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Abstract A graph-based approach to document classification is described in this
paper. The graph representation offers the advantage that it allows for a much more
expressive document encoding than the more standard bag of words/phrases ap-
proach, and consequently gives an improved classification accuracy. Document sets
are represented as graph sets to which a weighted graph mining algorithm is applied
to extract frequent subgraphs, which are then further processed to produce feature
vectors (one per document) for classification. Weighted subgraph mining is used
to ensure classification effectiveness and computational efficiency; only the most
significant subgraphs are extracted. The approach is validated and evaluated using
several popular classification algorithms together with a real world textual data set.
The results demonstrate that the approach can outperform existing text classification
algorithms on some dataset. When the size of dataset increased, further processing
on extracted frequent features is essential.
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1 Introduction

The most common document formalisation for text classification is thevector space
model founded on the bag of words/phrases representation. The main advantage
of the vector space model is that it can readily be employed byclassification al-
gorithms. However, the bag of words/phrases representation is suited to capturing
only word/phrase frequency; structural and semantic information is ignored. It has
been established that structural information plays an important role in classification
accuracy [14].

An alternative to the bag of words/phrases representation is a graph based repre-
sentation, which intuitively possesses much more expressive power. However, this
representation introduces an additional level of complexity in that the calculation of
the similarity between two graphs is significantly more computationally expensive
than between two vectors (see for example [16]). Some work (see for example [12])
has been done on hybrid representations to capture both structural elements (us-
ing the graph model) and significant features using the vector model. However the
computational resources required to process this hybrid model are still extensive.

The computational complexity of the graph representation for text mining is the
main disadvantage of the approach, which prevents the full exploitation of the ex-
pressive power that the graph representation possesses. The work described in this
paper seeks to address this issue by applying weighted graphmining analysis to the
problem. The intuition behind the approach is that in standard frequent subgraph
mining all generated subgraphs are assumed to have equal importance. However it
is clear that, at least in the context of text mining, some subgraphs are more signifi-
cant than others.

The rest of this paper is organized as follows. In Section 2 a brief overview of
previous work is presented. The graph representation of document sets is then dis-
cussed in Section 3. In Section 4 the weighted subgraph mining is defined. The
proposed Weighted graph mining algorithm, a variation of gSpan called Weighted
gSpan (W-gSpan), is introduced in Section 5. A set of evaluating experiments are
then presented in Section 6, followed by some concluding remarks in Section 7.

2 Related Work

Much early work on document graph representations for text classification was di-
rected at Web documents. Geibel et al. in [7] demonstrated that it is possible to
classify Web documents using document structure alone; however we shall demon-
strate that a much more powerful approach is to combine structure with linguistic
and semantic information. For example Schenker [16] proposed a number of meth-
ods to represent Web documents as graphs so as to include the structural information
of the Web documents. The typical approach is to conduct classification using some
similarity-based algorithm. However, approaches that operate using graph similar-
ity measures are computationally expensive (for example computing the “maximum
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common subgraph” between two graphs is a NP hard problem [5]). Hybrid represen-
tations have been introduced to resolve the computational overhead associated with
pure graph representations, see for example [12]. Such hybrid representations are
reported to have better performance than pure graph based methods. However the
computational resources required to process these hybrid model are still very high
due to: (i) the extremely high number of nodes and edges, low number of edge labels
and high repetition of structural node labels, encountered; and (ii) the consequent
exponential complexity of the search space.

The use of graphs for representing text has a very long history in Natural Lan-
guage Processing (NLP). However the work in NLP has focused on language un-
derstanding techniques such as Part Of Speech (POS) tagging, rather than text clas-
sification. Previous work [13, 20] has looked at the collocation of terms and their
frequencies as graphs, rather than the linguistic structure of the sentence. One other
study [6] has represented linguistic information as well asword order in a graph for
text classification, however the work was limited to very small texts of between 8
to 13 tokens such as the titles of works. As such, we adopt the usage of of linguis-
tic information, structure and semantics in a graph for textclassification at a full
text scale. In order to achieve this scale of processing, theuse of frequent subgraph
mining is essential.

