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ABSTRACT
An extendable and generic Agent Enriched Data Mining (AEDM)
framework, EMADS (the Extendable Multi-Agent Data mining Sys-
tem) is described. The central feature of the framework is that it
avoids the use of ontologies or agreed meta-language formats by
supporting a system of wrappers. The advantage offered is that the
system is easily extendable, further data agents and miningagents
can simply be added to the system. A demonstration EMADS
framework is currently available. The paper includes details of the
EMADS architecture and the wrapper principle incorporatedinto
it. A full description of the framework’s operation is provided by
considering two AEDM scenarios; the scenarios are also the focus
for an evaluation of the framework.

1. MOTIVATION AND GOALS
Agent-Enriched Data Mining (AEDM), also known as multi-

agent data mining, seeks to harness the general advantageous of
MAS in the application domain of Data Mining (DM). MAS tech-
nology has much to offer DM, particularly in the context of various
forms of distributed and cooperative DM. Distributed (and parallel)
DM is directed at reducing the time complexity of computation as-
sociated with the increasing sophistication, size and availability of
the data sets we wish to mine. Cooperative DM encompasses en-
semble mechanisms and techniques such as bagging and boosting.
MAS have a clear role in both these areas. MAS technology also
offers some further advantageous for AEDM, namely:

• Extendibility of DM frameworks,

• Resource and experience sharing,

• Greater end-user accessibility,

• Information hiding, and

• The addressing of privacy and security issues.

The last of the above advantageous merits some further comment.
By its nature DM is often applied to sensitive data. The MAS ap-
proach would allow data to be mined remotely. Similarly, with re-
spect to DM algorithms, MAS can make use of algorithms without
necessitating their transfer to users, thus contributing to the preser-
vation of intellectual property rights. MAS make it possible for
software services to be provided through the cooperative efforts of
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distributed collections of autonomous agents. Communication and
cooperation between agents are brokered by one or more facilita-
tors, which are responsible for matching requests, from users and
agents, with descriptions of the capabilities of other agents. Thus,
it is not generally required that a user or agent know the identi-
ties, locations, or number of other agents involved in satisfying a
request.

The challenge of generic AEDM is the disparate nature and va-
riety of modern DM, and the necessary communication mecha-
nism required to cope with this disparate nature. One approach
is to make use of the established Agent Communication Languages
(ACLs) and mechanisms; well known examples include the Knowl-
edge Query and Manipulation Language (KQML), the Knowledge
Interchange Format (KIF), and the Foundation for Intelligent Phys-
ical Agents (FIPA) ACL [14]. All these ACLs have their advanta-
geous and disadvantageous and tend to address particular forms of
intra-agent communication; for example FIPA ACL is directed at
agent negotiation. Each can be employed in the context of AEDM
communication but on its own will not facilitate the shared agent
understanding required to achieve generic AEDM. This wouldre-
quire recourse to the use of ontologies and/or some agreed meta-
language. It is suggested in this work that a method of addressing
the communication requirements of AEDM is to use a system of
mediators and wrappers coupled with an ACL such as FIPA ACL,
and that this can more readily address the issues concerned with the
variety and range of contexts to which AEDM can be applicable.

To investigate and evaluate the expected advantageous of wrap-
pers and mediators, in the context of generic AEDM, the authors
have developed and implemented (in JADE) a multi-agent plat-
form, EMADS (the Extendable Multi-Agent Data mining System).
Extendibility is seen as an essential feature of the framework pri-
marily because it allows its functionality to grow in an incremental
manner. The vision is of an “anarchic” collection of agents,con-
tributed to by a community of EMADS users, that exist across an
“internet space”; that can negotiate with each other to attempt to
perform a variety of DM tasks (or not if no suitable collection of
agents come together) as proposed by other (or the same) EMADS
users. An EMADS demonstrator is currently in operation.

The primary goal of the EMADS framework is to provide a
means for integrating new DM algorithms and data sources in a
distributed infrastructure and collaborative environment. However,
EMADS also seeks to address some of the issues of DM that would
benefit from the rich and complex interactions of communicating
agents. The broad advantages offered by the framework are:

• Flexibility in assembling communities of autonomous ser-
vice providers, including the incorporation of existing appli-
cations.



