
Minimal Vertex Unique Labelled Subgraph
Mining

Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

Department of Computer Science, The University of Liverpool
Ashton Building, Ashton Street, Liverpool, L69 3BX, UK
{yuwen,coenen,michele,hsselsal}@liverpool.ac.uk

Abstract. This paper introduces the concept of Vertex Unique Labelled
Subgraph Mining (VULSM), a specialised form of subgraph mining. A
VULS is a subgraph defined by a set of edge labels that has a unique ver-
tex labelling associated with it. A minimal VULS is then a VULS which
is not a supergraph of any other VULS. The application considered in
this paper, for evaluation purposes, is error prediction with respect to
sheet metal forming. The minimum BFS Right-most Extension Unique
Subgraph Mining (Min-BFS-REUSM) algorithm is introduced for iden-
tifying minimal VULS using a Breadth First Search(BFS) strategy.

Keywords: Data mining, Graph mining

1 Introduction

This paper introduces the concept of Vertex Unique Labelled Subgraph Mining
(VULSM), a form of graph mining. Given a subgraph g in some input graph
G, if we consider only the structure and edge labelling there may be a number
of different compatible vertex labelings with respect to G. A Vertex Unique
Labelled Subgraph (VULS) is then a subgraph with a specific structure and edge
labelling that has a unique vertex labelling associated with it. A minimal VULS
is a VULS that does not contain any subgraphs that are also VULSs. This paper
is directed at finding all minimal VULS in a single input graph. To this end the
Minimal Breadth First Search Right-most Extension Unique Subgraph Mining
(Min-BFS-REUSM) Algorithm is proposed. The distinction between VULSM
and more traditional forms of subgraph mining [4, 10, 5, 12] is that we are not
interested in frequently occurring subgraphs but VULS. Broadly the proposed
algorithm operates using a level-by-level approach. On each iteration a set of
k-edge subgraphs that exist in G are identified (where k is also the iteration
number). Any VULS identified in this set of subgraphs are stored and “removed”
from G (thus G gets smaller and smaller). The process continues until G is
empty or some user defined maximum size of VULS has been reached. subgraph
generation is conducted using Right Most Extension [1] as popularised in the
context of the gSpan transaction graph mining algorithm [11]. VULSM may be
applied to various types of graph; in this paper we focus on undirected graphs.

2 Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

The application domain used to illustrate the work is error prediction in sheet
metal forming. More specifically error prediction in Asymmetric Incremental
Sheet Forming (AISF) [2, 3, 6–8]. An issue with sheet metal forming processes,
such as AISF, is that distortions are introduced as a result of the application of
the process. These distortions are non-uniform across the “shape” but tend to
be related to local geometries. The idea is that the geometry of the piece to be
manufactured can be represented as a grid, each grid centre point being defined
using a X, Y , Z coordinate scheme. The entire grid can then be conceptualised
as a graph such that each vertex represents a grid point and each vertex (except
at the edges and corners) is connected to its four neighbours by a sequence of
edges, which in turn can be labelled with “slope” values. Given an appropriate
training set, each vertex can then be labelled with an error (distortion) value.

An example grid and corresponding graph are given in Figure 1. The grid
comprises six grid squares. Each grid centre is defined by a X, Y , Z coordinate
tuple (the number in each grid is Z value). Each grid centre point is associated
with a vertex within the graph. The difference in Z value between each two
neighbours in the grid is the “slope”. The edges are labelled with these “slope”
values. Each vertex will be labelled with an error values (e1 to e3 in the figure)
describing the distortion experienced at that vertex as obtained from a “training
set” (derived from “before and after” grid data). Identified VULS will describe
local geometries each with a particular associated error pattern. This knowl-
edge can then be used to predict errors in “unseen” grids so that some form of
mitigating error correction can be applied.

4 2 1

4 4 3

e1 e2 e1

e3 e3 e2

2 1

0 1

0 2 2

Fig. 1: Grid representation (left) and corresponding graph/lattice (right)

2 Formalism

This section presents a formal definition of the concept of a minimal VULS. A
labelled graph G comprises a set of n vertices V , such that V = {v1, v2, . . . , vn};
and a set of m edges E, such that E = {e1, e2, . . . , em}. The vertices are labelled
according to a set of p vertex labels LV = {lv1 , lv2 , . . . , lvp}. The edges are
labelled according to a set of q edge labels LE = {le1 , le2 , . . . , leq}.