Frequent subgraph (and sub-tree) mining, using various approaches, has been ex-
tensively studied [9, 10, 22, 8, 2]. However, the main bottleneck is the number of
unnecessary candidate frequent subgraphs generated. A substantial amount of work
has been undertaken focusing on developing efficient graph mining algorithms us-
ing elegant search strategies, data structures or their combinations. Some authors
have suggested the use of constraint based frequent subgraph mining to remove un-
wanted patterns. The weighted subgraph mining approach advocated in this paper
integrates the weight constraints into the frequent subgraph mining process to re-
duce the search space by generating only the most significant(interesting) patterns.

The frequent subgraph mining approach described in this paper is also influenced
by work on weighted pattern mining, especially Weighted Association Rules Mining
(WARM), see for example the work of [19, 17, 23, 24, 25]. A significant issue in
WARM is that the “Downward Closure” (DC) property of items sets, on which many
ARM algorithms are based, no longer holds. One solution (forexample [19]) is to
handle the weights as a post-processing step after mining frequent itemsets, however
the weights are then not integrated into the ARM process. Taoet al. [17] proposed a
model of weighted support, which satisfies a weighted DC property. Yun et al. [23,
24, 25] introduced a series of concepts such as “weight range”, “weight confidence”,
and “support confidence” for WARM in order to maintain the DC property and push
the weight constraint deeply into the mining process. Although the ideas espoused
by WARM cannot be directly applied to weighted frequent subgraph mining; the
research described here is, at least in part, influenced by this body of work.
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3 Graph Representation of Text Data

The graph representation advocated in this paper is described in this section. The
representation serves to capture a range documents aspects: (i) word stem, (ii) word
Part Of Speech (POS), (iii) word order, (iv) word hypernyms,(v) sentence structure,
(vi) sentence division and (vii) sentence order. There are four different types of
nodes in the graph representation:

1. Structural: Nodes that represent sentences (S) and their internal structures of
noun (NP), verb (VP) and prepositional phrases (PP). (Represented by triangles
in Figure 1.)

2. Part of Speech: Nodes that represent the POS of a word, (eg. DT, JJ, NN). (Cir-
cles.)

3. Token: Nodes that represent the actual word tokens in the text. (Rectangles.)
4. Semantic: Nodes that represent additional information about the word such as its

linguistic stem and other broader concepts. (Ovals)

Note that each node has a unique identifier and a label. There are also five types of
edge in the graph:

1. hasChild: Edges which record the structure of the text such as a sentence hav-
ing a noun phrase and a verb phrase or a noun phrase containingan adjective.
(Unlabeled in Figure 1 for reasons of space.)

2. isToken: Edges which link the part of speech of a token to the token itself.
3. next: Edges which record the order of the words and sentences in the text.
4. stem: Edges which link to the linguistic stem of the word.
5. hyp: Edges which link to a broader concept.

An example of these node and edge types is depicted in Figure 1, using the first 6
words in a well known English sentence. Employing the above graph representation
each sentence in each text is encoded and linked together with “next” edges to form
one graph per text. Content based weightings were then attached to each node in the
graph. The Structural elements, being intuitively unimportant to classification, were
given a static low weight of 1. The Part of Speech nodes were given a static weight
of 10, Token nodes were weighted according to their frequency in the dataset using
theTF · IDF method. Stems were half the value of the Token and Hypernyms one
quarter the value.

4 Weighted Frequent Subgraphs

In this section the weighted subgraph mining problem is formally defined. As with
standard transaction graph mining approaches [9, 10, 1, 11]we commence with a
set oftransaction graphs D= {G1,G2, · · · ,Gn} and a functionτ(g,G) for arbitrary
graphsg andG. τ(g,G) = 1 (resp. 0), ifg is isomorphic to a subgraph inG.
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Fig. 1 Graph-based Text Representation Example

Definition 1. The support count of a graph (pattern)g with respect to a database
D = {G1,G2, · · · ,Gn}, is the expressionsco(g) = ∑ i=n

i=1τ(g,Gi). The support ofg
with respect toD, sup(g), is the ratio of the support count over the size of the
datasetD. Then:

sup(g) =
sco(g)

n
. (1)

It should be remarked thatsco(g) andsup(g), like most terms defined in this section
depend on the datasetD. To avoid cluttering notations, such dependence will always
be left implicit.

Definition 2. Given a graphg, if sup(g) is greater than or equal to some user defined
minimum thresholdθ , theng is said to be frequent (inD). The frequent subgraph
mining problem is to find all the frequent subgraphs in the databaseD.

