Mining Frequent Movement Patterns
in Large Networks: A Parallel Approach
Using Shapes

Mohammed Al-Zeyadi, Frans Coenen and Alexei Lisitsa

Abstract This paper presents the Shape based Movement Pattern (ShaMP) algo-
rithm, an algorithm for extracting Movement Patterns (MPs) from network data that
can later be used (say) for prediction purposes. The principal advantage offered by the
ShaMP algorithm is that it lends itself to parallelisation so that very large networks
can be processed. The concept of MPs is fully defined together with the realisation
of the ShaMP algorithm. The algorithm is evaluated by comparing its operation with
a benchmark Apriori based approach, the Apriori based Movement Pattern (AMP)
algorithm, using large social networks generated from the Cattle tracking Systems
(CTS) in operation in Great Britain (GB) and artificial networks.

Keywords Knowledge Discovery and Data Mining - Distributed Al Algorithms -
Systems and Applications

1 Introduction

Networks of all kinds feature with respect to many application domains; social net-
works [1], computer networks [2], Peer-to-Peer Networks [3], road traffic networks
[4] and so on. A network G is typically defined in terms of a tuple of the form (V, E),
where V is a set of vertices and E is a set of edges [5]. The vertices can represent
individuals (as in the case of social networks), inanimate entities (as in the case
of computer networks) or locations (as in the case of distribution and road traffic
networks). The edges then indicate connections between vertices (virtual or actual).
These edges might be indicative of some relationship, such as a friend relationship,

M. Al-Zeyadi (X)) - F. Coenen - A. Lisitsa

Department of Computer Science, University of Liverpool, Ashton Building,
Ashton Street, Liverpool L69 3BX, UK

e-mail: m.g.a.al-zeyadi@liv.ac.uk

F. Coenen
e-mail: Coenen@liv.ac.uk

A. Lisitsa
e-mail: lisitsa@liv.ac.uk

© Springer International Publishing AG 2016 53
M. Bramer and M. Petridis (eds.), Research and Development
in Intelligent Systems XXXII1, DOI 10.1007/978-3-319-47175-4_4

54 M. Al-Zeyadi et al.

as in the case of social networks; or be indicative of a “hard” connection as in the
case of a wired computer network or a road traffic network. However in this paper
we conceive of edges as indicating traffic flow. For example: the number of mes-
sages sent from one individual to another in a social network, the volume of data
exchanges between two computers in a compute network, the quantity of goods sent
in a distribution network or the amount of traffic flow from one location to another
in a road traffic flow network. As such our edges are directed (not necessarily the
case in all net works). To distinguish such networks from other networks we will use
the term movement network; a network G(V, E) where the edges are directed and
indicate some kind of “traffic flow” (for example messages, data, goods or vehicles)
moving from one vertex to another.

An example movement network is given in Fig. | where V = {¢1, ¢, ..., ¢s} and
E ={e1, e, ..., e9}. Note that some of the vertices featured in the network double
up as both “to” and “from” vertices. Thus the set of from vertices and the set of to
vertices are not disjoint. Note also that some vertices in the figure are connected by
more than one edge. This is because we do not simply wish to consider traffic flow in
a binary context (whether it exists or does not exist) but in terms of the nature of the
traffic. Thus where vertices in the figure are connected by more than one edge this
indicates more than one kind of traffic flow. For example in a distribution movement
network two edges connecting one vertex to a another might indicate the dispatch
of two different commodities. As such edges have a set of attributes associated with
them Ag. Similarly the vertices will also have a set of attributes associated with them,
Avy. The nature of these attribute sets will depend on the nature of the application
domain of interest, however each attribute will have two or more values associated
with them. Where necessary we indicate a particular value j belonging to attribute i
using the notation v;,.

Given a movement network of the form shown in Fig. 1 the nature of the traffic
exchange between the vertices in the network can be described in terms of a Movement
Pattern (MP); a three part pattern describing some traffic exchange comprising:

E,= {al,bz} @
83 = {GZIbl}
QED E;= {al,bl} @
&= {a_pbz} €= {az;bz}

(&) (@53

&
{a, b}

€, ={a,b,}

£g=
{a,b,}

Fig. 1 Example movement network (V = {¢1, ¢2, ..., ¢s} and E = {e1, €2, ..., €9})

