Document-base Extraction for Single-label Text Classification

Yanbo J. Wang*, Robert Sanderson, Frans Coenen, and Paul Leng

Department of Computer Science, The University of Liverpool Ashton Building, Ashton Street, Liverpool, L69 3BX, UK {jwang, azaroth, frans, phl} @ csc.liv.ac.uk

Abstract. Many text mining applications, especially when investigating Text Classification (TC), require experiments to be performed using common text-collections, such that results can be compared with alternative approaches. With regard to single-label TC, most text-collections (textual data-sources) in their original form have at least one of the following limitations: the overall volume of textual data is too large for ease of experimentation; there are many predefined classes; most of the classes consist of only a very few documents; some documents are labeled with a single class whereas others have multiple classes; and there are documents found with little or no actual text-content. In this paper, we propose a standard approach to automatically extract "qualified" document-bases from a given textual data-source that can be used more effectively and reliably in single-label TC experiments. The experimental results demonstrate that document-bases extracted based on our approach can be used effectively in single-label TC experiments.

Keywords: Textual Data Preparation, Document-base Extraction, Knowledge Discovery in Databases, (Single-label) Text Classification, Textual Data Sources, Text Mining.

1 Introduction

The increasing number of electronic documents that are available to be explored online has led to text mining becoming a promising field of current research in Knowledge Discovery in Databases (KDD). It "aims at disclosing the concealed information by means of methods which on the one hand are able to cope with the large number of words and structures in natural language and on the other hand allow to handle vagueness, uncertainty and fuzziness" [9]. One important aspect of text mining is Text Classification (TC) — "the task of assigning one or more predefined categories to natural language text documents, based on their contents" [6]. Early studies of TC can be dated back to the early 1960s (see for instance [13]). During the last decade, TC has been well investigated as an intersection of research into KDD (e.g. [1]) and machine learning (e.g. [14]).

In a general context, the TC problem can be separated into two significant divisions: (1) assigning only one predefined category to each "unseen" natural

Corresponding author, who has recently started his postdoctoral position in the School of Computer Science & National Centre for Text Mining at the University of Manchester, UK. E-mail: wangya@cs.man.ac.uk

language text document as in [3] and often defined as the non-overlapping or **single-label TC** task; and (2) assigning more than one predefined category to an "unseen" document as in [5] and often defined as the overlapping or **multi-label TC** task. "A *special case of single-label TC is binary TC*" [14], which in particular assigns either a predefined category or its complement to an "unseen" document. Many studies have addressed this approach in the past, i.e. [10], [14], [15], etc. In contrast, single-label TC tasks other than the binary approach are recognized as *multi-class* approaches, and simultaneously deal with all given categories and assign the most appropriate categories, a sufficient set of binary TC tasks will implement a multi-class TC task with a possibly better accuracy of classification, but a drawback in terms of processing efficiency.

One important facet of developing TC approaches is being able to show a set of experimental results using common textual datasets. There are many such datasets, e.g. Reuters-215781, Usenet Articles2, MedLine-OHSUMED3, etc. With regard to single-label TC, most datasets, in their original form, have at least one of the following limitations: (i) the overall volume of textual data is too large for ease of experimentation; (ii) there are many predefined classes involved; (iii) most of the classes consist of only a very few documents; (iv) some documents are labeled with a single class whereas others have multiple classes; and (v) there are documents found without any actual textual content, i.e. a document containing less than δ recognized words (a recognized word is further defined in section 2.1), where δ is usually a small constant. Hence it is difficult to run TC experiments using a textual dataset in its original form, especially when dealing with multi-label datasets while trying to perform experiments in a single-label TC environment. When comparing the performance among alternative TC approaches, it is often necessary to extract sub datasets (which we call document-bases) from the original data source. In this paper, we investigate the textual data preparation problem, and propose a standard document-base extraction approach for single-label TC, which automatically generates "qualified" document-bases (such document-bases contain "qualified") documents only, further defined in section 3) from a given textual data source that can be used more effectively and more reliably in single-label TC experiments.

