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Abstract

In this paper we describe the concept of Meta ARM in the context of its
objectives and challenges and go on to describe and analyse a number of
potential solutions. Meta ARM is defined as the process of combining
the results of a number of individually obtained Associate Rule Mining
(ARM) operations to produce a composite result. The typical scenario
where this is desirable is in multi-agent data mining where individual
agents wish to preserve the security and privacy of their raw data but are
prepared to share data mining results. Four Meta ARM algorithms are
described: a Brute Force approach, an Apriori approach and two hybrid
techniques. A “bench mark” system is also described to allow for ap-
propriate comparison. A complete analysis of the algorithms is included
that considers the effect of: the number of data sources, the number of
records in the data sets and the number of attributes represented.

Keywords: Meta Mining, Multi Agent Data Mining, Association
Rule Mining.

1 Introduction

The term meta mining describes the process of combining the individually
obtained results of N applications of a data mining activity. This is typically
undertaken in the context of Multi-Agent Data Mining (MADM) where the
individual owners of agents wish to preserve the privacy and security of their
raw data but are prepared to share the results of data mining activities. The
mining activities in question could be, for example, clustering, classification or
Association Rule Mining (ARM); the study described here concentrates on the
latter — frequent set meta mining (which in this paper we will refer to as Meta
ARM). The Meta ARM problem is defined as follows: a given ARM algorithm
is applied to N raw data sets producing N collections of frequent item sets.
Note that each raw data set conforms to some globally agreed attribute schema,
although each local schema will typically comprise some subset of this global
schema. The objective is then to merge the different sets of results into a
single meta set of frequent itemsets with the aim of generating a set of ARs or
alternative a set of Classification Association Rules (CARS).

The most significant issue when combining groups of previously identified
frequent sets is that wherever an itemset is frequent in a data source A but not
in a data source B a check for any contribution from data source B is required



(so as to obtain a global support count). The challenge is thus to combine
the results from N different data sources in the most computationally efficient
manner. This in turn is influenced predominantly by the magnitude (in terms
of data size) of returns to the source data that are required. There are a num-
ber of alternative mechanisms whereby ARM results can be combined to satisfy
the requirements of Meta ARM. In this paper a study is presented comparing
five different approaches (including a bench mark approach). The study is con-
ducted using variations of the TFP set enumeration tree based ARM algorithm
([6, 4]), however the results are equally applicable to other algorithms (such
as FP growth [7]) that use set enumeration tree style structures, the support-
confidence framework and an Apriori methodology of processing/building the
trees.

The paper is organised as follows. In Section 2 some related work is pre-
sented and discussed. A brief note on the data structures used by the Meta
ARM algorithms is then presented in Section 3. The five different approaches
that are to be compared are described in Section 4. This is followed, in Section
5, by an analysis of a sequence of experimental results used to evaluate the
approaches introduced in Section 4. Finally some conclusions are presented in
Section 6.

2 Previous Work

Multi-Agent Data Mining (MADM) is an emerging field concerned with the
application and usage of Multi-Agent Systems (MAS) to perform data mining
activities. MADM research encompasses many issues. In this paper the authors
address the issue of collating data mining results produced by individual agents,
we refer to this as meta-mining.

The Meta ARM problem (as outlined in the above introduction) has sim-
ilarities, and in some cases overlap, with incremental ARM (I-ARM) and dis-
tributed ARM. The distinction between I-ARM, as first proposed by Agrawal
and Psaila [1], and Meta ARM is that in the case of I-ARM we typically have
only two sets of results: (i) a large set of frequent itemsets D and (ii) a much
smaller set of itemsets d that we wish to process in order to update D. In
the case of Meta ARM there can be any number of sets of results which can
be of any (or the same) size. Furthermore, in this case each contributing set
has already been processed to obtain results in the form of locally frequent
sets. I-ARM algorithms typically operate using a relative support threshold
[8, 11, 15] as opposed to an absolute threshold; the use of relative thresholds
has been adopted in the work described here. I-ARM algorithms are therefore
supported by the observation that for an itemset to be globally frequent it must
be locally frequent in at least one set of results regardless of the relative number
of records at individual sources (note that this only works with relative support
thresholds). When undertaking I-ARM four scenarios can be identified accord-
ing to whether a given itemset i is: (i) frequent in d, and/or (ii) frequent in D;
these are itemised in Table 1.