Since the purpose of this paper is to study weighted graph mining in the remain-
der of this section we define this concept precisely. From nowon we assume that
graphs come with weights associated with either their vertices or their edges. LetW
be a function assigning a weight to any graphg in terms of the given weights for
its vertices (resp. edges). In our work, in particular,W will always be a sum of the
vertex (resp. edge) weights, but the definitions in this Section hold in a more general
setting.

Definition 3. Given a graphg with the weightW(g), the weighted support ofg with
respect toD, wsup(g), is:

wsup(g) = W(g)×sup(g). (2)

Definition 4. A graphg is said to be weighted frequent if and only if its weighted
support is greater than or equal to a given minimum support threshold (minwsup),
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wsup(g)≥minwsup. (3)

From (1), (2) and (3), a graphg is weighted frequent if its support count satisfies:

sco(g)≥
minwsup×n

W(g)
(4)

Note thatsco(g) is always an integer. Hence we may define

sbound(g) =

⌈

minwsup×n
W(g)

⌉

(5)

and we have
sco(g)≥ sbound(g). (6)

5 Weighted gSpan

The operation of the proposed weighted subgraph mining algorithm (W-gSpan) is
described in this section. The section commences (Sub-section 5.1) with a discus-
sion of support-bound candidate subgraph pruning. This is followed in Sub-section
5.2 by a description of a number of different weighting mechanisms that are used
in this study. Sub-section 5.3 then gives the pseudo code of pruning algorithm and
briefly decribes how W-gSpan is integrated into the classification process;

5.1 Support Bound based Pruning

Use of the DC property in any frequent set mining algorithm can greatly reduce the
search space. However, in the context of weighted frequent set mining the DC prop-
erty no longer holds. The W-gSpan algorithm therefore makesused of an alternative
concept to prune non-interesting candidate subgraphs early on in the generation pro-
cess.

Let the maximum possible size of a subgraph bemL and the weight for a sub-
graph be defined as the sum of vertex weights (similar definitions may be given if
the graph is edge-weighted). Given ak-patterngk with weights{ω1,ω2, · · · ,ωk},
any futuren-pattern containinggk is denoted bygn, wherek < n ≤ mL. For the
additional (n− k) verticies, if the upper bounds of the weights are estimatedas
ωak+1,ωak+2, · · · ,ωan, then the upper bound of the weight of then-patterngn is given
by:

wboundn(gk) =
k

∑
i=1

ωi +
n

∑
i=k+1

ωai (7)
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We may then define a lower bound of the support count of ak-pattern included
in gn as

sboundn(gk) =

⌈

minwsup×n
wboundn(gk)

⌉

(8)

of course the definition can be extended ton= k by settingsboundk(gk)= sbound(gk)
as defined in (5).

Definition 5. A k-subgraphgk is workableif sco(gk)≥ sboundn(gk) for somen with
k≤ n≤mL, andunworkableif sco(gk) < sboundn(gk) for all n, with k≤ n≤mL.

Lemma 1. If a subgraph gk is workable then it is possible for gk to be a subgraph
of some weighted frequent n-subgraph. On the contrary, if a subgraph gk is not
workable, then gk has no possibility of being a subgraph of any weighted frequent
n-subgraph.

Proof. Let n be given withk ≤ n ≤ mL. If sco(gk) ≥ sboundn(gk), then due to
sco(gk) ≥ sco(gn), it is possible thatsco(gn) ≥ sbound(gn). So patterngn has a
chance to be weighted frequent in the future.

On the other hand, ifsco(gk) < sboundn(gk), then due tosco(gk) ≥ sco(gn),
sco(gn) < sbound(gn). So patterngn will not be weighted frequent in the future.

The Weighted gSpan algorithm will then use a simple condition to decide
whether or not to prune a particulark-pattern (in what followsmL is the maximum
length of a pattern):

if sco(gk) ≥ sbound(gk), gk is workable; otherwise we computesboundmL(gk) (this gives
a lower bound onsboundn(gk)), if sco(gk)≥ sboundmL(gk), thengk is workable, elsegk is
unworkable and pruned.