The rest of this paper is organized as follows. Section 2 describes some previous work in document-base extraction for TC. In section 3, we propose a five-state document-base extraction approach for single-label TC. The results are presented in section 4, where one document-base (RE.D6643.C8) is generated from the Reuters-21578 collection; two document-bases (NG.D9482.C10 & NG.D9614.C10) are from Usenet Articles; and another document-base (OH.D6855.C10) is extracted from MedLine-OHSUMED. We show these document-bases can be used effectively in single-label TC experiments. Finally our conclusions and open issues for further research are given in section 5.

¹ http://www.daviddlewis.com/resources/testcollections/reuters21578/

² http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes/20_newsgroups.tar.gz

³ http://trec.nist.gov/data/filtering/

2 Previous Work

2.1 Reuters-21578

Reuters-21578 is a popular text collection widely applied in text mining research. It comprises 21,578 documents collected from the Reuters newswire with 135 predefined classes. Within the entire collection, 13,476 documents are labeled with at least one class, 7,059 are clearly not marked with any class and 1,043 documents have their class-label as "*bypass*" (which, at least in our study, is not considered to be a proper class-label). Within these 13,476 classified documents, 2,308 appear to have a class but on further investigation that class turns out to be spurious. This leaves 11,168 documents, of which 9,338 are single-labeled and 1,830 are multi-labeled.

There are in total 135 classes. However, many TC studies (see for example [12] and [17]) have used only the 10 most populous classes for their experiments and evaluations. There are 68 classes that consist of fewer than 10 documents, and many others consist of fewer than 100 documents. The extracted document-base, suggested in [12] and [17], can be referred to as RE.D10247.C10 and comprises 10,247 documents with 10 classes. However RE.D10247.C10 includes multi-labeled documents that are inappropriate for a single-label TC environment.

In [4] Deng et al. introduce the Reuters_100 document-base that comprises 8,786 documents with 10 classes. Deng et al. assign "one document (to) one category and adopt categories that contain training documents (of) more than 100". Unfortunately which 10 of the 135 classes had been chosen was not specified, but it can be assumed that they are close to or identical with the classes included in RE.D10247.C10 where many documents were in fact found without a "proper" text-content — the document contains less than δ recognized words, where δ is usually a small constant (20 in our study). Herein, a recognized word can be defined as a text-unit, separated by punctuation marks, white space or wild card characters within paragraphs, which belongs to one of the known languages (e.g. English, French, Chinese, etc.) and does not associate with any non-language component (i.e. numbers, symbols, etc.). Filtering away such non-text documents from the extracted document-base is suggested, which ensures that document-base quality is maintained.

2.2 Usenet Articles

The Usenet Articles is another well-known textual data source. It was compiled by Lang [11] from 20 different newsgroups and is sometimes referred to as the "20 Newsgroups" text collection. Each newsgroup represents a predefined class. There are exactly 1,000 documents per class with an exception — the class "soc.religion.christian" contains 997 documents only. In comparison with other common text collections (e.g. Reuters-21578), the structure of the "20 Newsgroups" collection is relatively consistent — every document within this collection is labeled with one class only and almost all documents (higher than 95% of all documents) have a proper text-content ($\delta \ge 20$). Previous TC studies have used this text collection in various ways. For example: (*i*) in [4] the entire "20 Newsgroups" was randomly

divided into two non-overlapping and (almost) equally sized document-bases covering 10 classes each: NG.D10000.C10 and NG.D9997.C10; and (*ii*) in [15] four smaller document-bases were extracted from the collection and used in evaluations: NG.Comp.D5000.C5, NG.Rec.D4000.C4, NG.Sci.D4000.C4, and NG.Talk.D4000.C4. Note here that of the total 19,997 documents, 901 of them fall into our non-text category — each document contains less than 20 recognized words ($\delta < 20$). This may weaken the overall quality for these above listed ("20 Newsgroups" based) document-bases.

