
Vertex Unique Labelled Subgraph
Mining

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

Abstract With the successful development of efficient algorithms for Fre-
quent Subgraph Mining (FSM), this paper extends the scope of subgraph
mining by proposing Vertex Unique labelled Subgraph Mining (VULSM).
VULSM has a focus on the local properties of a graph and does not require
external parameters such as the support threshold used in frequent pattern
mining. There are many applications where the mining of VULS is signifi-
cant, the application considered in this paper is error prediction with respect
to sheet metal forming. More specifically this paper presents a formalism for
VULSM and an algorithm, the Right-most Extension VULS Mining (RE-
VULSM) algorithm, which identifies all VULS in a given graph. The per-
formance of REVULSM is evaluated using a real world sheet metal forming
application. The experimental results demonstrate that all VULS (Vertex
Unique Labelled Subgraphs) can be effectively identified.

1 Introduction

A novel research theme in the context of graph mining [7, 15, 8, 16], Vertex
Unique labelled Subgraph Mining (VULSM), is proposed in this paper. Given
a particular sub-graph g in a single input graph G; this subgraph will have
a specific structure, and edge and vertex labelling associated with it. If we
consider only the structure and edge labelling there may be a number of differ-
ent compatible vertex labellings with respect to G. A Vertex Unique Labelled
Subgraph (VULS) is a subgraph with a specific structure and edge labelling
that has a unique vertex labelling associated with it. This paper proposes the

Department of Computer Science, The University of Liverpool

Ashton Building, Ashton Street, Liverpool, L69 3BX, UK
{yuwen,coenen,michele,hsselsal}@liverpool.ac.uk

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

Right-most Extension Vertex Unique Labelled Subgraph Mining Algorithm
(REVULSM) to identify all VULS. REVULSM generates subgraphs (poten-
tial VULS candidates) using Right Most Extension [3], in a DFS manner, as
first proposed in the context of gSpan [14]; and then identifies all VULS using
a level-wise approach (first proposed by Agrawal and Srikant in the context
of frequent item set mining [1, 2, 9]). VULSM is applicable to various types
of graph; however, in this paper we focus on undirected graphs.

VULSM has relevance with respect to a number of domains. The appli-
cation domain used to illustrate the work described in this paper is error
prediction in sheet metal forming. More specifically error prediction in Asym-
metric Incremental Sheet Forming (AISF) [4, 6, 10, 12, 13]. In this scenario
the piece to be manufactured is represented as a grid, each grid centre point
is defined by a Euclidean (X-Y-Z) coordinate scheme. The grid can then be
conceptualised as a graph (lattice) such that each vertex represents a grid
point. Each vertex (except at the edges and corners) can then be connected
to its four neighbours by a sequence of edges, which in turn can be labelled
with “slope” values. An issue with sheet metal forming processes, such as
AISF, is that distortions are introduced as a result of the application of the
process. These distortions are non-uniform across the “shape”, but tend to
be related to local geometries. The proposed graph representation captures
such geometries in terms of sub-graphs, particular sub-graphs are associated
with particular local geometries (and by extension distortion/error patterns).
Given before and after shapes we can create a training set by deriving the
error associated with each vertex in the grid. This training data, in turn, can
then be used to train a predictor or classifier of some sort. There are various
ways that such a classifier can be generated; but one mechanism is to apply
VULSM, as proposed in this paper, to identify sub-graphs that have unique
error patterns associated with them that can then be used for error prediction
purposes (some form of mitigating error correction can then be formulated).

A simple example grid and corresponding graph are given in Figure 1.
The grid (lefthand side of Figure 1) comprises six grid squares. Each grid
centre is defined by a X-Y -Z coordinate tuple. Each grid centre point is
associated with a vertex within the graph (right-hand side of figure 1). The
edges, as noted above, are labelled with “slope” values, the difference in the
Z coordinate values associated with the two end vertices. Each vertex will be
labelled with an error values (e1 to e3 in the figure) describing the expected
distortion at that vertex as obtained from a “training set” (derived from
“before and after” grid data). Identified VULS will describe local geometries
each with a particular associated error pattern. This knowledge can then be
used to predict errors in “unseen” grids so that some form of mitigating error
correction can be applied.

