearrange the ordering
of the indexes in Dimi so that the index with the greatest banding score is listed
first. Individual banding scores are calculated by considering dimension pairs.
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Thus given two dimensions Dimp and Dimq we calculate the banding scores for
all apj ∈ Dimp with respect to Dimq. We use the notation BSpqj to indicate the
banding score of index aj in Dimp calculated with respect to Dimq as follows:

BSpqj =

∑k=|W |
k=1 (|Dimq| −Wk + 1)

∑k=|W |
k=1 (|Dimq| − k + 1)

(1)

where the set W is the set ofDimq indexes representing “dots” whose coordinate
set feature the index xpj from Dimp. However, if n > 1 we need to do this for
all instances of the Dimp and Dimq pairings that can exist across the space.
Thus the set of dimensions identifiers, I, that excludes the identifiers for Dimp

and Dimq. Thus:

BSpqj =

∑i=z
i=1 BSpqj for Dimi

z
(2)

where z =
∏i=|D|

i=1 |DimIi |.
We can also use the banding score concept as a measure of the goodness of a

banding configuration. By first calculating the Dimension Banding Score (DBS)
for each dimension p with respect to dimension q (DBSpq) as follows:

DBSpq =

∑j=|Dimp|
j=1 BSpqj

|Dimp| (3)

The Global Banding Score (GBS) for the entire configuration is then calculated
as follows:

GBS =

∑p=n−1
p=1

∑q=n
q=p+1 DBSpq

∑i=n−1
i=1 n− i

(4)

5 N Dimensional Banded Pattern Mining (ND-BPM)
Algorithm

The ND-BPM algorithm is presented in algorithm 1. The inputs are (line 3): (i)
a zero-one data set D and (ii) the set DIM . The output is a rearranged data
space that maximizes GBS. The algorithm iteratively loops over the data space.
On each iteration the algorithm attempts to rearrange the indexes in the set of
dimensions DIM . It does this by considering all possible dimension pairings pq.
For each pairing the BS value for each index j in dimension Dimp is calculated
(line 11) and used to rearrange the dimension (line 13). If a change has been
effected a change flag is set to TRUE (line 15) and a DBS value calculated (line
17). Once all pairings have been calculated a GBSnew value is calculated (line
20). If GBSnew is worse than the current GBS value (GBSsofar), or there has
been no change, we exit with the current configuration D (line 23). Otherwise
we set D to D′, and GBSsofarto GBSnew and repeat.
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Algorithm 1. The ND-BPM Algorithm

1: Input D, DIM
2: Output Rearranged data space that serves to maximize GBS
3: change = FALSE
4: n = |Dim|
5: GBSsofar = 0
6: loop
7: D′ = D
8: for p = 1 to p = n− 1 do
9: for q = p+ 1 to q = n do
10: for j = 1 to |DIMp| do
11: Calculate BSpqj using Equations (1) and (2) as appropriate
12: end for
13: D′′ = D′ with indexes in Dimp reordered according to the set BSpqj

14: if D′ �= D′′ then
15: change = TRUE
16: D′ = D′′

17: end if
18: Calculate DBSpq using Equation(3)
19: end for
20: Calculate GBSnew using Equation(4)
21: end for
22: if change = FALSE or GBSnew < GBSsofar then
23: exit with current configuration D
24: else
25: D = D′

26: GBSsofar = GBSnew

27: end if
28: end loop

6 Worked Example

To illustrate the operation of the ND-BPM algorithm a worked example, using
the 5 × 4 data space given in Figure 3, is presented here. We commence by
calculating the set of scores BS1j for dimension 1 (Dim1) to obtain: BS11 =
0.9166, BS12 = 0.5000, BS13 = 0.6666 and BS14 = 0.7777. Using this set of
scores the indexes in Dim1 are rearranged to produce the configuration shown
in Figure 4. The Dim1 banding score is then DBS1 = 0.7277. Next we calculate
the set of scores BS2j for (Dim2) to obtain: BS21 = 0.8888, BS22 = 1.0000,
BS23 = 0.6666, BS24 = 0.6666 and BS25 = 0.5555. Using this set of scores the
indexes in Dim2 are rearranged to produce the configuration shown in Figure 5.
The Dim2 banding score is then DBS2 = 0.8221 and the global banding score
is:

GBS =

∑p=n−1
p=1

∑q=n
q=p+1 DBSpq

∑i=n−1
i=1 n− i

= 0.7749
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Fig. 3. Input data
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Fig. 4. Input data with
Dim1 rearranged
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Fig. 5. Input data with
Dim2 rearranged

We repeat the process since changes were made. The set of scores for Dim1

are now: BS11 = 1.0000, BS12 = 0.7777, BS13 = 0.5555 and BS14 = 0.5000;
with this set of scores Dim1 remains unchanged. However, the Dim1 banding
score DBS1 is now 0.7944 because of changes to Dim2 (previously this was
0.7277). The set of scores for Dim2 are now: BS21 = 1.0000, BS22 = 0.8888,
BS23 = 0.6666, BS24 = 0.6666 and BS25 = 0.5555. Again, with this set of scores
Dim2 remains unchanged, thus the configuration shown in Figure 5 remains
unchanged. The Dim2 banding score is now DBS2 = 0.8296 (was 0.8221). The
global banding score is now:

GBS =

∑p=n−1
p=1

∑q=n
q=p+1 DBSpq

∑i=n−1
i=1 n− i

= 0.8120

On the previous iteration it was 0.7749, however no changes have been made on
the second iteration so the algorithm terminates.

7 Evaluation

To evaluate the ND-BPM algorithm its operation was compared with the es-
tablished MBA and BC algorithms, two exemplar algorithms illustrative of the
alternative approaches to identifying banding in zero-one data as described in
Section 2. Because MBA and BC were designed to operate using 2D, the evalua-
tion was conducted in these terms. Eight data sets taken from the UCI machine
learning data repository [8] were used. The first set of experiments, reported
in sub-section 7.1 below, considered the efficiency of the ND-BPM algorithm
in comparison with the MBA and BC algorithms. The second set of experi-
ments (Section 7.2) considered the effectiveness of ND-BPM algorithm, again
in comparison with the MBA and BC algorithms, with respect to the bandings
produced. The third set of experiments, reported in sub-section 7.3 below, con-
sidered the effectiveness of banding with respect to a Frequent Itemset Mining
(FIM) scenario. To determine the effectiveness of the ND-BPM algorithm with
respect to a higher number of dimensions further experiments were conducted
using the GB cattle movement database. This is described in Section 7.4.
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7.1 Efficiency

To determine the efficiency of the proposed ND-BPM algorithm in the context
of 2D and with respect to the MBA and BC algorithms, we recorded the run
time required to maximize the banding score GBS in each case. The data sets
were normalized and discretized using the LUCS-KDD ARM DN Software1 to
produce the desired zero-one data sets (continuous values were ranged using a
maximum of five ranges). Table 1 shows the results obtained. Table 1 presents
run-time and the final GBS value obtained in each case. The table also records
the number of attributes (after discretization) and the number of records for
each data set. From the table it can be observed that there is a clear correlation
between the number of records in a dataset and run time as the number of
records increases the processing time also increases (this is to be expected). The
table also demonstrates that the ND-BPM algorithm requires less processing
time than the other two algorithms considered.

Fig. 6. Banding resulting
from ND-BPM algorithm
as applied to the Wine
dataset (GBS = 0.7993)

Fig. 7. Banding result-
ing from MBA algorithm
as applied to the Wine
dataset (GBS = 0.7123)

Fig. 8. Banding resulting
from BC algorithm as ap-
plied to the Wine dataset
(GBS = 0.7021)

7.2 Effectiveness with Respect to Global Banding Score

It was not possible to identify a perfect banding with respect to any of the
UCI data sets, this was to be expected. However, in terms of GBS, Table 1
clearly shows that the proposed ND-BPM algorithm outperformed the previously
proposed MBA and BC algorithms (best scores highlighted using bold font).
Figures 6, 7 and 8 show the bandings obtained using the wine data sets and
the ND-BPM, MBA and BC algorithms respectively. Inspection of these Figures
indicates that banding can be identified in all cases. However, from inspection
of the figures it is suggested that the banding produced using the proposed