• Minimization of the effort required to create new agents, and
to wrap existing applications.

• Support for end users to express DM requests without having
detailed knowledge of the individual agents.

The rest of this paper is organised as follows. A brief review
of some related work on Agent-enriched Data Mining (AEDM) is
presented in Section 2. The conceptual framework together with an
overview of the wrapper principle is presented in Section 3.The
framework operation is illustrated in Section 4 using two DMsce-
narios: Meta Association Rule Mining (MARM) and single label
classification. Finally some conclusions are presented in Section 5.

2. RELATED WORK
There are a number of reports in the literature of the application

of Agent techniques to DM. The contribution of this section is a
broad review of prominent AEDM approaches in the literatureand
discussion of the benefits that agent-driven DM architectures pro-
vide in coping with such problems. This section is not concerned
with particular DM techniques; it is however concerned withwork
on the design of distributed and multi-agent system directed at DM.

The most fundamental approach to distributed DM is to move all
of the data to a central data warehouse and then to analyze this with
a single DM system, even though this approach intuitively guaran-
tees accurate DM results, it might be infeasible in many cases.

An alternative approach is high level learning with meta-learning
strategies in which all the data can be locally analyzed (local data
model), and the local results at their local sites combined at the cen-
tral site to obtain the final result (global data model). Meta-learning
methods have been widely used within DM [31, 10], particularly in
the area of classification and regression. These approachesare less
expensive but may produce ambiguous and incorrect global results.
In addition, Distributed DM approaches require centralised control
that causes a communication bottleneck that sometimes leads, in
turn, to inefficient performance and system failure.

To make up for such a weakness, many researchers have inves-
tigated more advanced approaches of combining local modelsbuilt
at different sites. Most of these approaches are agent-based high
level learning strategies.

One of the earliest references to AEDM can be found in Kar-
gupta et al. [20] who describe a parallel DM system (PADMA)
that uses software agents for local data accessing and analysis, and
a web based interface for interactive data visualization. PADMA
has been used in medical applications. They describe a distributed
DM architecture and a set of protocols for a multi-agent software
tool. Peng et al. [26] presented an interesting comparison between
single-agent and multi-agent text classification in terms of a num-
ber of criteria including response time, quality of classification, and
economic/privacy considerations. Their results indicate, not unex-
pectedly, in favour of a multi-agent approach.

A popular AEDM approach is described in the METAL project
[25] whose emphasis is on helping the user to obtain a rankingof
suitable DM algorithms through an online advisory system. Gorodet-
sky et al. [16] correctly consider that the core problem in AEDM is
not the DM algorithms themselves (in many case these are wellun-
derstood), but the most appropriate mechanisms to allow agents to
collaborate. Gorodetsky et al. present an AEDM system to achieve
distributed DM and, specifically, classification. A more recent sys-
tem, proposed in [24], uses the MAGE middleware [29] to build
an execution engine that uses a directed acyclic graph to formalize
the representation of KDD process. In [11] a multi-agent system
F-Trade has been proposed. It is a web-based DM infrastructure
for trading and surveillance support in capital markets.

The meta-learning strategy offers a way to mine classifiers from
homogeneously distributed data. It follows three main steps. The
first is to generate base classifiers at each site using a classifier
learning algorithms. The second step is to collect the base clas-
sifiers at a central site, and produce meta-level data from a separate
validation set and predictions generated by the base classifier on
it. The third step is to generate the final classifier (meta-classifier)
from meta-level data via a combiner or an arbiter. Copies of the
classifier agent will exist, or be deployed, on nodes in the network
being used (see for example [27]). Perhaps the most mature agent-
based meta-learning systems are: JAM [30], BODHI [19], and Pa-
pyrus [6]. Papyrus is designed to support both learning strategies;
meat-learning and central learning. A hybrid learning strategy is a
technique that combines local and remote learning for modelbuild-
ing [17]. In contrast to JAM and BODHI, Papyrus can not only
move models from site to site, but can also move data when such
a strategy is desirable. Papyrus is a specialized system which is
designed for clusters while JAM and BODHI are designed for data
classification. These are reviewed in details in [21].