The rest of this paper is organised as follows. In Section 2, we define the ba-
sic concepts of VULS together with an illustrative example. The REVULSM
algorithm is then described in detail in Section 3. An experimental analysis

Vertex Unique Labelled Subgraph Mining

4 2 1

4 4 3

e1 e2 e1

e3 e3 e2

2 1

0 1

0 2 2

Fig. 1: Grid representation (left) with corresponding graph/lattice (right) featuring

“slope” labels on edges

of the approach is presented in Section 4, and Section 5 summarises the work
and the main findings, and presents some conclusions.

2 The problem formulation

This section presents a formal definition of the concept of a VULS. As-
sume a connected labelled graph G comprised of a set of n vertices V ,
such that V = {v1, v2, . . . , vn}; and a set of m edges E, such that E =
{e1, e2, . . . , em}. The vertices are labelled according to a set of p vertex la-
bels LV = {lv1 , lv2 , . . . , lvp}. The edges are labelled according to a set of q
edge labels LE = {le1 , le2 , . . . , leq}. A graph G can thus be conceptualised as
comprising k one-edge subgraphs: G = {P1, P2, . . . , Pk}, where Pi is a pair
of vertices linked by an edge, thus Pi = 〈va, vb〉 (where va, vb ∈ V). The size
of a graph G (|G|) can thus be defined in terms of its one edge sub-graphs,
we refer to 1-edge subgraphs, 2-edge subgraphs and so on up to k-edge sub-
graphs. For undirected graphs, the edge 〈va, vb〉 is equivalent to 〈vb, va〉 (in
this paper we assume undirected subgraphs). We use the notation Pi.va and
Pi.vb to indicate the vertices va and vb associated with a particular vertex
pair Pi, and the notation Pi.va.label and Pi.vb.label to indicate the labels
associated with Pi.va and Pi.vb respectively. We indicate the sets of labels
which might be associated with Pi.va and Pi.vb using the notation LPi.va and
LPi.vb (LPi.va , LPi.vb

∈ LV). We indicate the edge label associated with Pi

using the notaion Pi.label (Pi.label ∈ LE). We can use this notation with
respect to any subgraph Gsub of G (Gsub ⊆ G).

For training purposes the graphs of interest are required to be labelled.
However, we can also conceive of edge only labelled graphs and subgraphs.
Given some edge only labelled subgraph (Gsubedgelab) of some fully labelled
graph G (Gsubedgelab ⊆ G) comprised of k edges, there may be many different
vertex labelings that can be associated with such a subgraph according to the
nature of G. We thus define a function, getV ertexLabels, that returns the
potential list of labels S that can be assigned to the vertices in Gsubedgelab

according to G:

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

getV ertexLabels(Gsubedgelab)→ S

where Gsubedgelab = {P1, P2, . . . , Pk} and S = [[LP1.va , LP1.vb], [LP2.va , LP2.vb],
. . . , [LPk.va , LPk.vb]] (recall that LPi.va and LPi.vb are the sets of potential
vertex labels for vertex va and vb associated with a one-edge subgraph Pi).
Thus each element in S comprises two sub-sets of labels associated respec-
tively with the start and end vertex for each edge in Gsubedgelab; there is a
one to one correspondence between each element (pair of label sets) in S with
each element in Gsubedgelab, hence they are both of the same size k (recall
that k is the number of edges). We also assume that some canonical labelling
is adopted.

a a b

b a b

x y

y y

y x y

Fig. 2: Undirected example lattice

a a
x

Fig. 3: One edge VULS generated

from lattice in Figure 2

a a

a

x

x

a a b
x y

Fig. 4: Two edge VULS generated

from lattice in Figure 2

a a

a b

x

y

x

a

b a b
y y

x

a a b

b

x y

y

a a b

a

x y

x

Fig. 5: Three edge VULS generated

from lattice in Figure 2

According to the above, the formal definition of the concept of a VULS
is as follows. Given: (i) a k-edge edge labelled subgraph Gsubedgelab =
{P1, P2, . . . , Pk} (Gsubedgelab ⊆ G), (ii) a list of labels that may be associ-
ated with the vertices in Gsubedgelab, S = [[LP1.va , LP1.vb

], [LP2.va , LP2.vb], . . . ,
[LPk.va , LPk.vb

]], and (iii) the proviso that Gsubedgelab is connected. If ∀[Li, Lj] ∈
S, |Li| = 1, |Lj | = 1 then Gsubedgelab is a k-edge VULS with respect to G.