2.3 MedLine-OHSUMED

The MedLine-OHSUMED text collection, collected by Hersh et al. [8], consists of 348,566 records relating to 14,631 predefined MeSH (Medical Subject Headings) categories. The OHSUMED collection accounts for a subset of the MedLine text collection4 for 1987 to 1991. Characteristics of OHSUMED include: (1) many multi-labeled documents; (2) the total 14,631 classes are named (and also considered to be arranged) in hierarchies (e.g. classes "male" and "female" can be assumed as subclasses of the class "human"; classes "adult" and "child" can be assumed as subclasses of "male" and/or "female"); and (3) the text-content of each document comprises either a title on its own (without a text-content), or a "*title-plus-abstract*" (with a text-content) from various medical journals.

With the goal of investigating the multi-label TC problem, Joachims [10] uses the first 10,000 title-plus-abstracts texts of the 50,216 documents for 1991 as the training instances, and the second 10,000 such documents as the test instances. This defines the OH.D20000.C23 document-base, in which the classes are 23 MeSH "diseases" categories. Since each record within this document-base may be labeled with more than one class, it does not satisfy the single-label TC investigation. This is also the case for the OH.Maximal document-base [17], which consists of all OHSUMED classes incorporating all 233,445 title-plus-abstract documents.

3 Proposed Document-base Extraction

It is claimed that common textual data sources in their original form are not usually suitable to be directly employed in TC experiments. In this section, we propose a standard textual data preparation approach that automatically extracts qualified document-bases from a given large textual data source (text collection). The entire process of the proposed document-base extraction approach is illustrated graphically in Fig. 1. It consists of five component-functions (states).

1. **Top-**k **Class Identification:** Given a large text collection D, it is possible to find hundreds (sometimes thousands or even more) predefined classes there. However, many of them are assigned to only one or very few (usually less than 10) documents. Hence, it is considered necessary to identify the k most populous

⁴ http://medline.cos.com/

(top-k) classes with their associated documents in D. To fulfill this, we introduce the Top-k_Class_Extraction function (see Algorithm 1).

- Target Class Determination: Given a collection of documents D', based on the 2. k most populous classes (either collected originally or identified by applying the Top-k_Class_Extraction function), some classes may be within a taxonomylike form (sharing a super-and-sub class-relationship). Note that all documents, that are included in a predefined (sub) class, are considered to be also involved in its super-class. Hence, retaining both super-and-sub classes within a created document-base would cause a conflict when running a single-label TC experiment using this document-base - each single document should not be assigned more than one class. With regard to this super-and-sub classrelationship problem, a smaller group of k^* target-classes are suggested to be further extracted from D', where $k^* \leq k$ and k^* is suggested to be chosen as a non-prime integer (which has some positive divisors that can be further used in the next state). To fulfill this, we introduce the Target- k^* _Class_Extraction function (see Algorithm 2), which takes a tree structure representing the taxonomy-like class-relationship(s) among the top-k classes as the input.
- 3. Class-group Allocation: Given a collection of documents D'', based on the k^* target-classes (either collected originally or determined by applying the Top- $k_$ Class_Extraction function and/or the Target- $k^*_$ Class_Extraction function), we then equally and randomly allocate these k^* target-classes into g non-overlapping class-groups, where g is a small constant (integer) defined by the user, usually as a positive divisor of k^* and $1 \le g \le k^*/2$ with a consideration each class-group contains at least 2 target-classes. In this state, we introduce the Class-Group_Allocation function (see Algorithm 3).