Alternatively we can think of a graph G as consisting of a set of k one-edge
subgraphs: G = {P1, P2, . . . , Pk}, where Pi is pair of vertices linked by an edge,
thus Pi = 〈va, vb〉 where va, vb ∈ V). The size of a graph G (|G|) can thus be
defined in terms of its one edge subgraphs, we refer to 1-edge, 2-edge and k-edge
subgraphs. For undirected graphs, the edge 〈va, vb〉 is equivalent to 〈vb, va〉. We
use the notation Pi.va and Pi.vb to indicate the vertices va and vb associated

Minimal Vertex Unique Labelled Subgraph Mining 3

with a particular vertex pair Pi. We indicate the sets of labels which might be
associated with Pi.va and Pi.vb using the notation Pi.va.label and Pi.vb.label
(Pi.va.label, Pi.vb.label ∈ LV). We indicate the edge label associated with Pi

using the notaion Pi.label (Pi.label ∈ LE). We also assume that G is connected
and labelled.

We use the same notation with respect to any subgraph Gsub of G (Gsub ⊆
G). Given some edge only labelled subgraph (Gsubedgelab) of some fully labelled
graph G (Gsubedgelab ⊆ G) comprised of k edges, there may be many different
vertex labelings that can be associated with this subgraph. We thus define a
function, getV ertexLabels, that returns the potential list of labels S that can
be assigned to the vertices in Gsubedgelab according to G:

getV ertexLabels(Gsubedgelab)→ S

where S = [[Lva1
, Lvb1], [Lva2

, Lvb2
], . . . , [Lvak

, Lvbk]] (where Lvi is the set of la-
bels associate with vertex vi and Lvi ⊆ Lv). Note that each element in S com-
prises two sub-sets of labels associated respectively with the start and end vertex
for each edge in Gsubedgelab, and that there is a one to one correspondence be-
tween each element (pair of label sets) in S with each element in Gsubedgelab,
hence they are both of the same size k (recall that k is the number of edges).

According to the above, the formal definition of the concept of a VULS is as
follows. Given: (i) a k-edge edge labelled subgraph Gsubedgelab = {P1, P2, . . . , Pk}
(Gsubedgelab ⊆ G), (ii) a list of labels that may be associated with the vertices in
Gsubedgelab, S = [[Lva1

, Lvb1], [Lva2
, Lvb2

], . . . , [Lvak
, Lvbk]]. If ∀[Li, Lj] ∈ S, |Li| =

1, |Lj | = 1 then Gsubedgelab is a k-edge VULS with respect to G. A VULS φi is
minimal if there is no subgraph of φi that is also a VULS.

3 The Min-BFS-REUSM Algorithm

Min-BFS-REUSM algorithum is presented in this section. Recall that REUSM
stands for Right-most Extension Unique Subgraph Mining. Right-most extension
is the adopted iterative subgraph generation strategy. We use the prefix “Min”
to indicate that this variation is for identifying all minimal VULS and “BFS” to
indicate that it features a Breadth-First Search strategy.

The pseudo code for the Min-BFS-REUSM algorithum is presented in Al-
gorithms 1 and 2. Algorithm 1 presents the high level control structure while
Algorithm 2 the detail of determining whether a specific subgraph is a VULS or
not. Considering Algorithm 1 first, the algorithm comprises one main procedure
(main) and a sub-procedure (genMinV ULS). The algorithm commences with
an input graph Ginput and a parameter max that defines the maximum size for
a desired minimal VULS. If we do not limit the size of the searched-for VULSs
the entire input graph may ultimately be identified as a minimal VULS which
in the context of the target application will not be very useful. The output is a
set of minimal VULS R. Note that all graphs are encoded using Minimal Depth
First Search (DFS) lexicographical ordering (as used in gSpan [11]). The global
variable G (line 7 in Algorithm 1) is the part of Ginput not covered by any of the

4 Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

Algorithm 1 Min-BFS-REUSM

1: Input:
2: Ginput = Input graph
3: max = Max subgraph size
4: Output:
5: R = Set of minimal VULS
6: Global variables:
7: G = Ginput (Part of input graph not covered by minimal VULS)
8: coverage = 0
9: Tk = the set of k-edge subgraphs which are not VULS