So as to provide for a full and complete comprehension of the concept of
VULS an example lattice is presented in Figure 2. The VULS that exist in
this lattice are itemized in Figures 3 to 5. If we consider one-edge subgraphs
first, there are two possibilities: (i) graphs featuring edge x, and (ii) graphs
featuring edge y. The list of possible vertices S associated with the first,
obtained using the getV ertexLabels function, is [[{a}, {a}]], while the list
associated with the second is [[{a, b}, {b}]] (this can be verified by inspection
of Figure 2). Considering edge x first, ∀[Li, Lj] ∈ S, |Li| = 1 and |Lj | = 1,

Vertex Unique Labelled Subgraph Mining

so this is a VULS; however, considering edge y, ∀[Li, Lj] ∈ S, |Li| 6= 1 and
|Lj | = 1 hence this is not a VULS. We now consider the two edge subgraphs
by extending the one edge subgraphs. We can not enumerate all two edge
subgraphs here due to space limitations but the two edge VULS are shown
in Figure 4. Taking the first VULS in Figure 4, {P1, P2}, as an example, here
P1.va = a, P1.vb = a, P2.va = a and P2.vb = a , furthermore the edge labels
associated with P1 and P2 are P1.label = x and P2.label = x respectively. In
this case S = [[a, a], [a, a]] thus ∀[Li, Lj] ∈ S, |Li| = 1, |Lj | = 1 therefore this
is a two-edge VULS with respect to G.

Algorithm 1 REVULSM
1: Input:

2: Ginput = Input graph
3: Max=Max subgraph size

4: Output:

5: R = Set of VULS
6: Global variables:

7: G = set of subgraphs (VULS candidates) in Ginput

8: procedure REV ULSM(Ginput, Max)

9: R = ∅
10: G = ∅
11: G = Subgraph Mining(Ginput) (Algorithm 2)

12: k=1
13: while (k < Max) do

14: for all Gsub ∈ Gk (where Gk is the set of k-edge subgraphs in G) do

15: if IdentifyV ULS(Gsub, Gk) == true (Algorithm 3) then
16: R = R ∪Gsub

17: end if

18: end for
19: k++

20: end while
21: Return R

22: end procedure

3 The REVULSM algorithm

The proposed REVULSM algorithm is defined in this section. The algorithm
is founded on the VULS properties presented above and makes use of a graph
representation technique “borrowed” from gSpan.

The pseudo code for REVULSM is presented in Algorithms 1, 2 and 3. Al-
gorithm 1 presents the high level control structure, while Algorithm 2 presents
the detail for generating all subgraphs (VULS candidates), and Algorithm 3
the detail for determining whether a specific sub-graph is a VULS or not.

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

Algorithm 2 Subgraph Mining
1: Input:

2: Ginput = Input graph

3: Output:
4: G = set of subgraphs in Ginput

5: Global variables:

6: Gtemp=set of subgraphs generated so far

7: procedure Subgraph Mining(Ginput)

8: G = ∅
9: Gtemp = ∅

10: G1=the set of one-edge subgraphs in Ginput

11: sort G1 in DFS lexicographic order
12: for each edge e ∈ G1 do

13: Gtemp = Subgraph(e,1,Max)

14: G = G ∪Gtemp

15: Ginput = (Ginput − e) (remove e from Ginput)

16: end for
17: Return G

18: end procedure

19: procedure Subgraph(e, size, Max)