Frequent in d Not frequent in d

Increment total i may be globally
Frequent in count for i supported,
D (retained and recalculate increment total
itemsets) support count for i

and recalculate support
May be globally supported,

NotFrequent need to obtain total support Do nothing
in D count and recalculate support

(Emerging itemset)
Table 1. I-ARM itemset comparison options (relative support)

From the literature, three fundamental approaches to I-ARM are described.
These may be categorised as follows:

1. Maintain itemsets on the border with maximal frequent item sets (the
negative border idea) and hope that this includes all those itemsets that
may become frequent. See for example ULI [14].

2. Make use of a second (lower) support threshold above which items are
retained (similar idea to negative border). Examples include AFPIM [8])
and EFPIM [11].

3. Acknowledge that at some time or other we will have to recompute counts
for some itemsets and consequently maintain a data structure that (a)
stores all support counts, (b) requires less space than the original struc-
ture and (c) facilitates fast look-up, to enable updating. See for example
[9].

Using a reduced support threshold results in a significant additional storage
overhead. For example if we assume that given a data set with 100 (n =
100) attributes where all the 1 and 2 item sets are frequent but none of the
other itemsets are frequent, the negative border will comprise 161700 item

sets (n(n−1)(n−2)
3! ) compared to 4970 supported item sets (n + n(n−1)

2! ). The
Meta ARM ideas presented here therefore subscribe to this last of the above
categories. The data at each source is held using a P-tree (Partial Support Tree)
data structure, the nature of which is described in further detail in Section 3
below.

The distinction between distributed mining and MADM is one of control.
Distributed ARM assumes some central control that allows for the global parti-
tioning of either the raw data (data distribution) or the ARM task (task distri-

bution), amongst a fixed number of processors. MADM, and by extension the
Meta ARM mining described here, does not require this centralised control,
instead the different sets of results are produced in an autonomous manner
without any centralised control. MADM also offers the significant advantage
that the privacy and security of raw data belonging to individual agents is pre-
served, an advantage that is desirable for both commercial and legal reasons.



In both I-ARM and distributed ARM, as well as Meta ARM, the raw data
typically conforms to some agreed global schema.

Other research on meta mining that includes work on meta classification.
Meta classification, also sometimes referred to as meta learning, is a technique
for generating a global classifier from N distributed data sources by first com-
puting N base classifiers which are then collated to build a single meta classifier
[13] in much the same way that we are collating ARM results.

The term merge mining is used in [3] to describe a generalised form of
incremental association rule mining which has some conceptual similarities to
the ideas behind Meta ARM described here. However Aref et al. define merge
mining in the context of time series analysis where additional data is to be
merged with existing data as it becomes available.

3 Note on P and T Trees

The Meta ARM algorithms described here make use of two data structures,
namely P-trees and T-trees. The nature of these structures is described in
detail in [4, 6]; however, for completeness a brief overview is presented here.

The P-tree (Partial support tree) is a set enumeration tree style structure
with two important differences: (i) more than one item may be stored at any
individual node, and (ii) the tree includes partial support counts. The struc-
ture is sued to store a compressed version of the raw data set with partial
support counts obtained during the reading of the input data. The best way
of describing the P-tree is through an example such as that given in Figure 1.
In the figure the data set given on the left is stored in the P-tree on the right.
The advantages offered by the P-tree are of particular benefit if the raw data
set contains many common leading sub-strings (prefixes). The number of such
sub-strings can be increased if the data is ordered according to the frequency
of the 1-itemsets contained in the raw data. The likelihood of common leading
sub-strings also increases with the number of records in the raw data.