Mining Frequent Movement Patterns in Large Networks ... 55

(1) a from vertex (F), (ii) the nature of the traffic (E) and (iii) a to vertex (7). Thus
“sender”, “details of movement” and “receiver”’. A movement pattern can thus be
described as a tuple of the form (F, E, T), where F' and T subscribe to the attribute
set Ay, and E to the attribute set Ag. In the figure Ay = {x, y} and Ag = {a, b};
each attribute x, y, a and b has some value set associated with it, in the figure the
value sets are {x, x2}, {y1, y2}, {a1, a2} and {b1, by} respectively (value sets do not
all have to be of the same length). Given a movement network G we wish to find
the set of movement patterns M in G so that they can be used to predict movement
in a previously unseen unconnected graph G’(V’) so as to generate a predicted
connected graph G’(V’, E’). More specifically we wish to be able to extract the set
M from very large networks comprising more than one million vertices. To this end
the Shape Movement Pattern (ShaMP) algorithm is proposed and evaluated in this
paper. The algorithm leverages knowledge of the restrictions imposed by the nature of
MPs to obtain efficiency advantages not available to more traditional pattern mining
algorithms that might otherwise be adopted such as Frequent Itemset Mining (FIM)
algorithms. A further advantage of the ShaMP algorithm, as will be demonstrated, is
that it readily lends itself to parallelisation [6]. The algorithm is fully described and
its operation compared to a benchmark Apriori style approach using both artificial
movement networks and real life networks extracted from the Cattle Tracking System
(CTS) database in operation in Great Britain.

The rest of this paper is organised as follows. Section2 presents a review of
previous and related work on Movement Patterns in large networks and how parallel
processing can improve the efficiency of such algorithms. Section 3 provides a formal
definition of the movement pattern concept. Section4 then describes the proposed
ShaMP algorithm and the Apriori Movement Pattern (AMP) benchmark algorithm
used for comparison proposes in the following evaluation section, Sect.5. Section 6
summarises the work, itemises the main findings and indicates some future research
directions.

2 Literature Review

In the era of big data the prevalence of networks of all kinds has growing dramati-
cally. Coinciding with this growth is a corresponding desire to analyse (mine) such
networks, typically with a view to some social and/or economic gain. A common
application is the extraction of customer buying patterns [7, 8] to support business
decision making. Network mining is more focused but akin to graph mining [9, 10].
Network mining can take many forms; but the idea presented in this paper is the
extraction of Movement Patterns (MPs) from movement networks. The concept of
Movement Pattern Mining (MPM) as conceived of in this paper, to the best knowl-
edge of the authors, has not been previously addressed in the literature. However,
patten mining in general has been extensively studied. This section thus presents
some background to the work presented in the remainder of this paper. The section
commences with a brief review of the pattern mining context with respect to large

56 M. Al-Zeyadi et al.

graph networks, then continues with consideration of current work on frequent move-
ment patterns and the usage of parallel algorithms to find such patterns in large data
networks.

A central research theme within the domain of data mining has been the discovery
of patterns in data. The earliest examples are the Frequent Pattern Mining (FPM)
algorithms proposed in the early 1990s [11]. The main objective being to discover sets
of attribute-value pairings that occur frequently. The most well established approach
to FPM is the Apriori approach presented in [11]. A frequently quoted disadvantage
of FPM is the significant computation time required to generate large numbers of
patterns (many of which may not be relevant). The MPM concept presented in this
paper shares some similarities with the concept of frequent pattern mining and hence
a good benchmark algorithm would be an Apriori based algorithm such as the AMP
algorithm presented later in this paper. The distinction between movement patterns
and traditional frequent patterns is that movement patterns are more prescriptive,
as will become apparent from the following section; they have three parts “sender,
details of movement and receiver’’; none of these parts can be empty. Note also that
the movement patterns of interest with respect to this paper are network movement
patterns and not the patterns associated with the video surveillance of individuals,
animals or road traffic; a domain where the term “movement pattern” is also used. To
the best knowledge of the authors there has been very little (no?) work on movement
patterns as conceptualised in this paper.

The MPM concept also has some overlap with link prediction found in social
network analysis where we wish to predict whether two vertices, representing indi-
viduals in a social network, will be linked at some time in the future. MPM also has
some similarity the problem of inferring missing links in incomplete networks. The
distinction is that link prediction and missing link resolution is typically conducted
according to graph structure, dynamic in the case of link prediction [12] and static
in the case of missing link resolution [13].