20: if size > Max then

21: return ∅
22: end if

23: generate all e’s potential extension subgraphs c in Ginput with one edge growth by

right most extension
24: for each c do

25: if c is minimal DFSCode then

26: Gtemp = Gtemp ∪ c
27: Subgraph(Gtemp,size+1,Max)

28: end if
29: end for

30: Return Gtemp

31: end procedure

Considering Algorithm 1 first, the algorithm commences with an input graph
Ginput and a parameter Max that defines the maximum size of the VULS. If
we do not limit the size of the searched-for VULSs the entire input graph may
ultimately be identified as a VULS which, in the context of the sheet metal
forming target application, will not be very useful. The output is a set of
VULS R (the set R may include overlaps). Note that all graphs are encoded
using a Depth First Search (DFS) lexicographical ordering (as used in gSpan
[14]). The global variable G (line 7 in Algorithm 1) is the set of all subgraphs
in Ginput. At the start of the REVULSM procedure, the sets G and R will be
empty. We proceed in a depth first manner to generate all subgraphs (VULS
candidates) G by calling algorithm 2 (line 11). Then we identify VULS from
all subgraphs G starting from one-edge subgraphs (k = 1), then two edge
sub-graphs (k = 2), and so on. We continue in this manner until k = Max

Vertex Unique Labelled Subgraph Mining

Algorithm 3 IdentifyVULS
1: Input:

2: g = a single k-edge subgraph (potential VULS)

3: Gk = a set of k-edge subgraphs to be compared with g
4: Output:

5: true if g is a VULS, false otherwise

6: procedure IdentifyV ULS(g,Gk)

7: isV ULS = true

8: S = the list of potential vertex labels that may be assigned to g
9: for all [Li, Lj] ∈ S do

10: if either |Li| 6= 1 or |Lj | 6= 1 then

11: isV ULS = false
12: break

13: end if
14: end for

15: return isV ULS

16: end procedure

(line 13-20). On each iteration algorithm 3 is called (line 15) to determine
whether Gsub is a VULS or not with respect to the k-edge subgraphs Gk. If
it is VULS, it will be added to the set R.

Algorithm 2 comprises two procedures. The first, Subgraph Mining(Ginput),
is similar to that found in gSpan. We are iteratively finding all subgraphs,
up to a size of Max. We commence (line 10-11) by sorting all the one-edge
subgraphs, contained in input graph Ginput, into DFS lexicographic order
and storing them in G1. Then (lines 12-16), for each one edge subgraph e in
G1 we call the Subgraph procedure (line 13), which finds all super graphs
for each one edge graph e up to size Max in a DFS manner, and stores the
result in Gtemp; which is then added to G (line 14). Finally, we remove e from
Ginput (line 15) to avoid generating again any duplicate subgraphs containing
e.

The Subgraph(e, size,Max) procedure generates all the super graphs of
the given one edge subgraph e by growing e by adding edges using the right
most extension principle. For each potential subgraph c, if c is described
by a minimal DFSCode (line 25) the process is repeat (in a DFS style) so
as to generate all the super graphs of e (line 27). The process continues in
this recursive manner until the number of edges in the super graphs to be
generated (size) is greater than Max, or no more graphs can be generated.

Algorithm 3 presents the pseudo code for identifying whether a given sub-
graph g is a VULS or not with respect to the current set of k-edge sub-graphs
Gk from which g has been removed. The algorithm returns true if g is a
VULS and false otherwise. The process commences (line 8) by generating
the potential list of vertex labels S that can be matched to g according to the
content of Gk (see previous section for detail). The list S is then processed
and tested. If there exists a vertex pair whose possible labelling is not unique

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

(has more than one possible labelling that can be associated with it) g is not
a VULS and the procedure returns false, otherwise g is a VULS and the
procedure returns true.

