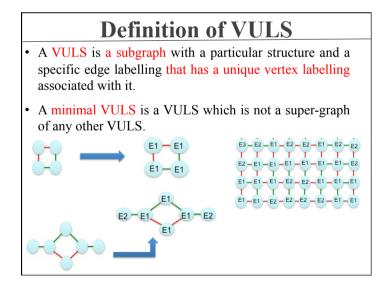
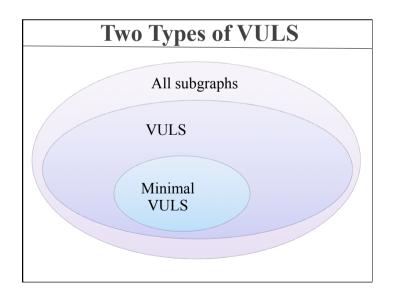
UNIVERSITY OF LIVERPOOL

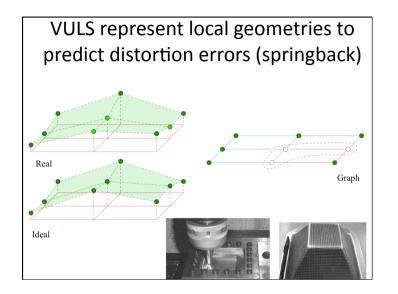
Vertex Unique Labelled Subgraph Mining for Vertex Label Classification

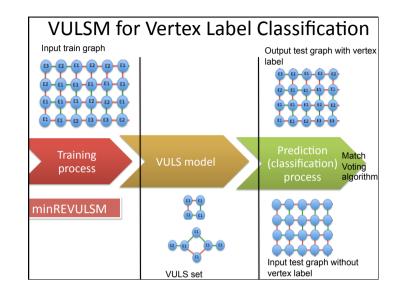
Wen Yu, Frans Coenen, Michele Zito and Subhieh El Salhi

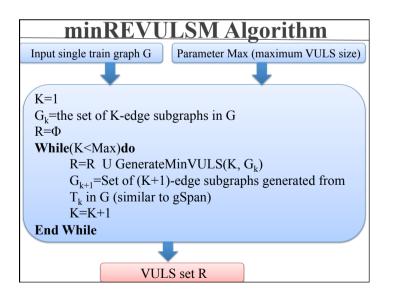
Department of Computer Science, The University of Liverpool

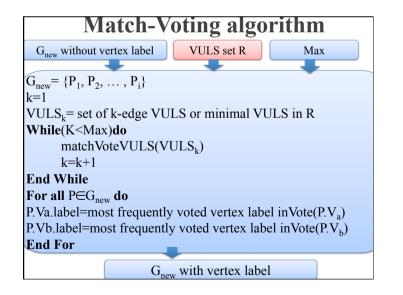

Overview


■A novel mechanism for vertex label classification based on Vertex Unique Labelled Subgraph Mining (VULSM) is proposed.


Training process: Minimal Right-most Extension VULS Mining (minREVULSM) algorithm.


Classification process: the Match-Voting algorithm.


Evaluation using real data in the context of a sheet metal forming application.



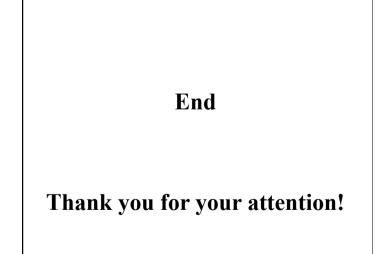
Evaluation

All VULS versus Minimal VULS

Number of VULS
Accuracy
AUC
Runtime (seconds)

		All VULS			min VULS			
max	$ L_E \times L_V $	d = 10	d = 12	d = 14	d = 10	d = 12	d = 14	
4	2×2	25	37	24	16	17	18	
4	3×2	137	135	112	41	35	25	
	4 imes 2	286	299	303	70	54	76	
5	2×2	139	144	110	50	40	76	
9	3×2	611	689	573	53	113	37	
	4 imes 2	1466	1564	1628	112	113	84	
6	2×2	665	696	526	118	46	204	
0	3×2	2732	3366	2886	87	277	42	
	4 imes 2	7137	7423	8392	205	173	89	

Experimental results 2									
max	$ L_E \times L_V $		ll VUL		min VULS				
		d = 10	d = 12	d = 14	d = 10	d = 12	d = 14		
4	2×2	29.00	9.03	43.37	38.00	26.39	83.67		
4	3×2	39.00	13.89	37.24	70.00	38.19	78.06		
	4×2	37.00	22.92	42.35	68.00	72.22	90.82		
5	2×2	30.00	11.81	51.02	70.00	65.28	88.78		
	3×2	49.00	17.36	33.67	70.00	58.33	82.65		
	4×2	57.00	23.61	15.31	67.00	93.75	91.33		
6	2×2	24.00	15.97	47.45	70.00	72.92	92.86		
	3×2	31.00	22.22	35.20	70.00	89.58	91.33		
	4×2	52.00	20.83	12.76	67.00	77.78	91.33		
Acc	Accuracy Comparison								


max	$ L_E \times L_V $	All VULS			min VULS			
		d = 10	d = 12	d = 14	d = 10	d = 12	d = 14	
4	2×2	44.90	52.88	58.35	34.92	61.87	75.09	
4	3×2	47.86	7.19	33.70	50.32	19.78	50.72	
	4×2	44.41	21.51	31.17	49.93	37.41	49.72	
5	2×2	44.58	54.32	59.88	50.32	33.81	72.56	
	3×2	52.87	8.99	31.74	50.32	30.22	53.24	
	4×2	53.40	12.23	19.03	48.20	48.56	50.00	
6	2×2	31.18	56.47	60.58	50.32	37.77	72.13	
	3×2	37.13	11.51	32.58	50.32	46.40	57.99	
	4×2	44.78	10.79	20.29	48.20	40.29	50.00	
	C Compar							

Experimental results 4									
		All VULS			min VULS				
max	$ L_E \times L_V $	d = 10	d = 12	d = 14	d = 10	d = 12	d = 14		
4	2 imes 2	0.34	0.52	0.50	0.27	0.32	0.37		
4	3 imes 2	0.48	0.66	0.74	0.28	0.36	0.41		
	4 imes 2	0.59	0.82	0.87	0.40	0.38	0.41		
5	2 imes 2	0.7	1.07	0.93	0.35	0.45	0.55		
0	3 imes 2	1.35	1.53	1.41	0.39	0.75	0.47		
	4 imes 2	1.50	1.69	1.64	0.42	0.60	0.46		
	4 v 3	1.66	1.69	2.38	0.76	0.99	1.04		
6	2×2	1.62	1.81	1.54	0.53	0.63	0.95		
0	3 imes 2	1.91	2.78	3.24	0.46	1.15	0.56		
	4 imes 2	4.03	4.88	5.84	0.42	0.80	0.68		
Run	Runtime Comparison (seconds)								

Conclusions and further study

- A novel mechanism for vertex label classification based on Vertex Unique Labelled Subgraph Mining (VULSM) has been described.
- Training process: Minimal Right-most Extension VULS Mining (minREVULSM) algorithm.
- Classification process: the Match-Voting algorithm.
- Minimal VULS mining is both efficient and effective (at least in the context of the sheet metal forming application used for the evaluation).
- Further work to investigate more sophisticated ways of conducting VULS based classification to improve vertex label prediction performance.

Questions and suggestions