Most of the previously proposed AEDM systems are used to im-
prove the performance of one specific DM task. To the best knowl-
edge of the authors, there have been only few AEDM systems that
define a generic framework for the AEDM approach. An early at-
tempt was IDM [9], a multiple agent architecture that attempts to
do direct DM that helps businesses gather intelligence about their
internal commerce agent heuristics and architectures for KDD. In
[5] a generic task framework was introduced but was designedto
work only with spatial data. The most recent system is introduced
in [15] where the authors proposed a multi-agent system to provide
a general framework for distributed DM applications. The effort to
embed the logic of a specific domain has been minimized and is
limited to the customization of the user. However, althoughits cus-
tomizable feature is of a considerable benefit, it still requires users
to have very good DM knowledge.

3. EMADS OVERVIEW
A high level view of the framework conceptualization showing

the various categories of agents and their contributors is given in
Figure 1. The housekeeping (DF and AMS) agents are specialized
server agents that are responsible for helping agents to locate one
another. They do not participate in problem-solving; they only play
a role of a facilitator in the system. Note that any system configura-
tion is not limited to single MAS. Larger systems can be assembled
from multiple MASs, each having the sort of structure shown in
Figure 2.

3.1 System Structure
The EMADS framework has several different modes of opera-

tion according to the nature of the participant. Each mode ofop-
eration has a corresponding category ofUser Agent. Broadly, the
supported categories are:

• Developers: Developers are participants, who have full ac-
cess and may contribute DM algorithms in the form ofData
Mining Agents (DM Agents).

• Data Miners: These are participants, with restricted access to
the system, who may pose DM requests through User Agents
andTask Agents (see below for further details).

• Data Contributors: These are participants, again with restricted
access, who are prepared to make data available, by launch-
ing Data Agents, to be used by DM agents.



Figure 1: High level view of EMADS conceptual framework.

The various categories of agents are illustrated in Figure 1: DM
agents, Task Agents, User Agents and Data Agents. DM agents are
usually specialist agents that posses an algorithm for a particular
DM task or sub-task. DM agents may be based on legacy appli-
cations, in which case the agent may be little more than a wrapper
that calls a pre-existing API (see subsection 3.3 for further detail).

Note that, before interaction with EMADS can commence, ap-
propriate software needs to be downloaded and launched by the
participant. Note also that any individual participant maybe as a
user, contributor and developer at the same time.

Conceptually the nature of the requests that may be posted by
users is extensive. In the current demonstration implementation,
the following types of generic request are supported:

• Find the “best” classifier (to be used by the requester at some
later date in off line mode) for a data set provided by the user.

• Find the “best” classifier for the indicated data set (i.e. pro-
vided by some other participant).

• Find a set of Association Rules (ARs) contained within the
data set(s) provided by the user.

• Find a set of Association Rules (ARs) contained within the
indicated type of data set(s) (i.e. provided by other partici-
pants).

In the above a “best” classifier is defined as a classifier that will
produce the highest accuracy on a given test set (identified by the
mining agent) according to the detail of the request. To obtain the
“best” classifier EMADS will attempt to access and communicate
with as many classifier generator DM agents as possible and se-
lect the best result. The classification style of user request will
be discussed further in subsection 4.2 to illustrate the operation of
EMADS in more detail.

The Association Rule Mining (ARM) style of request is dis-
cussed further in subsection 4.1. The scenario investigated here
is one where an agent framework is used to implement a form of
Meta-ARM where the results of the parallel application of ARM to
a collection of data sets, with not necessarily the same schema but
conforming to a global schema, are combined. Some further details
of this process can be found in Albashiri et al. [3, 4].

3.2 Agent Interactions
Conceptually the EMADS system is a hybrid peer to peer agent

based system comprising a collection of collaborating agents that
exist in a set of containers. Agents may be created and contributed
to the system by any user/contributor. One of these containers, the
main container, holds a number of housekeeping agents that pro-
vide various facilities to maintain the operation of the framework.

Figure 2: EMADS Architecture as Implemented in Jade

In particular the main container holds an Agent Management Sys-
tem (AMS) agent and a Directory Facilitator (DF) agent. The ter-
minology used is taken from the JADE (Java Agent Development)
[7] framework in which the framework is implemented. Brieflythe
AMS agent is used to control the life cycles of other agents inthe
platform, and the DF agent provides an agent lookup service.Both
the main container and the remaining containers can hold various
DM agents. Note that the EMADS main container is located on the
EMADS host organisation site, while the other containers may be
held at any other sites worldwide.