Asnoted above, the main challenge of finding patterns in network data is the size of
the networks to be considered (in terms of vertices and edges). Parallel or distributed
computing is seen as a key technology for addressing this challenge. One of the
main advantages offered by the proposed ShaMP algorithm is that it readily lends
itself to parallelisation (unlike traditional FPM algorithms which require significant
interchange of information). The design of parallel algorithms involves a number of
challenges in addition to those associated with the design of serial algorithms [6]. In
the case of MPM the main challenge is the distribution of the data and tasks across
the available processes.

In the context of the proposed ShaMP algorithm a Distributed Memory Systems
(DMS) was used; a memory model in which each process has a dedicated memory
space. Using a distributed memory approach only the input data and task information
is shared. There are several programming models that may be used in the context
of DMS. However, by far the most widely used for large-scale parallel applica-
tions is the Message Passing Interface (MPI]) [14]; a library interface specification
that supports distributed-memory parallelisation, where data is divided among a set
of “processes” and each process runs in its own memory address space. Processes

Mining Frequent Movement Patterns in Large Networks ... 57

typically identify each other by “ranks” in the range {0, 1, ..., p — 1}, where p is
the number of processes [15]. MPI is a very powerful and versatile standard used for
parallel programming of all kinds. APIs that adopt the MPI standard, at their sim-
plest, typically provide send and receive functionality, however most such APIs also
provide a wide variety of additional functions. For example, there may be functions
for various “collective” communications, such as “broadcast” or “reduction” [15].
MPI based APIs exist in a range of programming languages such as C, C++, Fortran
and Java; well-tested and efficient implementations include: MPICH [16], MPICH-
G2 [17] and G-JavaMPI [18]. However, in the context of the research presented in
this paper MPJ Express [19] was adopted; this is an implementation of MPI using
the Java programming language. Interestingly, MPJ has two ways of configuring
the same code; Multicore configuration and Cluster configuration. In this paper we
have adopted both Multicore configuration (by using a single multicore machine)
and Cluster configuration using a Linux cluster.

3 Formalism

From the introduction to this paper we are interested in mining Movement Patterns
(MPs) from movement networks. A MP comprises a tuple of the form (F, E, T)
where F, E and T are sets of attribute values. The minimum number of attribute
values in each part must be at least one. The maximum number of values depends on
the size of the attribute sets to which F, E and T subscribe, an MP can only feature
a maximum of one value per subscribed attribute. More specifically the attribute
value set F represents a “From” vertex (sender), T a “To” vertex (receiver), and E
an “Edge” connecting the two vertices describing the nature of the traffic (“details
of movement”). The attribute set to which ' and T subscribe is given by Ay =
{@1, P2, ...}, whilst the attribute set for E is given by Ag = {1, €2, ... }. Note that
F and T subscribe to the same attribute set because they are both movement network
vertices, and every vertex (at least potentially) can be a “from” or a “to” vertex in
the context of MPM (as illustrated in Fig. 1).

The movement networks from which we wish to extract MPs (the training data)
can also be conceived of as comprising (F, E, T') tuples. In fact an entire network G
can be represented as a tabular data set D where each row comprises a (F', E, T') tuple
defined as described above. The movement network presented in Fig. 1 can thus be
presented in tabular form as shown in Table 1 (for ease of understanding the rows
are ordered according to the edge identifiers used in the figure). We refer to such
data as FET data (because of the nature of the tuples that the rows describe). Thus
MPM can be simplistically thought of as searching a training set D and extracting
the set M of all frequently occurring MPs, that can then be used to build a model of
D. This model can then be used to predict traffic in some previously unseen network
D' (G') comprised solely of vertices (no known edges, the edges are what we wish

58 M. Al-Zeyadi et al.

Table 1 Movement network from Fig. 1 presented in tabular form

({xt,y1) {a, by {x,y})
({xi,01},{ar, b2}, {x2, 31}
({X27y| }) {aval }ﬂ{xl 7}72}
{xt,y1},{ar, b1} {x, 2}
({x2,1} {ar, b1}, {x1, 02}
({rin}{az,ba), {x1, 32}
({rvn}{a, b} {xom}
({x1,y2} ,{az, b1}, {x2, 32}
({xi,2}, {ar, b2} {x1, 31}

sfastastasiasiastastas

Table2 The MPs (the set M) extracted from the movement network given in Fig. 1 using o = 30 %

(tatdar} {a}) #3
(I} dabi} {xa}) #3
({yl}ﬁ{alfbl}f{)?}) #3
(1} {ar} {xa}) #3
(). {ar}, {2} #3
(). Abr} {ad) 4
(. Abr} {xy2}) #3
(i} {bi}, {n}) #4

to predict). An MP is said to be frequent, as in the case of traditional FPM [20], if
its occurrence count in D is in excess of some threshold o expressed as a proportion
of the total number of FETs in D. With reference to the movement network given in
Fig. 1, and assuming o = 30 %, the set of MPS, M, will be as listed in Table?2 (the
numbers indicated by the # are the associated occurrence counts).