10: procedure main(Ginput, max)
11: k = 1
12: Gk = the set of k-edge subgraphs in G
13: R = ∅
14: while (k < max) do
15: R = R ∪ genMinV ULS(k,Gk)
16: Gk+1 = Set of (k + 1)-edge subgraphs in G (found by applying right most

extension to each subgraph in Tk)
17: k = k + 1
18: end while
19: end procedure

20: procedure genMinV ULS(k,Gk)
21: Tk = ∅
22: for all g ∈ Gk do
23: if isaV ULS(g,Gk) == true (Algorithm 2) then
24: R = R ∪ g
25: coverage = compute coverage using Equ. 1
26: if coverage == 100% then
27: exit
28: end if
29: G = G− g
30: else
31: Tk = Tk ∪ g
32: end if
33: end for
34: if Tk == ∅ then
35: exit
36: end if
37: return R
38: end procedure

Minimal Vertex Unique Labelled Subgraph Mining 5

identified minimal VULS so far, meanwhile, the global variable coverage (line 8)
is employed to determine whether Ginput is covered completely by the minimal
VULS identified so far (if so the algorithm stops). The coverage is the percentage
of the number of vertices covered by the detected minimal VULS so far com-
pared to the total number of vertices in the input graph Ginput (Equation 1)
(with respect to the sheet steel forming example application used as a focus for
the work described in this paper, see Section 4, high coverage is desirable). The
global variable Tk (line 9) is the set of k-edge non-VULS which will be extended
further during the procedure to form (k + 1)-edge candidate VULS.

coverage =
num. vertices covered by V ULS

num. vertices in Ginput
× 100 (1)

At the start of the procedure, G will be equal to Ginput and coverage will be 0.
We proceed in a breadth first manner starting with one-edge subgraphs (k = 1),
then two edge subgraphs (k = 2), and so on. We continue in this manner until
either: (i) k = max or (ii) the coverage is equal to 100%. On each iteration the
genMinV ULS procedure is called (line 15).

The genMinV ULS procedure takes as input the current graph size k (where
k is the number of edges) and the set of k-edge subgraphs contained in the set G
as pruned so far. The procedure returns the set of k-edge VULS. On each call the
procedure genMinV ULS loops through the input set of k-edge subgraphs and
(line 23) for each subgraph g determines whether it is a VULS or not by calling
Algorithm 2 which is described in detail below. If g is a VULS it is added to the
set R (line 24). We then (line 25) calculate the coverage so far, if this has reached
100% we have found the complete set of minimal VULS and we exit (line 27).
Note that if coverage is equal to 100% the input set G, as pruned so far, will be
empty. Otherwise, if the coverage is not 100%, we continue processing and (line
29) remove g from the global set G. If g is not a VULS we add it to Tk (line 31),
Tk is the set of k-edge subgraphs which we will eventually be extended to form
Gk+1, the set of (k + 1)-edge subgraphs, ready for the next level of processing.
Eventually all g in Gk will have been processed. If, at this stage Tk is empty
there will be no more subgraphs that can be generated and the process will exit
(line 35). Otherwise control will return to the main procedure and the set of
(k + 1)-edge subgraphs will be generated from Tk (the set of k-edge subgraphs
that have not been found to be VULS) using a right most extension technique
coupled with isomorphism checking to establish which (k + 1)-edge subgraphs
are contained in G as processed so far (line 16). This part of the algorithm is
not presented here because it is similar to that found in traditional subgraph
mining algorithms, for example gSpan [11]. The generated minimal VULS set R
is then returned (line 37) back to the main process ready for the next iteration
(unless the maximum value for k has been reached).

Algorithm 2 presents the pseudo code for identifying whether a given sub-
graph g is a VULS or not with respect to the current set of k-edge subgraphs
Gk from which g has been removed. The algorithm returns true if g is a VULS
and false otherwise. The process commences (line 8) by generating the poten-

6 Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

tial list of vertex labels S that can be matched to g according to the content of
Gk (see previous section for detail). The list S is then processed and tested. If
there exists a vertex pair whose possible labelling is not unique (has more than
one possible labelling that can be associated with it) g is not a VULS and the
procedure returns false, otherwise g is a VULS and the procedure returns true.