Figure 2 presents the EMADS architecture as implemented in
JADE. It shows a sample collection of several application agents
and housekeeping agents, organized as a community of peers by a
common relationship to each other.

With reference to Figure 2, a user agent runs on the user’s lo-
cal host and is responsible for: (i) accepting user input (request),
(ii) launching the appropriate Task Agent to processes the user re-
quest, and (iii) displaying the results of the (distributed) compu-
tation. The user expresses a task to be executed using standard
interface dialogue mechanisms by clicking on active areas in the
interface and, in some cases, by entering thresholds values; note
that the user does not need to specify which agent or agents should
be employed to perform the desired task. For instance, if theques-
tion “What is the best classifier for my data?” is posed in the user
interface, this request will trigger a Task Agent. The Task Agent
requests the facilitator to match the action part of the request to
capabilities published by other agents. The request is thenrouted
by the Task Agent to the appropriate agents to execute the request,
this will typically involve communication among various relevant
agents within the system. On completion the results are sentback
to the user agent for display.

The key elements of the operation of EMADS that should be
noted are:

1. The mechanism whereby a collection of agents can be har-
nessed to identify a “best solution”.

2. The process whereby new agents connect to the facilitator
and registering their capability specifications.

3. That the interpretation and execution of a task is a distributed
process, with no one agent defining the set of possible inputs
to the system.

4. That a single request can produce cooperation and flexible
communication among many agents spread across multiple
machines.



3.2.1 Agent Cooperation
Cooperation among the various EMADS agents is achieved via

messages expressed in FIPA ACL and is normally structured around
a three-stage process:

1. Service Registrationwhere providers (agents who wish to
provideservices) register their capability specifications with
a facilitator.

2. Request Postingwhere User Agents (requesters of services)
construct requests and relay them to a Task Agent,

3. Processingwhere the Task Agent coordinates the efforts of
the appropriate service providers (Data Agents and DM Agents)
to satisfy the request.

Note that Stage 1 (service registration) is not necessarilyimme-
diately followed by stage 2 and 3, it is possible that a provider ser-
vices may never be used. Note also that the facilitator (the DF and
AMS agents) maintains a knowledge base that records the capabil-
ities of the various EMADS agents, and uses this knowledge toas-
sist requesters and providers of services in making contact. When a
service provider (i.e. Data Agent or DM Agent) is created, itmakes
a connection to a facilitator, which is known as itsparent facilita-
tor. Upon connection, the new agent informs its parent facilitator
of the services it can provide. When the agent is needed, the facili-
tator sends its address to the requester agent. An importantelement
of the desired EMADS agent cooperation model is the functionof
the Task Agent; this is therefore described in more detail inthe
following subsection.

3.2.2 The Task Agent
A Task Agent is designed to handle a user request. This involves

a three step process:

1. Determination of whom (which specific agents) will execute
a request;

2. Optimization of the complete task, including parallelization
where appropriate; and

3. Interpretation of the optimized task.

Thus determination (step 1) involves the selection of one ormore
agents to handle each sub-task given a particular request. In do-
ing this, the Task agent uses the facilitator’s knowledge ofthe ca-
pabilities of the available EMADS agents (and possibly of other
facilitators, in a multi-facilitator system). The facilitator may also
use information specified by the user (such as threshold values). In
processing a request, an agent can also make use of a variety of
capabilities provided by other agents. For example, an agent can
request data from Data Agents that maintain shared data. Theopti-
mization step results in a request whose interpretation will require
as few communication exchanges as possible, between the Task
Agent and the satisfying agents (typically DM Agents and Data
Agents), and can exploit the parallel processing capabilities of the
satisfying agents. Thus, in summary, the interpretation ofa task
by a Task Agent involves: (i) the coordination of requests directed
at the satisfying agents, and (ii) assembling the responsesinto a
coherent whole, for return to the user agent.