4 Movement Pattern Mining

In this section the proposed ShaMP algorithm is presented together with the Apriori
Movement Pattern (AMP) algorithm used for comparison purposes later in this paper
(Sect.5). The AMP algorithm is a variation of the traditional Apriori frequent itemset
mining algorithm [7] redesigned so as to address the frequent MP mining problem. We
refer to this benchmark algorithm as the Apriori Movement Pattern (AMP) algorithm.
The major limitation of the Apriori strategy used by the AMP algorithm is the large
number of candidate patterns that are generated during the process, which limits the
size of the networks that can be considered. Also, when using the AMP algorithm,
with respect to a given network G (dataset D), the run time is inversely proportional
with the support threshold o used. The ShaMP algorithm, however, uses knowledge
of the nature of the FET “shapes” to be considered (the fact that they have three parts
and that each part must feature at least one attribute-value) of which these are only
a limited number. Broadly, the ShaMP algorithm operates by generating a set of MP

Mining Frequent Movement Patterns in Large Networks ... 59

shapes to which records are fitted (there is no candidate generation). The algorithm
offers two advantages: (i) the nature of the value of o has very little (no?) effect
on the algorithm’s run time and (ii) individual shapes can be considered in isolation
hence the algorithm is well suited to parallelisation (not the case with respect to
the AMP algorithm which operates level by level in a top down manner and, when
parallelised, features significant message passing after each level). Consequently, as
will be demonstrated in Sect. 5, the ShaMP algorithm is able to process much larger
networks than in the case of the AMP algorithm. The ShaMP algorithm is considered
in Sect. 4.1 below, while the AMP algorithm is considered in Sect. 4.2.

4.1 The Shape Based Movement Pattern (ShaMP) Algorithm

From the foregoing the ShaMP algorithm, as the name suggests, is founded on
the concept of “shapes”. A shape in this context is a MP template with a partic-
ular configuration of attributes taken from A; and Ag (note, shapes do not spec-
ify particular attribute values combinations). The total number of shapes that can
exist in a FET dataset D can be calculated using Eq. 1, where: (i) |A.| is the size
of the attribute set A; and (ii) |Ag| is the size of the attribute set Ag. Recall that
attributes for F and T are drawn from the same domain. Thus if |A;| = 2 and
|Ag| = 2, as in the case of the movement network given in Fig. 1, there will be
(22 —1) x (22 —1) x (22 — 1) =2 x 2 x 2 = 16 different shapes. If we increase
|Ag|toSthere willbe (22 — 1) x (2° — 1) x (22 — 1) = 3 x 31 x 3 = 279 different
shapes. In other words the efficiency of the ShaMP algorithm is directly related to
the number of different shapes that need to be considered.

@MW — 1) x @4 — 1) x @M —1) (1

The pseudo code for the ShaMP Algorithm is given in Algorithm 1. The input is a
network G, represented in terms of a FET dataset D, and a desired support threshold
o. The output is set of frequently occurring MPs M together with their support value
represented in tuples of the form (MP;, count;). The algorithm commences (line 5)
by generating the available set of shapes, ShapeSet, and setting M to the empty set
(line 6). We then loop through the ShapeSet (lines 7-15), and for each shape loop
through D comparing each record 7; € D with the current shape shape;. A record r;
matches a shape; if the attributes featured in the shape also feature in 7;. Where a
match is found the relevant attribute values in r; form a MP. If the identified MP is
already contained in M we simply update the associated support value, otherwise
we add the MP to M with a support value of 1. Once all shapes have been processed

60 M. Al-Zeyadi et al.

we loop through M (lines 15-16) and remove all MPs whose support count is less
than o.