Algorithm 2 Identify VULS

1: Input:
2: g = a single k-edge subgraph (potential VULS)
3: Gk = a set of k-edge subgraphs to be compared with g
4: Output:
5: true if g is a VULS, false otherwise

6: procedure isaV ULS(g,Gk)
7: isV ULS = true
8: S = the list of potential vertex labels that may be assigned to g
9: for all [Li, Lj] ∈ S do

10: if either |Li| 6= 1 or |Lj | 6= 1 then
11: isV ULS = false
12: break
13: end if
14: end for
15: return isV ULS
16: end procedure

Thus, as the process proceeds, the input graph G will be continuously pruned
with respect to identified VULS. As a result G can become disconnected, any
disconnected sub graph of size less than the current value of k cannot therefore
contain any k-edge VULS. Although not shown in Algorithm 1 any disconnected
subgraphs of size less than k can be discounted therefore speeding up the overall
process.

4 Experiments and Performance Study

This section describes the evaluation of the proposed Min-BFS-REUSM algo-
rithm. For experimental purposes the algorithm was implemented using the
JAVA programming language; experiments were using a 2.7 GHz Intel Core i5
with 4 GB 1333 MHz DDR3 memory, running OS X 10.8.1 (12B19). The reported
experiments were all conducted using real data taken from an AISF sheet metal
forming application described in the introduction to this paper, more specifi-
cally the fabrication of flat topped pyramid shapes made out of sheet steel. This
shape was chosen as it is frequently used as a benchmark shape for conducting
experiments in the context of AISF [9].

Minimal Vertex Unique Labelled Subgraph Mining 7

4.1 Experimental performance measurement

Three performance measures were used to analyse the effectiveness of the pro-
posed Min-BFS-REUSM algorithm : (i) run time (seconds), (ii) total number
of VULS identified, (iii) coverage (%). With respect to the sheet steel forming
example application high coverage values were desirable.

4.2 Data sets

The data sets used for the evaluation consisted of before and after “coordinate
clouds”; the first generated by a CAD system and the second obtained using
optical measuring techniques after application of an AISF process.As noted in
the introduction, each vertex was labelled with an error value while the edges
were labelled according to the absolute difference in z of the two end vertices
(the “slope”). Furthermore, the vertex and edge labels were discretised so that
they were represented by nominal values (otherwise every edge pair was likely
to be unique). In total ten data sets (graphs) were generated, numbered AISF1
to AISF10, using three different grid sizes (6 × 6, 10 × 10 and 21 × 21 which
correspond to 36, 100, 441 as number of vertices translated to resulting graph
respectively), and different numbers of edge and vertex labels (from 2 to 4 and
2 to 3 respectively). Some statistics concerning the data sets are presented in
Table 1. Thus the graph edge labels describe the geometry of the shape to be
manufactured while each vertex label describes the error occurring at that loca-
tion between the desired shape and the actual shape produced. Any discovered
VULS will then describe a particular geometry with a particular error pattern
associated with it.

graph # # edge # vertex graph # # edge # vertex
set vertices labels labels set vertices labels labels

AISF1 36 3 2 AISF6 100 2 3
AISF2 36 2 2 AISF7 441 3 2
AISF3 36 2 3 AISF8 441 2 2
AISF4 100 3 2 AISF9 441 2 3
AISF5 100 2 2 AISF10 441 4 2

Table 1: Summary of AISF graph sets

4.3 Run time analysis

The results obtained for the run-time experiments are presented in Table 2 with
respect to a range of max values. From the table the following can be noted.
Firstly, as might be expected, the run time increases as the value of max in-
creases, although the run time does not increase dramatically. Similarly, again
as might be expected, it takes longer to process the larger graph sets than the
smaller graph sets. As can be confirmed by inspection of Table 4, with respect to
AISF1, AISF2, AISF3 and AISF5, Min-BFS-REUSM stops at k = 4, 6, 5 and 6
respectively. This is because at these values of k the coverage reaches 100% and
the process is complete. Thus, in these cases the timings are almost the same for