3.3 System Extendibility
One of the principal objectives of the EMADS framework is to

provide an easily extendable framework that can accept new data
sources and new DM techniques. In general, extendibility can be
defined as the ease with which software can be modified to adapt

to new requirements or changes in existing requirements. Adding
a new data source or DM techniques should be as easy as adding
new agents to the system. The desired extendibility is achieved by a
system of wrappers. EMADS wrappers are used to “wrap” up DM
artifacts so that they become EMADS agents and can communicate
with other EMADS agents. Such EMADS wrappers can be viewed
as agents in their own right that are subsumed once they have been
integrated with data or tools to become EMADS agents. The wrap-
pers essentially provide an application interface to EMADSthat has
to be implemented by the end user, although this has been designed
to be a fairly trivial operation.

In the current demonstration EMADS system two broad cate-
gories of wrapper have been defined: (i) data wrappers and (ii) tool
wrappers; the first is used to create data agents and the second to
create DM agents. Each is described in further detail in the follow-
ing two subsections.

3.3.1 Data Wrappers
Data wrappers are used to “wrap” a data source and consequently

create a data agent. Broadly a data wrapper holds the location (file
path) of a data source, so that it can be accessed by other agents;
and meta information about the data. To assist end users in the ap-
plication of data wrappers a data wrapper GUI is available. Once
created, the data agent announces itself to the DF agent as a conse-
quence of which it becomes available to all EMADS users.

3.3.2 Tool Wrappers
Tool wrappers are used to “wrap” up DM software systems and

thus create a mining agent. Generally the software systems will
be DM tools of various kinds (classifiers, clusters, association rule
miners, etc.) although they could also be (say) data normaliza-
tion/discretization or visualization tools. It is intended that the
framework will incorporate a substantial number of different tool
wrappers each defined by the nature of the desired I/O which in
turn will be informed by the nature of the generic DM tasks that
it is desirable for EMADS to be able to perform. Currently the
research team has implemented two tool wrappers:

1. The binary valued data, single label, classifier generator.

2. The data normalization/discretization wrapper.

Many more categories of tool wrapper can be envisaged. Mining
tool wrappers are more complex than data wrappers because ofthe
different kinds of information that needs to be exchanged.

In the case of a “binary valued, single label, classifier generator”
wrapper the input is a binary valued data set together with meta in-
formation about the number of classes and a number slots to allow
for the (optional) inclusion of threshold values. The output is then
a classifier expressed as a set of Classification Rules (CRs).As
with data agents, once created, the DM agent announce themselves
to the DF agent after which they will becomes available for use to
EMADS users.

For example, in the case of the data normalization/discretization
wrapper, the LUCS-KDD (Liverpool University Computer Science
- Knowledge Discovery in Data) ARM DN (Discretization/ Nor-
malization) software1 is used to convert data files, such as those
available in the UCI data repository [8], into a binary format suit-
able for use with Association Rule Mining (ARM) applications.
This tool has been “wrapped” using the data normalization/discretization
wrapper.

1htt p : //www.csc.liv.ac.uk/ f̃ rans/KDD/So f tware/



4. SYSTEM DEMONSTRATION
Perhaps the best way to obtain an intuitive sense of how the

framework typically functions is to briefly look at an example of
how it has been applied to real world scenarios. The following sub-
sections describe two demonstration applications (Scenarios) im-
plemented within the EMADS framework.

The first (discussed further in subsection 4.1) is a distributed
meta mining scenario where EMADS agents are used to merge the
results of a number of ARM operations, a process referred to as
meta-ARM, to produce a global set of Association Rules (ARs).
The challenge here is to minimise the communication overhead,
a significant issue in distributed and parallel DM (regardless of
whether it is implemented in an agent framework or not).

The second scenario (subsection 4.2) is a classification scenario
where the objective is to generate a classifier (predictor) fitted to
EMADS user’s specified data set. It has been well established
within the DM research community, for reasons that remain un-
clear but are concerned with the nature of the input data, that there
is no single “best” classification algorithm. The aim of thissecond
scenario is therefore to identify a “best” classifier given aparticular
data set. Best in this context is measured in terms of classification
accuracy. This experiment not only serves to illustrate theadvanta-
geous of EMADS but also provides an interesting comparison of a
variety of classification techniques and algorithms.