Input:
1 D = Collection of FETs, {rl, r2, ...} describing a network G
2 o = Support threshold
Output:

M = Set of frequently occurring MPs {(MP1, county), langleMP;, counts), ...}
Start:
ShapeSet = the set of possible shapes {shape|, shapea, ...}
M=0
forall shape; € ShapeSet do

forall r; € D do
if r; matches shape; then

10 MP; = MP extracted from r;
11 if MP; in M then increment support
12 else M =M |J (MPy, 1)
13 end
14 end
15 forall MP; € M do
16 if count for MP; < o then remove MP; from M
17 end

A2 SR - NI I NN

Algorithm 1: Shape-Based Movement Pattern Algorithm

4.2 The Apriori Based Movement Pattern (AMP) Algorithm

The AMP algorithm is presented in this section. The significance is that it is used
for evaluation purposes later in this paper. As noted above, the AMP algorithm is
founded on the the Apriori frequent itemset mining algorithm presented in [11] (see
also [10]). The pseudo code for the AMP algorithm is presented in Algorithm 2. At
face value it operates in a very similar manner to Apriori in that it adopts a candidate
generation, occurrence count and prune cycle. However, the distinction is that we are
dealing with three part MPs ((F, E, T)) and that none of these parts should be empty.
Thus, where the variable k in the traditional Apriori algorithm refers to itemset size
(starting with k = 1), the variable k in the AMP algorithm refers to levels. We start
with the k = level 1 MPs which feature one attribute value in each part ((F, E, T')). At
level two, k = level 2, we add an additional attribute-value to one of the parts; and so
on until no more candidates can be generated. Candidate generation and occurrence
counting is therefore not straight-forward, it is not simply a matter of uniformly
“growing” K-itemsets to give K + l-itemsets and passing through D looking for
records where each K-itemset is a subset. Candidate set growth is thus a complex
procedure (not included in Algorithm 2) and requires knowledge of the values for

Mining Frequent Movement Patterns in Large Networks ... 61

Ay and Ag. It should also be noted that when conducting occurrence counting only
certain columns in D can correspond to each element in a candidate FET.

Input:
1 D = Binary valued input data set ; 0 = Support threshold
Output:
2 M = Empty set of frequently occurring MPs {(MP1, county), langleMP;, counts), ...}
3 Start:
4 M=0k=level 1
5 Cy = Level k candidate movement patterns
6 while C; # ¢ do
7 S ={0,0, ...} Set of length |C| to hold occurrence counts (one-to-one Cy
correspondence)
8 G = () Empty set to hold frequently occurring level K movement patterns
9 forall , € D do

10 forall ¢; € C; do

I3 if c; Crithen s =s;4+1(s5; €9)
12 end

13 end

14 forall ¢; € C; do

15 if 5; > o then

16 G=GUg

7 M =MUc;

18 end

19 k=k+1

20 Cy = Level k candidate movement patterns drawn from G
21 end

Algorithm 2: Apriori based Movement Pattern (AMP) Algorithm

Returning to Algorithm 2, as in the case of the ShaMP algorithm, the input is a
FET dataset D, and a desired support threshold o. The output is a set of frequently
occurring MPs M together with their support values. The algorithm commences
(line 3) by setting M to the empty set. The algorithm then proceeds level by level
starting with the level one (k = 1) candidate sets (line 5), and continues until no more
candidates can be generated. On each iteration a set S and a set G is defined to hold
occurrence counts and the eventual size K MPs (if any). We then loop through the
records in D (line 9), and for each record r; € D loop through Cy (line 10). For each
each ¢; € Cy if ¢; is a subset of r; we increment the relevant support count in S (line
12). Once all the records in D have been process we loop through C; again, compare
each associated s; value with o and if it is larger add it to the sets G and M. We then
increment k (line 20), generate a new candidate set C; from G and repeat. The main
weaknesses of the algorithm, as noted above, are the large number of candidates that
may be generated (the maximum number equates to 2!Va [+Ve. +1Va.l _ 1) Note that,
in common with more general Apriori algorithms, the number of relevant candidates
to be considered becomes larger when low values for o are used (as opposed to the
ShaMP algorithm where the o value dose not have a significant effect).

62 M. Al-Zeyadi et al.

5 Experiments and Evaluation

This section reports on the experiments conducted to analyse the operation of the
proposed ShaMP algorithm and compare this operation with the benchmark AMP
algorithm. The evaluation was conducted using two categories of network data: (i)
networks extracted from the CTS database introduced in Sect. 1 and (ii) artificial net-
works where the parameters can be easily controlled. The objectives of the evaluation
were as follows:

1. To determine whether the nature of the o threshold used would in anyway
adversely affect the ShaMP algorithm (unlike as anticipated in the case of the
AMP algorithm).

2. To determine the effect on the ShaMP algorithm of the size of the network under
consideration, in terms of the number of FETSs, and in comparison with the AMP
algorithm.