Fig. 1. P-tree example

The T-tree (Total support tree) is a “reverse” set enumeration tree structure
that inter-leaves node records with arrays. It is used to store frequent item



sets, in a compressed form, identified by processing the P-tree. An example,
generated from the P-tree given Figure 1, is presented in Figure 2. ¿From
the figure it can be seen that the top level comprises an array of references
to node structures that hold the support count and reference to the next level
(providing such a level exists). Indexes equate to itemset numbers although for
ease of understanding in the figure letters have been used instead of numbers.
The structure can be though of as a “reverse” set enumeration tree because
child nodes only contain itemsets that are lexicographically before the parent
itemsets. This offers the advantage that less array storage is required (especially
if the data is ordered according to the frequency of individual items.

Fig. 2. T-tree example (support = 35%)

The T-tree is generated using an algorithm called Total From Partial (TFP)
which is also described in [4, 6]. The TFP algorithm is essentially an Apriori
style algorithm that proceeds in a level by level manner. At each level the P-tree
is processed to generate appropriate support counts. Note that on completion of
the TFP algorithm the T-tree contains details of all the supported itemsets, in a
manner that provides for fast look up during AR generation, but no information
about unsupported sets (other than that they are not supported). Referring to
Figure 2 unsupported sets are indicated by a null reference.

4 Proposed Meta ARM Algorithms

In this section a number of Meta ARM algorithms are described, an analysis
of which is presented in section 5. It is assumed that each data source will
maintain the data set in either its raw form or a compressed form. For the
experiments reported here the data has been stored in a compressed form using
a P-tree (see above).



The first algorithm developed was a bench mark algorithm, against which
the identified Meta ARM algorithms were to be compared. This is described
in 4.1. Four Meta ARM algorithms were then constructed. For the Meta ARM
algorithm it was assumed that each data source would produce a set of frequent
sets using the TFP algorithm with the results stored in a T-tree. These T-trees
would then be merged in some manner.

Each of the Meta ARM algorithms described below makes use of return to

data (RTD) lists, one per data set, to contain lists of itemsets whose support
was not included in the current T-tree and for which the count is to be obtained
by a return to the raw data. RTD lists comprise zero, one or more tuples of
the form < I, sup >, where I is an item set for which a count is required and
sup is the desired count. RTD lists are constructed as a Meta ARM algorithm
progresses. During RTD list construction the sup value will be 0, it is not until
the RTD list is processed that actual values are assigned to sup. The processing
of RTD lists may occur during, and/or at the end of, the Meta ARM process
depending on the nature of the algorithm.

4.1 Bench Mark Algorithm

For Meta ARM to make sense the process of merging the distinct sets of dis-
covered frequent itemsets must be faster than starting from the beginning (oth-
erwise there is no benefit from undertaking the merging). The first algorithm
developed was therefore a bench mark algorithm. This was essentially an Apri-
ori style algorithm (see Table 2) that used a T-tree as a storage structure to
support the generation process.

4.2 Brute Force Meta ARM Algorithm

The philosophy behind the Brute Force Meta ARM algorithm was that we sim-
ply fuze the collection of T-trees together adding items to the appropriate RTD
lists as required. The algorithm comprises three phases: (i) merge, (ii) inclu-
sion of additional counts and (iii) final prune. The merge phase commences by
selecting one of the T-trees as the initial merged T-tree (from a computational
perspective it is desirable that this is the largest T-tree). Each additional T-
tree is then combined with the merged T-tree “sofar” in turn. The combining
is undertaken by comparing each element in the top level of the merged T-tree
sofar with the corresponding element in the “current” T-tree and then updat-
ing or extending the merged T-tree sofar and/or adding to the appropriate
RTD lists as indicated in Table 3 (remember that we are working with relative
support thresholds). Note that the algorithm only proceeds to the next branch
in the merged T-tree sofar if an element represents a supported node in both
the merged and current T-trees. At the end of the merge phase the RTD lists
are processed and any additional counts included (the inclusion of additional

counts phase). The final merged T-tree is then pruned in phase three to remove
any unsupported frequent sets according to the user supplied support threshold
(expressed as a percentage of the total number of records under consideration).