4 Experiments and Performance Study

This section describes the performance study that was conducted to analyse
the generation and application of the concept of VULS. The reported exper-
iments were all applied to a real application of sheet metal forming, more
specifically the application of AISF [11, 5] to the fabrication of flat-topped
pyramid shapes manufactured out of sheet steel. This shape was chosen as it
is frequently used as a benchmark shape for conducting experiments in the
context of AISF (although not necessarily with respect to error prediction).
Nine graphs were generated from this data using three different grid sizes
and different numbers of edge and vertex labels; in addition a range of values
were used for the Max parameter. The rest of this sub-section is organised
as follows. The performance measures used with respect to the evaluation
are itemised in Section 4.1, more detail concerning the data sets used for the
evaluation is given in Section 4.2, and the obtained results are presented and
discussed in Section 4.3.

4.1 Experimental performance measurement

Four performance measures were used to analyse the effectiveness of the pro-
posed REVULSM : (i) run time (seconds), (ii) number of VULS identified,
(iii) discovery rate and (iv) coverage rate. The last two merit some further
explanation. The discovery rate is the ratio of VULS discovered with respect
to the total number of subgraphs of size less than Max (Equation 1). The
coverage rate is the ratio of the number of vertices covered by the detected
VULS compared to the total number of vertices in the input graph (Equation
2); with respect to the sheet steel forming example application high coverage
rates are desirable.

discovery rate (%) =
number of V ULS

number of subgraphs
(1)

coverage rate (%) =
number of vertices covered by V ULS

number of vertices in input graph
(2)

Vertex Unique Labelled Subgraph Mining

4.2 Data sets

The data sets used for the evaluation consisted of before and after “coor-
dinate clouds”; the first generated by a CAD system, the second using an
optical measuring technique. These were transformed into grid representa-
tions, referenced using a X-Y-Z coordinate system, such that the before grid
could be correlated with the after grid and error measurements obtained.
A fragment of the before grid data, with associated error values (mm), is
presented in Table 1. The before grid data was then translated into a graph
such that each grid square was represented by a vertex linked to each of
its neighbouring squares by an edge. Each vertex was labelled with an error
value while the edges were labelled according to the difference in Z of the
two end vertices (the ”slope” connecting them). Furthermore, the vertex and
edge labels were discretised so that they were represented by nominal values
(otherwise every edge pair was likely to be unique). This was then the input
into the REVULSM algorithm.

Table 1: Format of raw input data

x y z error

0.000 0.000 0.000 0.118
1.000 0.000 0.000 0.469

2.000 0.000 0.000 0.469
3.000 0.000 0.000 0.472
0.000 1.000 0.000 0.471
1.000 1.000 -1.402 0.088

2.000 1.000 -4.502 1.308
3.000 1.000 -4.676 1.907

.

As noted above, from the raw data, different sized grid representations,
and consequently graph representations, may be generated. For experimental
purposes three grid formats were used 6 × 6 , 10 × 10 and 21 × 21. We
can also assign different numbers of edge labels to the vertices and edges,
for the evaluation reported here values of two and three were used in three
different combinations. In total nine different graph data sets were generated,
numbered AISF1 to AISF9. AISF1 to AISF3 were generated using a 6 × 6
grid, while AISF4 to AISF6 were generated using a 10× 10 grid, and AISF7
to AISF9 were generated using a 21 × 21 grid. Some statistics concerning
these graph sets are presented in Table 2.

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

Table 2: Summary of AISF graph sets

graph # # edge # vertex graph # # edge # vertex
set vertices labels labels set vertices labels labels

AISF1 36 3 2 AISF6 100 2 3

AISF2 36 2 2 AISF7 441 3 2

AISF3 36 2 3 AISF8 441 2 2
AISF4 100 3 2 AISF9 441 2 3

AISF5 100 2 2

4.3 Experimental results and analysis

For experimental purposes REVULSM was implemented in the JAVA pro-
gramming language. All experiments were conducted using a 2.7 GHz Intel
Core i5 with 4 GB 1333 MHz DDR3 memory, running OS X 10.8.1 (12B19).
The results obtained are presented in Figures 6 to 17. Figures 6 to 8 give the
run time comparisons with respect to the nine graph sets. Figures 9 to 11
give the number of discovered VULS in each case. Figures 12 to 14 present
a comparison of the recorded discovery rates with respect to the nine graph
sets considered. Finally Figures 15 to 17 give a comparison of the coverage
rates.