5.2 Weight Calculation

Given the notion of a weighted bound of a subgraph, as defined above, methods for
calculating the weighting for a given subgraph are required. We can identify three
approaches for determining subgraph weightings: (i)structure based, (ii) content
basedand (iii) structure and contentbased. The distinction between the two is that
the structure base weighting approach does not require any advanced knowledge of
the potential significance of subgraphs. Each approach is discussed in more detail
below.

5.2.1 Structure Based Weight Calculation

In the structure base weighting approach weightings are derived purely from the
“structure” of subgraphs. The approach advocated here is based on the frequency
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counts of individual nodes and edges per graph in the graph set. Using these fre-
quency counts we adopt Pearson’s Correlation Coefficient [15], PCC, to measure
the weight of the edge (considering the nodes making up a 1-edge subgraph as two
variables).Thus for two nodesA andB, let the number of occurrences ofA equal
φA, the number of occurrences ofB equalφB and the number of co-occurrences of
A andB equalφAB; and let the total number of transaction graphs within the dataset
be equal ton. The support values will then besup(A) = φA/n, sup(B) = φB/n, and
sup(A,B) = φAB/n. Using PCC the edge weight (ωpcc) can be derived as follows.

ωpcc =
sup(A,B)−sup(A)sup(B)

√

sup(A)sup(B)(1−sup(A))(1−sup(B))
(9)

Many other measures of association exist, such as the Chi Squared, cosine or
Jaccard measure, that could equally well be used to determine edge weighting in a
structured based context.

5.2.2 Content based Weight Calculation

In the content based weighting approach advanced knowledgeof the nature of the
input set is utilised. The nature of the advanced knowledge can take two forms: (i)
weights that have been predefined (by for example a domain expert), or (ii) class
labels associated with individual graph records (documents).

In the first case user supplied weightings can be attached directly to either nodes
or edges. Thus given a set of user defined node weightsω1 · · ·ωn, the weighting for
a subgraph can be calculated by∑ni∈g ωi . A similar calculation can be used in the
event of user supplied edge weights. We later refer to this mechanism as the “Node
Weight” method.

Alternatively we can calculate edge weights, given user defined node weights,
as follows: if the nodes connecting edgeei area with weight wa andb with wb;
the probability ofa’s occurrences isρa, the probability ofb’s occurrences isρb and
the probability of edgeei ’s occurrences isρ(a,b). The mutual information metric
betweena andb can then be defined asmu(a,b) = ρ(a,b) log2(ρ(a,b)/ρa/ρb). The
weight for edgeei can then be calculated as:

ωei =

(

2×wa×wb

wa +wb

)

×mu(a,b) (10)

The weight for the subgraph is calculated in the same manner as before. We refer to
this mechanism as the “Mu” method.

Alternatively knowledge of the class label can be used to determine the weight-
ing of a given subgraph. There are a number offeature selectiontechniques that can
be utilised for this purpose, examples include InformationGain (IG), mutual infor-
mation(MI), andχ2 testing. For the work described here theχ2 statistic was adopted
to apply weightings to subgraphs according to their association with a given class
label. Using the two-way contingency table of an edgee and a graph’s class label
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yc, let a denote the number of timeseandyc co-occur,b denote the number of times
thee occurs withoutyc, c denote the number of timesyc occurs withoute, d denote
the number of times neitherenoryc occurs, andn is the total number of transaction
graphs. The edge-goodness measure is then defined to be:

χ2(e,yc) =
n(ad−cb)

(a+c)(b+d)(a+b)(c+d)
(11)

Theχ2 statistic has a value of zero if edgeeand classyc are indepedent. For each
classyc, we compute theχ2 statistic between each edge and that category, and then
calculated the average value ofχ2 statistic for each edge. Letc = {c1,c2, · · · ,cm}
denote the set of categories for the transaction graphs dataset,Pr(yc) denotes the
probability ofyc, then:

χ2
avg(e) =

m

∑
c=1

Pr(yc)χ2(e,yc) (12)

After estimating edge weights for each generated subgraph,the actual signifi-
cance of the subgraph is calculated in the same manner as before. We refer to this
mechanism as the “Chi Squared” method.

5.2.3 Combined Content and Structure Based Weight Calculation

It is possible to combine the two approaches, content and structure based weight
calculation. For example given a user defined weight for nodeni of wni , then the
probability of ni ’s occurrences isρ , and the entropy for nodeni is entropy(ni) =
−ρ log(ρ)− (1−ρ) log(1−ρ). If we also make use of the “degree” (the number of
edges incident to the node) ofni the weight forni can be calculated as:

ωni = wni ×entropy(ni)×degree(ni) (13)

Thus, we refer to this mechanism as the “Entropy” method.