K = 1
Generate candidate K-itemsets
Start Loop

if (K-itemsets == null break)
forall N data sets get counts for K-itemsets
Prune K-itemsets according to support threshold
K ⇐ K+1
Generate K-itemsets

End Loop

Table 2. Bench Mark Algorithm

Frequent in Not frequent
T-tree N in T-tree N

Update support Add labels for
count for i in all supported

Frequent in merged T-tree nodes in
merged T-tree sofar and proceed merge T-tree
sofar to child branch branch, starting

in merged with current
T-tree sofar node, to

RTD list N

Process current branch in
T-tree N , starting with

Not Frequent current node, Do nothing
in merged adding nodes with
T-tree sofar their support to the merged

T-tree sofar and recording
labels for each to RTD lists

1 to N − 1

Table 3. Brute Force Meta ARM itemset comparison options

4.3 Apriori Meta ARM Algorithm

In the Brute Force approach the RTD lists are not processed until the end
of the merge phase. This means that many itemsets may be included in the
merged T-tree sofar and/or the RTD lists that are in fact not supported. The
objective of the Aprori Meta ARM algorithm is to identify such unsupported
itemsets much earlier on in the process. The algorithm proceeds in a similar
manner to the standard Apriori algorithm (Table 2) as shown in Table 4. Note
that items are added to the RTD list for data source n if a candidate itemset
is not included in T-tree n.



K = 1
Generate candidate K-itemsets
Start Loop

if (K-itemsets == null break)
Add supports for level K from N T-trees or add to RTD list
Prune K-itemsets according to support threshold
K ⇐ K+1
Generate K-itemsets

End Loop

Table 4. Apriori Meta ARM Algorithm

4.4 Hybrid Meta ARM Algorithm 1 and 2

The Apriori Meta ARM algorithm requires less itemsets to be included in the
RTD list than is the case with the Brute Force Meta ARM algorithm (as demon-
strated in Section 5). However, the Apriori approach requires the RTD lists
to be processed at the end of each level generation, while in the case of the
Brute Force approach this is only done once. A hybrid approach, that com-
bines the advantages offered by both the Brute Force and Apriori meta ARM
algorithms therefore suggests itself. Experiments were conducted using two
different version of the hybrid approach.

The Hybrid 1 algorithm commences by generating the top level of the
merged T-tree in the Apriori manner described above (including processing
of the RTD list); and then adds the appropriate branches, according to which
top level nodes are supported, using a Brute Force approach.

The Hybrid 2 algorithm commences by generating the top two levels of the
merged T-tree, instead of only the first level, as in the Hybrid 1 approach. Addi-
tional support counts are obtained by processing the RTD lists. The remaining
branches are added to the supported level 2-nodes in the merged T-tree sofar
(again) using the Brute Force mechanism. The philosophy behind the hybrid 2
algorithm was that we might expect all the one itemsets to be supported and
included in the component T-trees therefore we might as well commence by
building the top two layers of the merged T-tree.

5 Experimentation and Analysis

To evaluate the five algorithms outlined above a number of experiments were
conducted. These are described and analysed in this section. The experiments
were designed to analyse the effect of the following:

1. The number of data sources.

2. The size of the datasets in terms of number of records .

3. The size of the datasets in terms of number of attributes.



All experiments were run using a Intel Core 2 Duo E6400 CPU (2.13GHz)
with 3GB of main memory (DDR2 800MHz), Fedora Core 6, Kernel version
2.6.18 running under Linux. For each of the experiments we measured: (i)
processing time (seconds / mseconds), (ii) the size of the RTD lists (Kbytes)
and (iii) the number of RTD lists generated. The authors did not use the IBM
QUEST generator [2] because many different data sets (with the same input
parameters) were required and the quest generator always generated the same
data given the same input parameters. Instead the authors used the LUCS
KDD data generator 1.