4.1 Meta ARM (Association Rule Mining) sce-
nario

The termmeta mining is defined, in the context of EMADS, as
the process of combining the individually obtained resultsof N ap-
plications of a DM activity. The motivation behind the scenario
is that data relevant to a particular DM application may be owned
and maintained by different, geographically dispersed, organiza-
tions. There is therefore a “privacy and security” issue, privacy
preserving issues [1] are of major concerns in inter enterprise DM
when dealing with private databases located at different sites. One
approach to addressing the meta mining problem is to adopt a dis-
tributed approach. The meta mining scenario considered here is
a meta Association Rule Mining (meta ARM) scenario where the
results ofN ARM operations, byN agents, are brought together.

4.1.1 Dynamic Behaviour of System for Meta ARM
operations

The meta ARM EMADS illustration described here was used to
identify the most efficient Meta ARM agent process given a num-
ber of alternatives. The first algorithm was a bench mark algo-
rithm, against which other Meta ARM algorithms were compared.
Four comparison meta ARM algorithms were constructed (Apriori,
Brute Force, Hybrid 1 and Hybrid 2). Full details of the algorithms
can be found in [3]. In each case it was assumed that each data
source would produce a set of frequent sets, using some ARM al-
gorithm, with the results stored in a common data structure.These
data structures would then be merged in some manner through a
process of agent collaboration. Each of the Meta ARM algorithms
made use of a Return To Data (RTD) lists, one per data set, to con-
tain lists of itemsets whose support was not included in the original
ARM operation and for which the count was to be obtained by a re-
turn to the raw data held at a data agent. The RTD lists comprised
zero, one or more tuples of the form< I,sup >, whereI is an item
set for which a count is required andsup is the desired count. RTD
lists are constructed as a meta ARM algorithm progresses. During
RTD list construction thesup value will be 0, it is not until the RTD
list is processed that actual values are assigned tosup. The process-
ing of RTD lists may occur during, and/or at the end of, the meta

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 3: Effect of number of data sources

ARM process depending on the nature of the meta ARM algorithm
used.

The meta ARM scenario comprises a set ofN data agents and
N +1 DM agents:N ARM agents and one meta ARM agent. Note
that each ARM agent could have a different ARM algorithm asso-
ciated with it, however a common data structure was assumed to
facilitate data interchange. The common data structure used was a
T-tree [12], a set enumeration tree structure for storing item sets.
Once generated theN local T-trees were passed to the Meta ARM
agent which created a global T-tree. During the global T-tree gen-
eration process the Meta ARM agent interacted with the various
ARM agents in the form of the exchange of RTD lists.

4.1.2 Experimentation and Analysis
To evaluate the five Meta ARM algorithms (including the bench

mark algorithm), in the context of the EMADS vision, a number
of experiments were conducted. These are described and analyzed
in this subsection. The experiments were designed to analyze the
effect of the following:

1. The number of data sources (data agents).

2. The size of the data sets (held at data agents) in terms of
number of records.

3. The size of the data sets (held at data agents) in terms of
number of attributes.

Experiments were run using two Intel Core 2 Duo E6400 CPU
(2.13GHz) computers with 3GB of main memory (DDR2 800MHz),
Fedora Core 6, Kernel version 2.6.18 running under Linux except
for the first experiment where two further computers runningunder
Windows XP were added. For each of the experiments we mea-
sured:

• Processing time (seconds/mseconds),



(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 4: Effect of number of data sources

• The size of the RTD lists (Kbytes), and

• The number of RTD lists generated.

Note that the authors did not use the well known IBM QUEST
generator [2] because many different data sets (with the same in-
put parameters) were required and it was found that the QUEST
generator always generated the same data given the same input pa-
rameters. Instead the authors used the LUCS KDD data generator2.
Figure 3 shows the effect of adding additional data sources using
the four Meta ARM algorithms and the bench mark algorithm. For
this experiment thirteen different artificial data sets were generated
and distributed among four machines usingT = 4 (average number
of items per transactions),N = 20 (Number of attributes),D = 100k
(Number of transactions. Note that the slight oscillationsin the
graphs result simply from a vagary of the random nature of thetest
data generation.

Figure 4 demonstrates the effect of increasing the number of
records. The input data for this experiment was generated bypro-
ducing a sequence of ten pairs of data sets (with T =4, N =20)
representing two sources on two differentmachines. From graph
3(a) it can be seen that the Brute Force and Hybrid 1 algorithms
work best because the size of the return to data lists are limited as
no unnecessary candidate sets are generated. This is illustrated in
graph 3(b). Graph 3(b) also shows that the increase in processing
time in all cases is due to the increase in the number of records
only; the size of the RTD lists remains constant throughout as does
the number of RTD lists generated (graph 3(c)).