8 Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

values of max greater than the k value when maximum coverage was reached.
The reason for OME (Out of Memory Error) in the case of AISF8 and AISF9 is
discussed in sub-section 4.5 below.

graph max Value graph max Value
set 3 4 5 6 7 8 set 3 4 5 6 7 8

AISF1 0.07 0.12 0.13 0.13 0.13 0.13 AISF6 0.17 0.29 0.51 0.68 0.77 0.97
AISF2 0.08 0.10 0.16 0.17 0.16 0.21 AISF7 0.33 0.42 0.61 0.65 0.73 0.87
AISF3 0.09 0.26 0.34 0.37 0.39 0.41 AISF8 0.31 0.41 0.70 0.81 1.69 OME
AISF4 0.16 0.19 0.27 0.29 0.32 0.47 AISF9 0.33 0.56 0.92 1.34 2.16 OME
AISF5 0.14 0.23 0.23 0.28 0.35 0.35 AISF10 0.32 0.45 0.60 0.74 0.88 1.43

Table 2: Run time (seconds) comparison for a range of max values

4.4 Total number of discovered minimal VULS

Table 3 presents the total number of discovered minimal VULS using Min-BFS-
RESUM. From Table 3 it can be observed, as might be anticipated, that as the
max value increases the total number of discovered minimal VULS increases. As
already noted above, for AISF1, AISF2, AISF3 and AISF5, the coverage reaches
100% when k = 4, 6, 5 and 6 respectively at which point the algorithm stops.
This is why in these cases the total number of identified VULS remains static
at 24, 37, 69 and 79 for max values in excess of k.

graph max Value graph max Value
set 3 4 5 6 7 8 set 3 4 5 6 7 8

AISF1 9 24 24 24 24 24 AISF6 6 22 94 334 356 395
AISF2 7 13 29 37 37 37 AISF7 11 27 100 226 318 369
AISF3 1 11 69 69 69 69 AISF8 4 22 103 267 717 OME
AISF4 5 16 48 75 93 104 AISF9 4 26 125 272 401 OME
AISF5 13 32 51 79 79 79 AISF10 26 70 96 136 193 279

Table 3: Total number of minimal VULS discovered for a range of max values

4.5 Coverage

A comparison of coverage is presented in Table 4. As was to be expected, as max
increases the coverage rate increases. It should be noted that in some cases the
coverage will not reach 100% because no more minimal VULS can be discovered.
It is interesting to note, with respect to Table 4 that for AISF1 to AISF7 100%
coverage is reached (more or less). It is anticipated that if some efficiency gains
can be realised 100% coverage would also be achieved for AISF8 to AISF10. This
is an excellent result with respect to AISF sheet metal forming application used
as a focus with respect to the evaluation presented in this section.

In the context of AISF8 and AISF9 the OME occurs because: (i) these graphs
are much larger than the graphs for AISF1 to AISF6, and (ii) fewer VULS
were discovered during early stages of the Min-BFS-REUSM process. AISF7,
AISF8, AISF9 and AISF10 were generated from the same 21× 21 grid data set

Minimal Vertex Unique Labelled Subgraph Mining 9

graph max Value graph max Value
set 3 4 5 6 7 8 set 3 4 5 6 7 8

AISF1 52.8 100.0 100.0 100.0 100.0 100.0 AISF6 19.0 40.0 67.0 85.0 99.0 99.0
AISF2 86.1 91.7 97.2 100.0 100.0 100.0 AISF7 64.2 92.1 93.0 99.6 99.8 99.8
AISF3 13.9 47.2 100.0 100.0 100.0 100.0 AISF8 24.9 70.5 71.7 71.7 71.7 OME
AISF4 59.0 87.0 98.0 99.0 99.0 99.0 AISF9 7.0 27.7 58.7 69.8 76.0 OME
AISF5 80.0 81.0 81.0 100.0 100.0 100.0 AISF10 76.4 86.9 87.3 87.3 87.3 88.2

Table 4: Coverage (%) for a range of max values

as described in subsection 4.2 above, however discretised in different manners
using different numbers of edge and vertex labels (as shown in table 1). As k
increases the rate at which the copy of the input graph G is pruned is slower for
AISF8 and AISF9 than for AISF7 and AISF10 (as can be observed from Table
4). For example for max = 3 many fewer k = 1, 2 and 3-edge minimal VULS
are discovered with respect to AISF8 and AISF9 than for AISF7 and AISF10.
Thus for these two data sets the size of G is not significantly reduced during
the early stages of Min-BFS-REUSM and hence the memory error occurs. This
observation can be validated with reference to Table 5 which shows the number
of vertices and edges contained in the AISF7, AISF8, AISF9 and AISF10 data
sets before, during and after the application of the process of Min-BFS-REUSM
when max = 8. From the table it can clearly be seen that many more edges
and vertices are removed from G with respect to AISF7 and AISF10 than with
respect to AISF8 and AISF9.