From Figures 6 to 8 it can be seen, as might be expected, that as the
value of the Max parameter increases the run time also increases because
more subgraphs and hence more VULS are generated. The same observation
is true with respect to the size of the graph; the more vertices the greater the
required runtime.

From Figures 9 (6 × 6 grid), 10 (10 × 10 grid) and 11 (21 × 21 grid)
it can be observed that as Max increases the number of VULS will also
increase, again this is as might be expected. Comparing AISF1, 4 and 7 with
AISF2, 5 and 8 respectively, it can be seen that as the number of edge labels
increases while the number of vertex labels is kept constant the number of
VULS also increases (AISF1 and AISF2 have the same number of vertex
labels; as do AISF4 and AISF5, and AISF7 and AISF8). This is because
the likelihood of VULS existing increases as the input graph becomes more
diverse. However, comparing AISF2, 5 and 8 with AISF3, 6 and 9 respectively
it can be seen that as the number of vertex labels increases, while the number
of edge labels is kept constant, the number of VULS generated will decrease
(AISF2 and AISF3 have the same number of edge labels; as do AISF5 and
AISF6, and AISF8 and AISF9); because, given a high number of vertex labels,
the likelihood of VULS existing decreases.

Figure 12 (6 × 6 grid), 13 (10 × 10 grid) and 14 (21 × 21 grid) show
the recorded discovery rate values. Comparing AISF1, 4 and 7 with AISF2,
5 and 8 respectively; when the number of edge labels increases, while the
number of vertex labels is kept constant, the discovery rate increases. This is

Vertex Unique Labelled Subgraph Mining

Fig. 6: Run time comparison using 3 edge
and 2 vertex labels (AISF1, AISF4 and

AISF7)

Fig. 7: Run time comparison using 2 edge

and 2 vertex labels (AISF2, AISF5 and
AISF8)

Fig. 8: Run time comparison using 2 edge

and 3 vertex labels (AISF3, AISF6 and

AISF9)

Fig. 9: Comparison of number of VULS

generated (AISF1, AISF2 and AISF3)

Fig. 10: Comparison of number of VULS
generated (AISF4, AISF5 and AISF6)

Fig. 11: Comparison of number of VULS

generated (AISF7, AISF8 and AISF9)

Fig. 12: Comparison of discovery rate
(AISF1, AISF2 and AISF3)

Fig. 13: Comparison of discovery rate

(AISF4, AISF5 and AISF6)

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

Fig. 14: Comparison of discovery rate
(AISF7, AISF8 and AISF9)

Fig. 15: Comparison of coverage rate
(AISF1, AISF2 and AISF3)

Fig. 16: Comparison of coverage rate

(AISF4, AISF5 and AISF6)

Fig. 17: Comparison of coverage rate

(AISF7, AISF8 and AISF9)

because regardless of the number of edge labels a graph has (all other elements
being kept constant) the number of subgraphs contained in the graph will
not change, while (as indicated by the experiments reported in Figures 9 ,
10 and 11) the number of identified VULS increases as the number of edge
labels increases. Conversely, comparing AISF2, 5 and 8 with AISF3, 6 and
9 respectively, when the number of vertex labels increases while the number
of edge labels is kept constant, the discovery rate will decrease because (as
already noted) the number of VULS generated decreases as the number of
vertex labels increases. It can also be noted that as the Max value increases,
the discovery rate does not always increase, as shown in the case of AISF4,
5 and 6. This is because as the Max value increases, the number of VULS
goes up as does the number of subgraphs, but they may not both increase at
the same rate.