Fig. 1. A state-chart diagram for the proposed document-base extraction approach

Function	Top-k_Class_Extraction				
input:	(i) a given large text collection D;				
output.	(ii) an integer k (usually ≤ 100);				
output.	populous classes:				
(1) hegin					
(2) Set D	′ ← ∅:				
(3) for e	ach document $d_j \in D$ do				
(4) cate	h its class-label(s) C;				
(5) for	each single class-label $c_i \in C'$ do				
(0) Set (7) if $($	$K_i \subset \mathcal{D}$ then				
(8) K_{i}	\leftarrow get it from D:				
(9) ad	\mathbf{d}_i into K_i ;				
(10) ad	$\mathbf{I} K_i$ into D ;				
(11) end	for				
(12) end	for				
(13) sort	size (num, of contained documents):				
(14) rem	ain the top-k elements in D :				
(15) retu	rn (D);				
(16) end h	egin				
-	lgorithm 1. The top-k class extraction function				
	8				
Function	Target-k*_Class_Extraction				
input:	(1) a given collection of documents D' , based on the				
	(ii) a tree structure that represents the taxonomy-				
	like class-relationship(s) Tree:				
output:	a collection of documents D", based on the k*				
	target-classes;				
(1) begin					
(2) Set D	" ← ∅;				
(3) for e	ach class based document-set $K_i \in D'$ do				
(4) cate	h its class-label c _i ;				
(5) if (c	is found as a leaf-node \in Tree) then				
(6) ad	$\mathbf{I} K_i \text{ into } D^n;$				
(7) end for					
(0) $f(1)$	"is a prime number) then				
(8) if (D	" is a prime-number) then				
 (8) if (D (9) rem (10) return 	" is a prime-number) then ove the minimum sized element from D"; n (D"):				
(8) if (D (9) rem (10) retur (11) end b	" is a prime-number) then ove the minimum sized element from <i>D</i> "; m (<i>D</i> "); egin				
(8) if (L (9) rem (10) retur (11) end b	"[is a prime-number) then ove the minimum sized element from D"; m (D"); egin 2 The target-k* class extraction function				
(8) if (D (9) rem (10) retur (11) end b Al	"[is a prime-number) then ove the minimum sized element from D"; n (D"); egin gorithm 2. The target-k* class extraction function				
(8) if (D (9) rem (10) retur (11) end b Al Function	"[is a prime-number) then ove the minimum sized element from D"; n (D"); egin gorithm 2. The target-&* class extraction function Class-group Allocation				
(8) if (<i>D</i> (9) rem (10) retur (11) end b Alt Function input:	"[is a prime-number] then over the minimum sized element from D"; m (D"); ggin gorithm 2. The target-&* class extraction function Class-group Allocation () a given collection of documents D", based on the				
(8) if (<i>L</i> (9) rem (10) retun (11) end b Alt Function input:	"[is a prime-number) then ove the minimum sized element from D"; m (D"); ggin gorithm 2. The target-k* class extraction function Class-group Allocation (i) a given collection of documents D", based on the k* target-classes; classes; classes and the product of the second size of the second				
(8) if (2 (9) rem (10) retun (11) end b Alt Function input:	"[is a prime-number] then ove the minimum sized element from D"; egin gorithm 2. The target-k* class extraction function Class-group Allocation (i) a given collection of documents D", based on the k*target-leases; (ii) an integer g (1 ≤ g ≤ k*/2, and as a positive divince of e ^k /2.				
(8) if (2 (9) rem (10) retur (11) end b Alt Function input:	"[is a prime-number] then ove the minimum sized element from D"; m (D"); ggin gorithm 2. The target-k* class extraction function Class-group Allocation (1) a given collection of documents D", based on the k* target-classes; (ii) an integer g (1 ≤ g ≤ k*/2, and as a positive divisor of k*); a set of a-many (centally sized) class-groups G.				
(8) if (2 (9) rem (10) retur (11) end b Alt Function input:	"[is a prime-number] then ove the minimum sized element from D"; m (D"); ggin gorithm 2. The target-k* class extraction function Class-group Allocation (i) a given collection of documents D", based on the k* target-classes; (ii) an integer g (1 ≤ g ≤ k*/2, and as a positive divisor of k*); a set of g-many (equally sized) class-groups G, where each class-group is a collection of documents,				