3. To determine the effect on the ShaMP algorithm on the number shapes to be
considered, and if there is a point where the number of shapes is so large that it
is more efficient to use an algorithm such as the AMP algorithm.

4. The effect of increasing the number of processes available with respect to the
ShaMP algorithm (the first three sets of experiments were conducted using a
single processor).

The remainder of this section is divided into five sections as fallows. Section 5.1
gives an overview of the CTS and artificial networks used with respect to the reported
evaluation. The remaining four section, Sects.5.2-5.5, report respectively on the
experimental results obtained with respect to the above four objectives.

5.1 Data Sets

The CTS database was introduced in the introduction to this paper. The database was
used to generate a collection of time stamped networks where for each network the
vertices represent locations (cattle holding areas) and the edges represent occurrences
of cattle movement between vertexes. The database was preprocessed so that each
record represented a group of animals moved of the same type, bread and gender,
from a given “from location” to a given “to location” on the same day. The set A,
comprised: (i) holding area type and (ii) county name. While the set Ag comprised:
(i) number of cattle moved, (ii) breed, (iii) gender, (iv) whether the animals moved
are beef animals or not, and (v) whether the animals moved are dairy animals or not.
Thus Ay = {holdingAreaType, county}, and Ag = {numCattle, bread, gender, beef,
dairy}. Note that the attributes beef and dairy are boolean attributes, the attribute
numCattle is a numeric attribute, while the remaining attributes are categorical (dis-
crete) attributes. Both the ShaMP and AMP algorithms were designed to operate
with binary valued data (as in the case of traditional frequent item set mining). The

Mining Frequent Movement Patterns in Large Networks ... 63

values for the numCattle attribute were thus ranged into five sub ranges: n < 10,
11 <n <20,21 <n<30,31 <n <40 and n > 40. Thus each record represents
a FET. The end result of the normalisation/discretisation exercise was an attribute
value set comprising 391 individual attribute values.

We then used this FET dataset to define movement networks where vertices repre-
sent locations and edges traffic (animals moved), to which the proposed algorithms
were applied to extract MPs. In total four networks were generated covering the
years 2003, 2004, 2005 and 2006. The number of vertices in each network was about
43, 000, while the number of edges was about 270,000. Using Eq. | the number of
shapes that will need to be considered by the ShaMP algorithm will be:

|ShapeSet] =22 —1x 25 —1x2>—1=3x15x3=279

The maximum number of candidate MPs that the AMP algorithm may need to con-
sider on iteration one will be 102 x 188 x 102 =1,955,952, and this is likely to
increase exponentially on the following iterations (thus a significant difference).
The purpose of also using artificially generated networks was that the parameters
could be controlled, namely the number of FETs and the number of attributes in the
sets A; and Ag. Further detail concerning individual, or groups, of artificial movement
networks will be given where relevant in the following sections where the evaluation
results obtained with respect to individual experiments are reported and discussed.

5.2 Support Threshold

In terms of Frequent Itemset Mining (FIM) the lower the o value the more frequent
itemsets that will be found, low o values are thus seen as desirable because by finding
many frequent itemsets there is less chance of missing anything significant. The same
is true for MPM. In terms of FIM it is well established that efficiency decreases as
the number of potential frequent itemsets increases (as the value of o decreases). It
was anticipated that this would also be true with respect to the AMP algorithm. How
this would effect the ShaMP algorithm was unclear, although it was conjectured
that changing o values would have little effect. A sequence of experiments was
thus conducted using a range of o values from 5.0 to 0.5 decreasing in steps of
0.5, and using the four CTS movement networks described above. The results are
presented in Fig. 2 where, for each graph, the x-axis gives the o values and the y-axis
runtime in seconds. Similar results are recorded in all cases. As expected, in the case
of the AMP algorithm, run time increases exponentially as o decreases. Also, as
conjectured, from the figures it can be seen that sigma has little effect on the ShaMP
algorithm. It is interesting to note that it is not till o drops below 1.0 that usage
of the the ShaMP algorithm becomes more advantageous than usage of the AMP
algorithm. This last is significant because we wish to identify as many relevant MPs
as possible and to do this we would need to use low ¢ values (o < 1.0).

64 M. Al-Zeyadi et al.

Run time(s) =[NP ShamPp Run time(s)
600 600

=om=AMP Shamp.