1 http://www.csc.liv.ac.uk/$\sim$/frans/KDD/Software/LUCS_KDD_DN_ARM.

http://www.csc.liv.ac.uk/$\sim $/frans/KDD/Software/LUCS_KDD_DN_ARM.
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ND-BPM algorithm is better. For example considering the banding produced
when the MBA algorithm is applied to the wine dataset (Figure 7) the resulting
banding includes dots (“1”s) in the top-right and bottom-left corners while the
ND-BPM algorithm does not (it features a smaller bandwidth). When the BC
algorithm is applied to the wine dataset (Figure 8) the banding is less dense
than in the case of the ND-BPM algorithm.

Table 1. Efficiency Experimental Results (best results presented in bold font), GBS
= Global Banding Score, RT = Run time (secs.)

# # ND-BPM MBA BC ND-BPM MBA BC
Datasets Rec s Cols GBS GBS GBS RT RT RT

annealing 898 73 0.8026 0.7305 0.7374 0.150 0.260 0.840
heart 303 52 0.8062 0.7785 0.7224 0.050 0.160 0.170
horsecolic 368 85 0.8152 0.6992 0.7425 0.070 0.200 0.250
lympography 148 59 0.8365 0.7439 0.7711 0.030 0.140 0.110
wine 178 68 0.7993 0.7123 0.7021 0.040 0.150 0.110
hepatitis 155 56 0.8393 0.7403 0.7545 0.050 0.150 0.090
iris 150 19 0.8404 0.8205 0.7516 0.020 0.080 0.060
zoo 101 42 0.8634 0.7806 0.7796 0.020 0.100 0.050

7.3 Effectiveness with Respect to FIM

In addition to being an indicator of some pattern that may exist in zero-one
data, banding also has application with respect to increasing the efficiency of
algorithms that use matrices or tabular information stored in the form of n-
dimensional data storage structures. One example is algorithms that use n× n
affinity matrices, such as spectral clustering algorithms [14], to identify commu-
nities in networks (where n is the number of network nodes). Another example is
Frequent Itemset Mining (FIM) [1,2] where it is necessary to process large binary
valued data collections stored in the form of a set of feature vectors (drawn from
a vector space model of the data). To test the effectiveness of the bandings pro-
duced as a result of the experiments reported in Sub-section 7.1 above, a FIM
algorithm was applied to the banded data sets produced using the ND-BPM
algorithm (the TFP algorithm [9] was actually used, but any alternative FIM
algorithm would equally well have sufficed). The results are presented in Table
2. From the table it can be seen that FIM is always much more efficient when
using banded data than when using non banded data if we do not include the
time to conduct the banding. If we include the banding time, in 8 out of the 12
cases, it is still more efficient. Similarly, when the FIM algorithm was applied to
the banded data sets produced using the MBA and BC algorithms, it was also
observed that FIM was more effecient using banded data than when using non
banded data without the banding time, with the banding time in 4 (MBA) and
5 (BC) out of the 12 cases, FIM is still more effecient.
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Table 2. FIM runtime with and without banding (σ = 2%)

Datasets #Rows #Cols Banding FIM time (s) Total FIM time (s)
Time(s) with Banding without Banding

adult 48842 97 346.740 2.274 349.014 5.827
anneal 898 73 0.150 0.736 0.086 2.889
chessKRvk 28056 58 95.370 0.082 95.452 0.171
heart 303 52 0.050 0.294 0.344 0.387
hepatitis 155 56 0.030 0.055 0.085 22.416
horseColic 368 85 0.070 0.899 0.969 1.242
letRecog 20000 106 42.420 3.004 45.424 6.763
lympography 148 59 0.030 7.997 8.022 12.658
mushroom 8124 90 14.400 874.104 888.504 1232.740
penDigits 10992 89 21.940 2.107 24.047 2.725
waveForm 5000 101 3.030 119.220 122.250 174.864
wine 178 68 0.010 0.155 0.165 0.169