(8) if (L (9) retur (10) retur (11) end b Al; Function input: output:	"[is a prime-number] then ove the minimum sized element from D"; egin gorithm 2. The target-k* class extraction function Class-group Allocation (i) a given collection of documents D", based on the k* target-classes; (ii) an integer g (1 ≤ g ≤ k*/2, and as a positive divisor of k*); a set of g-many (equally sized) class-groups G, where each class- group is a collection of documents, based on at least 2 target-classes;				
(8) if (L (9) return (10) return (11) end b Alt Function input: output:	"[is a prime-number] then over the minimum sized element from D"; m (D"); ggin Class-group Allocation (1) a given collection of documents D", based on the k* target-classes; (ii) an integer g (1 ≤ g ≤ k*/2, and as a positive divisor of k*); a set of g-many (equally sized) class-groups G, where each class-group is a collection of documents, based on at least 2 target-classes;				
(8) if (L (9) return (10) return (11) end b Alt Function input: output: (1) begin (2) Set G	"[is a prime-number] then ove the minimum sized element from D"; m (D"); ggin gorithm 2. The target-k ⁺ class extraction function Class-group Allocation (i) a given collection of documents D", based on the k ⁺ target-classes; (ii) an integer g (1 ≤ g ≤ k ⁺ /2, and as a positive divisor of k ⁻); a set of g-many (equally sized) class-groups G, where each class-group is a collection of documents, based on at least 2 target-classes; € Ø;				
(8) if (L (9) return (10) return (11) end b Alt Function input: 0utput: (1) begin (2) Set G (3) Set G	"[is a prime-number] then ove the minimum sized element from D^* ; m (D^*); egin gorithm 2. The target- k^+ class extraction function (i) a given collection of documents D^* , based on the k^+ target-classes; (ii) an integer $g (1 \le g \le k^+/2, \text{ and as a positive}$ divisor of k^*]; a set of g -many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\lim_{t \to \infty} \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				
(8) if (L (9) rem (10) retuu (11) end b Alt Function input: (1) begin (2) Set G (3) Set G (4) for l	"[is a prime-number] then ove the minimum sized element from D"; n (D"); egin Class-group Allocation (i) a given collection of documents D", based on the k^* target-classes; (ii) an integr $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of g-nany (equally sized) class-groups G, where each class-group is a collection of documents, based on at least 2 target-classes; $\langle \Phi \rangle$; e_{0} ; $e_{0} \in \langle \phi \rangle$; = 0 to $g - 1$ do				
(8) if (L (9) return (10) return (11) end b Alt Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set	"[is a prime-number] then ove the minimum sized element from D"; $\mathbf{m}(D)$; egin gorithm 2. The target-k* class extraction function Class-group Allocation (i) a given collection of documents D", based on the k*target-lasses; (ii) an integer g ($1 \le g \le k^*/2$, and as a positive divisor of k"); s = tot of -many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\Phi \otimes i$; $\Phi \otimes i = 0$; s = 0 to g - 1 do $i_s \in \emptyset$;				
(8) if (L (9) return (10) return (11) end b Al; Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set (6) add	"[is a prime-number] then ove the minimum sized element from D"; m (D"); grin D. The target- k^* class extraction function Class-group Allocation (i) a given collection of documents D", based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of g-many (equally sized) class-groups G, where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \oslash$; $\bigoplus O_i$; $\bigoplus O_i = 0$ to $g - 1$ do $j \in \emptyset$; $\bigoplus O_i$;				
(8) if (L (9) retm (10) retm (11) end b Al; Function input: (1) begin (2) Set G (3) S	"[is a prime-number] then ove the minimum sized element from D^n ; $n_i(D^n)$; egin Class-group Allocation (i) a given collection of documents D^n , based on the k^* target-classes; (ii) an integr $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of g-many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\langle \Phi \otimes ;$ g = 0 to $g - 1$ do $j \in \Theta$; of into Geenp; or abc lease based document.set $K \in D^n$ do				