5.3 The Weighted gSpan Algorithm (W-gSpan)

The above weighting considerations were built into a variation of the well known
gSpan frequent subgraph mining algorithm [22], Weighted gSpan (W-gSpan). How-
ever, the proposed weighing framework can equally well be applied to other fre-
quent subgraph (or sub-tree) mining algorithms. The pseudocode for the pruning
algorithm employed in W-gSpan is given in Algorithm 1.

After the W-gSpan algorithm is applied to identify weightedfrequent subgraphs,
these subgraphs are then used to generate a set of binary feature vectors(one per
document). A standard classifier generator can then be employed using such vectors.
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Algorithm 1 subgraph-mining(GS, s, c, F)
Require: Input:c = DFS code,GS= graph database,s= support;
Ensure: Output:F = weighted frequent subgraph set;
1: G← a set of candidate subgraphs;
2: if c 6= min(c) then
3: return
4: end if
5: Insertc into F ;
6: G← /0;
7: ScanGSonce, and find every edgee thatc can be right-most extended, and savec∪e into G;
8: SortG in DFS lexicographic order;
9: for all gk ∈G do

10: if sco(gk)≥ sbound(gk) then
11: subgraph-mining(GS, s, c, F);
12: else ifsco(gk)≥min(sboundn(gk)),wheregk ⊂ gn then
13: subgraph-mining(GS, s, c, F);
14: else
15: G←G−{gk};
16: end if
17: end for
18: return

6 Experiments and Results

In order to evaluate the performance of the proposed graph based text classification
method experiments were conducted to:

• Investigate the performance of W-gSpan, in terms of execution time and number
of frequent subgraphs detected.

• Investigate the overall performance of the graph based classification process for
text classification.

Note that the experiments were all run on a 1.86GHZ Intel Core2 PC with 2GB
main memory.

6.1 Description of Text Data Set

The experimental data consisted of three sets of documents(D1, D2, and D3) split
evenly between two classes. The documents were extracted from the Medline
dataset by their Medical Subject Heading (MeSH) fields, so that a two class (“poly-
merase chain reaction” and “magnetic resonance imaging”) set was produced. The
text was divided into sentences using a regular expression based tokenizer and then
each sentence was POS tagged using Tsuruoaka and Tsujii’s “geniatagger”[18], pro-
ducing a sequence of “word/POS” tokens plus the lemma (stemmed form) of each
word. This tagged output was then fed into a structural parser which produces a tree
with noun, verb and prepositional phrases. The nouns and verbs are then “looked
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up” in the WordNet thesaurus and up to five broader terms addedinto the graph.
The properties of the (graph) data are given in Table 1.

Table 1 Graph Data Description

Text Dataset
D1 D2 D3

No. of graphs 200 400 1000
Maximal edge count 3002 2917 4047
Average edge count 1141 1131 1135
Distinct node label count10069 16456 26540

6.2 Performance of W-gSpan

The performance of the W-gSpan algorithm was evaluateded using the four different
weighting methods introduced in Sub-section 5.2 above:

• Pearson Correlation Coefficient (pcc-w) for structure based weighting.
• Node Weight (node-w) for content based node weighting (Edge weighting

would operate in a similar maner)
• Mutual information (mu-w) for content based edge weighting.
• Chi Square (chs-w) for content based class label discrimination weighting.
• Node entropy (entro-w) for combined structure and content based node weight-

ing.

Experiments were also conducted with no weighting, but thiswas found to be ex-
tremely inefficient with poor outcomes, and thus are not discussed further in this
evaluation.