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Fig. 3. Effect of number of data sources

Figure 3 shows the effect of adding additional data sources. For this ex-
periment ten different artificial data sets were generated using T = 4 (average
number of items per transactions), N = 20 (Number of attributes), D = 100k

(Number of transactions). Note that the selection of a relatively low value for
N ensured that there were some common frequent itemsets shared across the
T-trees. Experiments using N = 100 and above tended to produced very flat T-
trees with many frequent 1-itemsets, only a few isolated frequent 2-itemsets and
no frequent sets with cardinality greater than 2. For the experiments a support

1http : //www.csc.liv.ac.uk/ frans/KDD/Software//LUCS − KDD − DataGen/



threshold of 1% was selected. Graph 3(a) demonstrates that all of the proposed
Meta ARM algorithms worked better then the bench mark (start all over again)
approach. The graph also shows that the Apriori Meta ARM algorithm, which
invokes the “return to data procedure” many more times than the other algo-
rithms, at first takes longer; however as the number of data sources increases
the approach starts to produce some advantages as T-tree branches that do not
include frequent sets are identified and eliminated early in the process. The
amount of data passed to and from sources, shown in graph 3(b), correlates
directly with the execution times in graph 3(a). Graph 3(c) shows the number
of RTD lists generated in each case. The Brute Force algorithm produces one
(very large) RTD list per data source. The Bench Mark algorithm produces the
most RTD lists as it is constantly returning to the data sets, while the Apriori
approach produces the second most (although the content is significantly less).

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Fig. 4. Effect of increasing number of records

Figure 4 demonstrates the effect of increasing the number of records. The
input data for this experiment was generated by producing a sequence of ten
pairs of data sets (with T = 4, N = 20) representing two sources. From
graph 4(a) it can be seen that the all algorithms work outperformed the bench



mark algorithm because the size of the return to data lists are limited as no
unnecessary candidate sets are generated. This is illustrated in graph 4(b).
Graph 4(b) also shows that the increase in processing time in all case is due to
the increase in the number of records only, the size of the RTD lists remains
constant through as does the number of RTD lists generated (graph 4(c)). The
few “bumps” at the results are simply from a vagary of the random nature of
the test data generation.

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Fig. 5. Effect of increasing number of items (attributes)

Figure 5 shows the effect of increasing the global pool of potential attributes
(remember that each data set will include some subset of this global set of
attributes). For this experiment another sequence of pairs of data sets (rep-
resenting two sources) was generated with T = 4, D = 100K and N ranging
from 100 to 1000. As in the case of experiment 2 the Apriori, Brute Force
and Hybrid 1 algorithms work best (for similar reasons) as can be seen from
graph 5(a,b). However in this case (compared to the previous experiment), the
Hybrid 2 algorithm did not work as good. The reasoning behind the Hybrid
2 algorithm slower perfromance is that all the 1-itemsets tended not to be all
supported and becuase there were not eliminated and included in 2-itemsets
generation (graph 5(a)). For completeness graph 5(c) indicates the number of
RTD lists sent with respect to the different algorithms.



All the Meta ARM algorithms outperformed the bench mark algorithm. The
Hybrid 2 algorithm also performed in an unsatisfactory manner largely because
of the size of the RTD lists sent. Of the remainder the Apriori approach coped
best with a large number of data sources, while the Brute Force and Hybrid
1 approaches coped best with increases data sizes (in terms of column/rows)
again largely because of the relatively smaller RTD list sizes.

It should also be noted that the algorithms are all complete and correct,
i.e. the end result produced by all the algorithms is identical to that obtained
from mining the union of all the raw data sets using some established ARM
algorithm. In practice of course the MADM scenario, which assumes that data
cannot be combined in this centralised manner, would not permit this.

6 Conclusions

In this paper we have described a novel extension of ARM where we build a
meta set of frequent itemsets from a collection of component sets which have
been generated in an autonomous manner without centralised control. We
have termed this type of conglomerate Meta ARM so as to distinguish it from
a number of other related data mining research areas such as incremental and
distributed ARM. We have described and compared a number of meta ARM
algorithms: (i) Bench Mark, (ii) Apriori, (iii) Brute Force, (iv) Hybrid 1 and
(v) Hybrid 2. The results of this analysis indicates that Apriori Meta ARM
approach coped best with a large number of data sources, while the Brute
Force and Hybrid 1 approaches coped best with increases data sizes (in terms
of column/rows). The work represents an important “milestone” towards a
multi-agent approach to ARM that the authors are currently investigating.
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