Figure 3 and 4 also indicate, at least with respect to meta ARM,
that EMADS offers positive advantages in that all the Meta ARM
algorithms were more computationally efficient than the bench mark
algorithm. The results of the analysis also indicated that the Apri-

2htt p : //www.csc.liv.ac.uk/ f̃ rans/KDD/So f tware//LUCS −

KDD−DataGen/

Figure 5: Classification Task Sequence Diagram.

ori Meta ARM approach coped best with a large number of data
sources, while the Brute Force and Hybrid 1 approaches copedbest
with increased data sizes (in terms of column/rows).

4.2 Classifier Generation scenario
In this subsection the operation of EMADS is illustrated in the

context of a classifier generation task, however much of the dis-
cussion is equally applicable to other generic DM tasks. Thesce-
nario is that of an end user who wishes to obtain a “best” classifier
founded on a given, pre-labelled, data set; which can then beap-
plied to further unlabelled data. The assumption is that thegiven
data set is binary valued and that the user requires a single-label, as
opposed to a multi-labelled, classifier. The request is madeusing
the individual’s user agent which in turn will spawn an appropriate
task agent.

For this scenario the task agent interacts with mining agents that
hold single labelled classifier generators that take binaryvalued
data as input. Each of these mining agents is then accessed and
a classifier, together with an accuracy estimate, requested. Once
received the task agent selects the classifier with the best accuracy
and returns this to the user agent.

The DM agent wrapper in this case provides the interface that
allows input of: (i) the identifier for the data set to be classified,
and (ii) the number of class attributes (a value that the mining agent
cannot currently deduce for itself); while the user agent interface
allows input for threshold values (such as support and confidence
values).

The output is a classifier together with an accuracy measure.To
obtain the accuracy measures the classifier generators (DM agents)
build their individual classifier using the first half of the input data
as the “training” set and the second half of the data as the “test”
set. An alternative approach might have been to use Ten CrossVal-
idation (TCV) to identify the best accuracy. It should be noted that
the objective here is to return a classifier, using TCV ten classifiers
will be built and thus one of them would have to be selected.

From the literature there are many reported techniques available
for generating classifiers. For the scenario reported here the au-
thors’ used implementations of eight different algorithms3:

1. FOIL (First Order Inductive Learner) [28]: The well estab-

3Taken from the LUCS-KDD repository at htt p :
//www.csc.liv.ac.uk/ f̃ rans/KDD/So f tware/



Table 1: Classification Results
Data Set Classifier Accuracy Time(sec)
connect4.D129.N67557.C3 RDT 79.76 502.65
adult.D97.N48842.C2 IGDT 86.05 86.17
letRecog.D106.N20000.C26 RDT 91.79 31.52
anneal.D73.N898.C6 FOIL 98.44 5.82
breast.D20.N699.C2 IGDT 93.98 1.28
congres.D34.N435.C2 RDT 100 3.69
cylBands.D124.N540.C2 RDT 97.78 41.9
dematology.D49.N366.C6 RDT 96.17 11.28
heart.D52.N303.C5 RDT 96.02 3.04
auto.D137.N205.C7 IGDT 76.47 12.17
penDigits.D89.N10992.C10 RDT 99.18 13.77
soybean.D118.N683.C19 RDT 98.83 13.22
waveform.D101.N5000.C3 RDT 96.81 11.97

lished inductive learning algorithm for the generation of Clas-
sification Association Rules (CARs).

2. TFPC (Total From Partial Classification): A CAR generator
[13] founded on the P and T-tree set enumeration tree data
structures.

3. PRM (Predictive Rule Mining) [32]: An extension of FOIL.

4. CPAR (Classification based on Predictive Association Rules)
[32]: A further development from FOIL and PRM.

5. IGDT (Information Gain Decision Tree) classifier: An im-
plementation of the well established C4.5 style of decision
tree based classifier using information gain as the “splitting
criteria”.

6. RDT (Random Decision Tree) classifier: A decision tree based
classifier that uses most frequent current attribute as the “split-
ting criteria”.