Figures 15, 16 and 17 show the coverage rate. From the figures it can be
observed that as Max increases the coverage rate also increases. This is to be
expected, however it is interesting to note that the coverage rate in some cases
reaches 100% (when Max = 6 with respect to AISF1, ASF2 and AISF4).
One hundred percent coverage is desirable in the context of the sheet metal
forming application so that unique patterns associated with particular error
distributions (vertex labels) can be identified for all geometries. Comparing
AISF1, 4 and 7 with AISF2, 5 and 8 respectively, the more edge labels a
graph has the more VULS will be generated (see above); as a result more
vertices will be covered by VULS and hence the coverage rate will go up. On
the other hand, comparing AISF2, 5 and 8 with AISF3, 6 and 9 respectively,

Vertex Unique Labelled Subgraph Mining

the more vertex labels a graph has the less VULS will be generated (see
above); as a result fewer vertices will be covered by VULS vertices and hence
the coverage rate will go down.

5 Conclusions and further Study

In this paper we have proposed the mining of VULS and presented the RE-
VULSM algorithm. The reported experimental results demonstrated that the
VULS idea is sound and that REVULSM can effectively identify VULS in
real data. Having established a “proof on concept” there are many interesting
research problems related to VULSM that can now be pursued. For instance,
currently, when the Max parameter is high REVULSM will run out of mem-
ory, although for the purpose of error prediction in sheet metal forming it
can be argued that there is no requirement for larger VULS, it may be of
interest to investigate methods whereby the efficiency of REVULSM can be
improved. Finally, at present, REVULSM finds all VULS up to a predefined
size, it is conjectured that efficiency gains can be made if only minimal VULS
are found.

6 Acknowledgements

The research leading to the results presented in this paper has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 266208.

References

1. Agrawal, R., Srikant, R.: fast algorithms for mining association rules. In: Proceedings

of the 20th International Conference on Very Large Data Bases(VLDB ’94), pp. 487–
499 (1994)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh

International Conference on Data Engineering(ICDE ’95), pp. 3–14 (1995)
3. Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., Arikawa, S.: Efficient substructure

discovery from large semi-structured data. In: In Proc.2002 SIAM Int.Conf. Data
Mining, pp. 158–174 (2002)

4. Cafuta, G., Mole, N., tok, B.: An enhanced displacement adjustment method: Spring-
back and thinning compensation. Materials and Design 40, 476–487 (2012)

5. El-Salhi, S., Coenen, F., Dixon, C., Khan, M.S.: Identification of correlations between
3d surfaces using data mining techniques: Predicting springback in sheet metal form-

ing. In: Research and Development in Intelligent Systems XXIX, pp. 391–404 (2012)

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

6. Firat, M., Kaftanoglu, B., Eser, O.: Sheet metal forming analyses with an emphasis

on the springback deformation. Journal of Materials Processing Technology 196(1-3),
135–148 (2008)

7. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and

future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)
8. Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: mining maximal frequent subgraphs

from graph databases. In: Proceedings of the 10th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pp. 581–586 (2004)
9. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent

substructures from graph data. In: In Principles of Data Mining and Knowledge
Discovery, pp. 13–23 (2000)

10. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., andJ. Allwood, J.D.: Asymmetric single

point incremental forming of sheet metal. CIRP Annals Manufacturing Technology
54(2), 88–114 (2005)

11. Khan, M.S., Coenen, F., Dixon, C., El-Salhi, S.: Finding correlations between 3-d

surfaces: A study in asymmetric incremental sheet forming. Machine Learning and
Data Mining in Pattern Recognition Lecture Notes in Computer Science 7376, 366–

379 (2012)

12. Liu, W., Liang, Z., Huang, T., Chen, Y., Lian, J.: Process optimal ccontrol of sheet
metal forming springback based on evolutionary strategy. In: In Intelligent Control

and Automation, 2008. WCICA 2008. 7th World Congress, pp. 7940–7945 (June 2008)

13. Nasrollahi, V., Arezoo, B.: Prediction of springback in sheet metal components with
holes on the bending area, using experiments, finite element and neural networks.

Materials and Design 36, 331–336 (2012)
14. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings

of the 2002 International Conference on Data Mining, pp. 721–724 (2002)

15. Yan, X., Han, J.: Close Graph: mining closed frequent graph patterns. In: Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 286–295 (2003)

16. Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: a constraint pushing framework for graph
pattern mining. In: Proceedings of 2007 Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining (PAKDD’07), pp. 388–400 (2007)