The results of the performance experiments are presented inFigure 2. The run-
time values corresponding to different minimum support thresholds are presented in
Figure 2(a). The number of identified frequent subgraphs (features), corresponding
to a range of minimum support thresholds, is presented Figure 2(b) and (c). There
is, naturally, a correlation between support threshold andthe number of identified
subgraphs: as the support threshold is increased, the number of identified subgraphs
decreases. There is also a natural correlation between runtime and the number of
identified frequent subgraphs: runtime increases with the number of identified fre-
quent subgraphs. From Figure 2(a) it can be observed that Mu weighting and node
weighting seem to work well in terms of run time efficincy, however node weight-
ing finds very few frequent subgraphs. The pcc weighting is the most effective in
terms of computational efficiency, and works well in terms ofnumber of features
generated. Entropy weighting suddenly increases the runtime when the threshold is
below 10%.
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Fig. 2 Performance of weighted frequent subgraph mining on D1 dataset

6.3 Classification Accuracy Comparison

Three different classifier generator paradigms were use to evaluate the graph-based
text classification process: (i) a classification association rule miner, TFPC [3, 4], (ii)
a Naive Bayes Classifier (NBC) [21], and (iii) a decision treeclassifier, C4.5 [21].
Table 2 shows the accuracy figures obtained using a range of support threshold val-
ues (for the generation of frequent subgraphs), for the three classification paradigms
(with 10 folds cross validation) and using the five differentweighting strategies.
Experiments conducted with no weightings at all (on D1, D2 and D3 datasets) pro-
duced very poor results indicating, beyond doubt, that the proposed weighted graph
mining approach provides genuine benefits.

Using no weighting on D1 dataset, it was not possible to obtain results with a
support threshold below 85%. When comparing the different weighting schemes,
pcc produced the best overall accuracy. Using a standard ‘bag of words’ approach
with TFPC gave a best accuracy of 89%.

If the three classifier generators are compared, NBC performs significantly better
than the other two, however C4.5 did not work well with any of the permutations of
weighting and support threshold. If the three classifiers are applied on D2 and D3,
the classification performance degrades. For example, using PCC weighting with
support 10%, the accuracy of NBC on D2 is 76.5% and the accuracy of NBC on D3
is 72.3%. In order to get better accuracies, further processing on extracted frequent
features is indispensable and how to model text data as more efficient graphs with
less nodes and edges is also crucial.
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Table 2 Classification accuracy by different weighting methods on D1 dataset

ClassifierMethod
Support Threshold(%)

15 16 17 18 19 20 21 22 23 24 25

NBC

pcc-weight 96.5 96 94.5 95 94 93 92 93 91.5 91.5 91.5
chs-weight 91.5 91.5 89 87.5 86.5 86.5 90 91 90.5 92 91
mu-weight 97 96.5 94.5 94 94 93 92 93 91.5 92 91.5
entro-weight76.5 75 95 95 94 92.5 92 92.5 92 93 92.5
node-weight80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5

TFPC

pcc-weight 91.5 91 88.5 89.5 86.5 84.5 83.5 84 84 84 84
chs-weight 90.5 90 87.5 88.5 85.5 83.5 82.5 83 83.5 83 83
mu-weight 92 91.5 89 90 87 85 84 84.5 84.5 84 84
entro-weight92 91.5 89 90 87 85 84 84.5 84.5 84 84
node-weight54 54 54 54 54 54 54 80.5 80.5 80.5 80.5

C4.5

pcc-weight 88.5 88 89.5 89 91 86.5 86.5 86.5 87 89 88.5
chs-weight 87.5 87 89.5 89 91 86 86.5 86.5 87.5 89.5 89.5
mu-weight 88.5 88 89.5 89 91 87 87 87 87 89 88.5
entro-weight88.5 88 89.5 89 91 87 87 87 87 89 88.5
node-weight80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5

7 Conclusion

An approach to text classification using a graph based representation has been de-
scribed. The graph representation of text allows both the structure and content of
documents to be represented. Key constructs to support textclassification can then
be identified using frequent subgraph mining. The disadvantage of standard frequent
subgraph mining is that it is computationally expensive, tothe extent that any poten-
tial advantage of the graph representation of text cannot berealised. To overcome
this disadvantage a weighted subgraph mining mechanism is proposed, W-gSpan. In
effect W-gSpan selects the most significant constructs fromthe graph representation
and uses these constructs as input for classification. Experimental evaluation demon-
strates that the technique works well, significantly out-performing the unweighted
approach in every case. A number of different weighting schemes were consid-
ered coupled with three different categories of classifier generator. In terms of the
generated classification accuracy pcc-weighting outperformed the other proposed
weighting mechanisms. PCC-weighting also worked well in terms of computational
efficiency and therefore represents the best overall weighting strategies.
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