7.4 Large Scale: Cattle Movement Database

To illustrate the utility of the proposed ND-BPM algorithm, the authors have
applied the algorithm to a 3 dimensional data set constructed from the GB Cattle
movement data base. The GB cattle movement database records all the move-
ments of cattle registered within or imported into Great Britain. The database
is maintained by the UK Department for Environment, Food and Rural Affairs
(DEFRA). For the analysis reported in this work, data sets for the months of
January to December 2003 to 2006, for one county (Lancashire in Great Britain),
was used. Each record comprises: (i) Animal Gender, (ii) Animal age, (iii) the
cattle breed type, (iv) sender location in terms of easting and northing grid val-
ues, (v) the type of the sender location, (vi) receiver location in terms of eastings
and northings grid values, (vii) receiver location type and (viii) the number of
cattle moved. Discretization and Normalization processes were used to convert
the input data into the desired zero-one format. As a result the GB dataset
comprised 80 items distributed over four dimensions: records, attributes, easting
values and northing values. For ease of understanding and so that results can be
displayed in a 2D format only three dimensions were considered at any one time
(records, attributes and eastings; and records, attributes and northings).

The results obtained are presented in Tables 3 and 4. The tables record the
number of attributes (after discretization) representing attribute information,
the number of records and the number of slices used to represent the discretized
sender eastings and northings. The tables also record the run-times required by
the algorithms in order to maximize the global banding score GBS and the final
GBS value arrived at in each case.

Figures 9 and 11 shows the sampled data before banding and Figures 10 and 12
shows the sampled data after banding using a subset of the data for the month of
January2003. Inspection of the figures indicates that banding can clearly be identi-
fied. More specifically, there are certain movement patterns, that can be identified
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Fig. 9. January Raw data, with Eastings
as 3rd dimension, before Banding

Fig. 10. Data set from Figure 9 after
Banding

Table 3. Experimental Results for GB Summary for Easting locations

Years Datasets # # # GBS Run
Recs Attrs Slices time

2003 Jan-Dec 167919 70 10 0.3902 2485.99
2004 Jan-Dec 217566 72 10 0.2823 5475.51
2005 Jan-Dec 157142 72 10 0.3093 2114.09
2006 Jan-Dec 196290 72 10 0.3075 3856.83

Table 4. Experimental Results for GB Summary for Northing locations

Years Datasets # # # GBS Run
Recs Attrs Slices time

2003 Jan-Dec 167919 70 10 0.4239 2393.50
2004 Jan-Dec 217566 72 10 0.3101 4786.66
2005 Jan-Dec 157142 72 10 0.3632 1232.09
2006 Jan-Dec 196290 72 10 0.3525 4162.71

from the generated banding. For example, from Figure 10, it can be observed that
male cattle breeds aremovedmore often in the east of the country than in the west.
Similarly, from Figure 12, it can be observed that male cattle of (age = 1) are more
frequently moved in the north than in the south of the country.
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Fig. 11. January Raw data, with Northings
as 3rd dimension, before Banding

Fig. 12. Data set from Figure 11 after
Banding

8 Conclusions

In this paper the authors have described an approach to identifying bandings in
zero-one data using the concept of banding scores. More specifically the ND-BPM
algorithm has been presented. This algorithm operates by iteratively rearrang-
ing the items associated with individual dimensions according to the concept of
banding scores. The operation of the ND-BPM algorithm was compared with
the operation of the MBA and BC algoithms in the context of 2D using eight
data sets taken from the UCI machine learning repository. In the context of 3D,
it was tested using sample data taken from the GB cattle movement database
for the months of January to December 2003 to 2006. The reported evalua-
tion established that the proposed approach can reveal banded patterns within
zero-one data reliably and with reasonable computational efficiency and able to
handle even higher dimensions in reasonable time. The evaluation also confirmed
that, at least in the context of FIM, efficiency gains can be realized using the
banding concept. For future work the authors intend to extend their research to
address situations where we seek to establish banding with respect to a subset
of the available dimensions (maintaining the position of indexes in the other
dimensions). Whatever the case, the authors have been greatly encouraged by
the results produced so far, as presented in this paper.
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