H 45 4 35 2 15 1 05 H 45 4 35 3 25 2 15 1 05

3 25
Support threshold Support threshold

(2) Year = 2003 (|D| = 2712603) (b) Year = 2004 (|D| = 2757081)
Run time(s) —om—AMP Shamip R::Oﬂmeis) ——jMp Shamp
(c) Year = 2005 (|D| = 2449251) (d) Year = 2006 (|D| = 2982695)

Fig. 2 Runtime (secs.) comparison between ShaMP and AMP using CTS network datasets from
2003-2006 with o values

5.3 Number of FETs

The correlation between the algorithms and number of FETs was tested using five
artificial datasets of increasing numbers of FETs 100,000, 200,000, 300,000, 500,000
and 1,000,000. The algorithms were applied to each of these data sets twice, once
using 0 = 1.0 and once using o = 0.5. Note that for the artificial data the size of the
attribute value sets used were |V, | = 102 and |V, | = 188. The results are presented
in Fig. 3. From the figures it can clearly be seen that, as was to be expected, the run
time increases as the number of records considered increases. However, the ShaMP
algorithm is clearly more efficient than the AMP algorithm. It can also be seen that
the run time with respect to the AMP algorithm increases dramatically as the number
of FETs increases, while the increase with respect to the ShaMP algorithm is less

Run time (s) a=om—AMP ShaMP Run time (s)

——pAMP Shamp
600 2000
500
1500
400
300 1000
200
500
100
0 - 0 J
0.1 03 0.5 1 2 0.1 03 0.5 1 2
Dataset (size in million) Dataset (size in million)
(a) Supportthreshold = 1.0 (b) Supportthreshold = 0.5

Fig. 3 Runtime (secs.) comparison between ShaMP and AMP using artificial networks

Mining Frequent Movement Patterns in Large Networks ... 65

dramatic. If we increase the number of FETs beyond 1,000,000 the AMP algorithm
is not able to cope. However the ShaMP algorithm, can process 10,000,000 FETs
using a single processor with o = 0.5, in 480 of runtime.

5.4 Number of Shapes

The experiments discussed in the foregoing two sections indicated the advantages
offered by the ShaMP algorithm. However as |A; | and/or |Ag| increases the number
of shapes will also increase. There will be a point where the number of shapes to be
considered is such that it is no longer effective to use the ShaMP algorithm and it
would be more beneficial to revert to the AMP algorithm. To determine where this
point might be a sequence of artificial data sets were generated using |Ay | = 2 but
increasing |Ag| from 500 to 5000 in steps of 500. Each attribute had two possible
attribute-values so as to allow the AMP algorithm to perform to its best advantage.
(For the experiments o = 2 was used). The results are shown in Fig. 4. As expected,
the run time for both algorithms increased as the number of Shapes (attribute values)
increased. It is interesting to note that there is “cross-over” when the number of
shapes reaches about 2600; in practice it is difficult to image movement networks
where the traffic has to be described in terms of 2600 attributes or more (Fig.5).

Fig. 4 Runtime plotted

. . . Run time (s) e=g==Run time using AMP Algo Run time using ShaMP
against increasing numbers 1000 |
of shapes (o = 2) 800 |

600 |

)
400
200
0 Lr

500 1000 1500 2500 5000
Number of Shapes

Fig. 5 Runtime plotted Run time (5)
against increasing numbers #3500
of machines in a cluster 20007

e=o==ShaMP run time using a clutser

1500
1000 |
500

0
One Two Three Feur Five Six Seven

Number of Machines

66 M. Al-Zeyadi et al.

5.5 Distributed ShaMP

In the context of the experiments conducted to determine the effect of distributing
the ShaMP algorithm the desired parallelisation was achieved using MPJ Express
[19]. A cluster of Linux machines was used, of increasing size from 1 to 7, each
with 8 cores (thus a maximum of 7 x 8 = 56 cores). Shapes were distributed evenly
across machines. For the experiments an artificial data set comprising 4600 different
Shapes were used and o = 2. Note that the AMP algorithm was unable to process
FET datasets of this size. The results are shown in Fig. 4. As predicted, as the number
of machines increases the run time decreased significantly, there is no significant
“distribution overhead” as a result of increasing the parallelisation. A good result.