7. CMAR (Classification based on Multiple Association Rules):
A well established Classification Association Rule Mining
(CARM) algorithm [23].

8. CBA (Classification Based on Associations): Another well
established CARM algorithm [22].

These were placed within an appropriately defined tool wrapper
to produce eight (single label binary data classifier generator) DM
agents. This was found to be a trivial operation indicating the ver-
satility of the wrapper concept.

Thus each mining agent’s basic function was to generate a clas-
sification model using its own classifier and provide this to the task
agent. The task agent then evaluates all the classifier models and
chooses the most accurate model to be returned to the user agent.
The negotiation process amongst the agents is represented by the
sequence diagram given in Figure 5 (the figure assumes that ap-
propriate data agents exist). The figure includesN classification
agents. The sequence of processing events commences with a user
agent which spawns a (classification) task agent, which in turn an-
nounces itself to the DF agent. The DF agent returns a list of classi-
fier DM agents that can potentially be used to generate the desired
classifier.

The task agent then interacts with these DM agents who each
generate a classifier and return statistical information regarding the
accuracy of their classifier. The task agent selects the DM agent that
has produced the best accuracy and requests the associated classi-
fier; this is then passed back to the user agent.

4.2.1 Experimentation and Analysis
To evaluate the EMADS classification scenario, as describedabove,

a sub-set of the data sets available at the UCI machine learning data
repository [8] were used (preprocessed by data agents so that they
were discretized/normalized into a binary form). The results are
presented in Table 1. Each row in the table represents a partic-
ular request and gives the name of the data set, the selected best
algorithm as identified from the interaction between the EMADS
agents, the resulting best accuracy and the total EMADS execu-
tion time from creation of the initial Task Agent to the final “best”
classifier being returned to the user agent. The naming convention
used in the Table is that: D equals the number of attributes (after
discretization/normalization), N the number of records and C the
number of classes (although EMADS has no requirement for the
adoption of this convention).

The results demonstrate firstly, that EMADS can usefully be
adopted to produce a best classifier from a selection of classifiers.
Secondly, that the operation of EMADS is not significantly hin-
dered by agent communication overheads, although this has some
effect. Generation time, in most cases does not seem to be an issue,
so further classifier generator mining agents could easily be added.
The results also reinforce the often observed phenomena that there
is no single best classifier generator suited to all kinds of data.

5. CONCLUSIONS
This paper described EMADS, a multi-agent framework for DM.

The architecture provides a framework for the constructionand op-
eration of distributed software agents. The principal advantages
offered by the system are that of experience and resource sharing,
flexibility and extendibility, and (to an extent) protection of pri-
vacy and intellectual property rights. The use of a single facilitator
offers both advantages and weaknesses with respect to scalability
and fault tolerance. On the plus side, the grouping of a facilitator
with a collection of agents provides a faster look-up service. How-
ever, even though the intention is that the facilitator assists agents
in finding one another and then to “step aside” while other agents
communicate over a direct, dedicated channel so as to prevent a
communication bottleneck; there is still the potential fora facili-
tator to become a critical point of system failure. Further work in
this area is therefore required, one solution is to use more than one
facilitator deployed on multiple machines for a better fault-tolerant
platform.

The framework’s operation is illustrated using both meta ARM
and classification scenarios. Extendibility is presented by show-
ing how wrappers are used to incorporate existing software into
EMADS. Experience to date indicates that, given an appropriate
wrapper, existing DM software can very easily be packaged tobe-
come a DM agent. Flexibility is illustrated using a classification
scenario. Information hiding is illustrated in that users need have
no knowledge of how any particular piece of DM software works
or the location of the data to be used.

A good foundation has been established for both DM research
and genuine application based DM. It is acknowledged that the cur-
rent functionality of the framework is limited to classification and
meta ARM. The research team is at present working towards in-
creasing the diversity of mining tasks that can be addressed. There
are many directions in which the work can (and is being) taken
forward. One interesting direction is to build on the wealthof dis-
tributed DM research that is currently available and progress this in
an MAS context. The research team is also enhancing the system’s
robustness so as to make it publicly available. It is hoped that once
the system is live other interested DM practitioners will beprepared



to contribute algorithms and data.
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