Prior to On Removed Prior to On Removed
graph start completion graph start completion

set # # # # # # set # # # # # #
verts. edges verts. edges verts. edges verts. edges verts. edges verts. edges

AISF7 441 840 291 214 150 626 AISF9 441 840 355 392 86 448
AISF8 441 840 372 460 69 380 AISF10 441 840 335 341 106 499

Table 5: Summary of AISF7 to AISF10 graph sets before, during and after
application of the Min-BFS-REUSM process when max = 8

5 Conclusions and further Study

In this paper we have introduced the concept of VULSM which, as illustrated,
has application with respect to error prediction in sheet metal forming. We have
also introduced the Min-BFS-RESUM algorithm an algorithm for identifying
all minimal VULS in a given input graph. The significance of finding minimal
VULS is that they can be used to build larger VULS, it is thus computationally
efficient to find only minimal VULS than finding all VULS. The reported ex-
perimental results also indicate that our algorithm can successfully identify all
minimal VULS in reasonable time and with (in some cases) excellent coverage
(an important requirement in the context of the AISF sheet metal forming ap-
plication used as a focus for the work). Having established a “proof of concept”

10 Wen Yu, Frans Coenen, Michele Zito, and Subhieh El Salhi

there are many interesting research problems related to VULSM that can now
be pursued. For instance Min-BFS-REUSM can be modified to identify VULS
in directed graphs or trees. The concept of Frequent VULSM (FVULSM) may
be realised by combining the techniques of FSM (Frequent Subgraph Mining)
and VULSM.

6 Acknowledgements

The research leading to the results presented in this paper has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 266208.

References

1. Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., Arikawa, S.: Efficient substructure
discovery from large semi-structured data. In: In Proc.2002 SIAM Int.Conf. Data
Mining (2002)

2. Cafuta, G., Mole, N., tok, B.: An enhanced displacement adjustment method:
Springback and thinning compensation. Materials and Design 40, 476–487 (2012)

3. Firat, M., Kaftanoglu, B., Eser, O.: Sheet metal forming analyses with an emphasis
on the springback deformation. Journal of Materials Processing Technology 196(1-
3), 135–148 (2008)

4. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and
future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

5. Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: mining maximal frequent subgraphs
from graph databases. In: Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 581–586 (2004)

6. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., andJ. Allwood, J.D.: Asymmet-
ric single point incremental forming of sheet metal. CIRP Annals Manufacturing
Technology 54(2), 88–114 (2005)

7. Liu, W., Liang, Z., Huang, T., Chen, Y., Lian, J.: Process optimal ccontrol of sheet
metal forming springback based on evolutionary strategy. In: In Intelligent Control
and Automation, 2008. WCICA 2008. 7th World Congress. pp. 7940–7945 (June
2008)

8. Nasrollahi, V., Arezoo, B.: Prediction of springback in sheet metal components with
holes on the bending area, using experiments, finite element and neural networks.
Materials and Design 36, 331–336 (2012)

9. Salhi, S., Coenen, F., Dixon, C., Khan, M.: Identification of correlations between
3d surfaces using data mining techniques: Predicting springback in sheet metal
forming. In: Proceedings Proc. AI 2012. Springer, Cambridge. pp. 391–404. (2012)

10. Yan, X., Han, J.: Close Graph: mining closed frequent graph patterns. In: Proceed-
ings of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. pp. 286–295 (2003)

11. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings
of the 2002 International Conference on Data Mining. p. 721 (2002)

12. Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: a constraint pushing framework for
graph pattern mining. In: Proceedings of 2007 Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (PAKDD’07). pp. 388–400 (2007)