6 Conclusion and Future Work

In this paper, the authors have proposed the ShaMP algorithm for identifying Move-
ment Pattens (MPs) in network data. The MPs were defined in terms of three parts:
From (F), Edge (E) and To (T). The acronym FET was coined to describe such
patterns. The MP concept has similarities with traditional frequent itemsets except
that the attributes that can appear in a particular part is limited, consequently the
search space can be considerably reduced. A particular challenge was the size of the
networks that we wish to analyse. Thus, although in the first instance a traditional
Apriori approach seems appropriate, the size of the networks to be considered means
that this approach is unlikely to succeed for any realistic application (as illustrated
by the presented evaluation). Instead a parallel approach was proposed facilitated
by the nature of the ShaMP algorithm which readily lends itself to parallelisation.
For comparison purposes an Apriori algorithm was also defined, the AMP algo-
rithm. The evaluation was conducted using movement networks extracted from the
GB Cattle Tracking System (CTS) and artificial networks. The main findings may
be summarised as fallows. The ShaMP Algorithm can successfully identify MPs
in large networks with reasonable computational efficiency; where more traditional
approaches, such as AMP, fail because of the resource required. Parallelisation of
the ShaMP algorithm, using MPJ, has a significant impact over the computational
efficiency of the algorithm.

References

1. Matsumura, N., Goldberg, D.E., Llora, X.: Mining directed social network from message board.
In: Special Interest Tracks and Posters of the 14th International Conference on World Wide
Web, pp. 1092-1093. ACM (2005)

2. Chandrasekaran, B.: Survey of Network Traffic Models, vol. 567. Washington University, St.
Louis CSE (2009)

Mining Frequent Movement Patterns in Large Networks ... 67

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data mining in peer-
to-peer networks. IEEE Internet Comput. 10(4), 18-26 (2006)

Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path computation on
aroad network: a traffic mining approach. In: Proceedings of the 33rd International Conference
on Very Large Data Bases, VLDB Endowment, pp. 794-805 (2007)

Galloway, J., Simoff, S.J.: Network data mining: methods and techniques for discovering deep
linkage between attributes. In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual
Modelling, vol. 53, pp. 21-32. Australian Computer Society, Inc. (2006)

Grama, A.: Introduction to Parallel Computing. Pearson Education (2003)

Raorane, A., Kulkarni, R.: Data mining techniques: a source for consumer behavior analysis
(2011). arXiv:1109.1202

Gudmundsson, J., Laube, P., Wolle, T.: Movement patterns in spatio-temporal data. In: Ency-
clopedia of GIS, pp. 726-732. Springer (2008)

Campbell, W.M., Dagli, C.K., Weinstein, C.J.: Social network analysis with content and graphs.
Lincoln Lab. J. 20(1) (2013)

Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier (2011)
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings
of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487499
(1994)

Bliss, C.A., Frank, M.R., Danforth, C.M., Dodds, P.S.: An evolutionary algorithm approach to
link prediction in dynamic social networks. J. Comput. Sci. 5(5), 750-764 (2014)

Kim, M., Leskovec, J.: The network completion problem: Inferring missing nodes and edges
in networks. In: SDM, vol. 11, pp. 47-58. SIAM (2011)

Forum, M.P.I.: Mpi: a message passing interface standard: version 2.2; message passing inter-
face forum, September 4, 2009

Brawer, S.: Introduction to Parallel Programming. Academic Press (2014)

Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable implementation of
the mpi message passing interface standard. Paralle] Comput. 22(6), 789-828 (1996)
Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: a grid-enabled implementation of the message
passing interface. J. Parallel Distrib. Comput. 63(5), 551-563 (2003)

Chen, L., Wang, C., Lau, F.C.: A grid middleware for distributed java computing with mpi
binding and process migration supports. J. Comput. Sci. Technol. 18(4), 505-514 (2003)
Baker, M., Carpenter, B., Shaft, A.: Mpj express: towards thread safe java hpc. In: 2006 IEEE
International Conference on Cluster Computing, pp. 1-10. IEEE (2006)

Aggarwal, C.C.: Applications of frequent pattern mining. In: Frequent Pattern Mining, pp.
443-467. Springer (2014)

http://arxiv.org/abs/1109.1202

	Mining Frequent Movement Patterns in Large Networks: A Parallel Approach Using Shapes
	1 Introduction
	2 Literature Review
	3 Formalism
	4 Movement Pattern Mining
	4.1 The Shape Based Movement Pattern (ShaMP) Algorithm
	4.2 The Apriori Based Movement Pattern (AMP) Algorithm

	5 Experiments and Evaluation
	5.1 Data Sets
	5.2 Support Threshold
	5.3 Number of FETs
	5.4 Number of Shapes
	5.5 Distributed ShaMP

	6 Conclusion and Future Work
	References