(8) if (L (9) return (10) return (11) return (11) end b Al, Function input: (1) begin (2) Set G (3) Set G (3) Set G (4) for l (6) add (7) end l (8) for e (9) r et	"[is a prime-number] then ove the minimum sized element from D^* ; $\mathbf{n}(D^*)$; egin gorithm 2. The target- k^* class extraction function Class-group Allocation (i) a given collection of documents D^* , based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2$, and as a positive divisor of k^*]; a set of g -many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\mathbf{e} \otimes ;$ $\mathbf{e} \oplus ;$ $\mathbf{e} \oplus ;$ $\mathbf{f} \in \mathcal{O};$ \mathbf{G} , into $G_{emp};$ for ach class based document-set $K_i \in D^*$ do get a random decimal between 0 and 1;				
(8) if (L (9) retm (10) retm (11) end b Al; Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set (6) add (7) end l (8) for e end (9) r €	"[is a prime-number] then ove the minimum sized element from D^* ; m (D^*); egin Class-group Allocation (1) a given collection of documents D^* , based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of <i>g</i> -many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\equiv 0$ to $g-1$ do g (into G_{emp} ; or ach class based document-set $K_i \in D^*$ do get a random decimal between 0 and 1; $r \times G_{emp} ; r^{1}/ _{2}$ gives a floor integer				
(8) if $(L \otimes L) = (L) =$	"[is a prime-number] then ove the minimum sized element from D"; $n_{(D^*)};$ egin Class-group Allocation (i) a given collection of documents D", based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of g-many (equally sized) class-groups G, where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset;$ e (0; = 0 to g - 1 do) $h \in \Theta;$ or ach class based document-set $K_i \in D^{"} do$ get a random decimal between 0 and 1; $tr \times G_{emp} $; // \sqcup gives a floor integer th class-group G i $\in G_{emp}$;				
(8) if (L (9) retu (10) retu (11) end b Al Function input: (1) begin (2) Set G (3) Set G (3) Set G (3) Set G (4) for l (5) Set (16) (5) Set (16) (7) end 1 (8) for e (9) r (€ (11) catto (12) add	"[is a prime-number] then ove the minimum sized element from D"; $\mathbf{n}(D^n)$; egin gorithm 2. The target- k^* class extraction function (i) a given collection of documents D", based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^n); a set of g -many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\mathbf{e}(\Phi)$; $\mathbf{e}(\Phi)$; $\mathbf{e}($				
(8) if (L (9) retm (10) retm (11) end b Al, Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set (6) add (7) end l (8) for e (9) r € (10) l € (11) catt (12) add (12) if (1) catt (12) add (12) add	"[is a prime-number] then ove the minimum sized element from D^* ; m (D^*) ; egin Class-group Allocation (1) a given collection of documents D^* , based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of <i>g</i> -many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\lim_{m \to \infty} \in \mathcal{O}$; $\in 0$ to $g - 1$ do g the random decimal between 0 and 1; $I^* \times G_{semp} $; $I^* \times G_{semp} $; $I^* \times G_{semp} $; $I^* \times G_{semp} $; $I^* = I$ door integer th class-group $G_i \in G_{semp}$; $G_i = 10^{-1} (g)$ then				
(8) if (L (9) retu (10) retu (11) end b Al Function input: (1) begin (2) Set G (3) Set G (3) Set G (4) for 1 (5) Set ((6) add (7) end 1 (8) for e (9) $r \in (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, $	"[is a prime-number] then ove the minimum sized element from D"; $\mathbf{m}(D^n)$; egin gorithm 2. The target- k^+ class extraction function Class-group Allocation (i) a given collection of documents D", based on the k^+ target-classes; (ii) an integer g ($1 \le g \le k^+/2$, and as a positive divisor of k^+); k^+ target-classes; (iii) an integer g ($1 \le g \le k^+/2$, and as a positive divisor of k^+); (iii) an integer g ($1 \le g \le k^+/2$, and as a positive divisor of k^+); (iii) an integer g ($1 \le g \le k^+/2$, and as a positive divisor of k^+); (iii) an integer g ($1 \le g \le k^+/2$, and as a positive divisor of k^+); (iii) $g \le g \le k^+/2$, and as a positive \mathbf{G}_i into \mathbf{G}_{imp} ; \mathbf{G}_i into \mathbf{G}_{imp} ; K_i into \mathbf{G}_i : K_i into \mathbf{G}_i : \mathbf{G}_i :				
(8) if (L (9) retu (10) retu (11) end b All Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set (6) add (7) end (1) l € (10) l l € (11) catt (12) add (3) if ((14) add (5) ret	"I is a prime-number) then ove the minimum sized element from D"; m (D"); ggin gorithm 2. The target-k* class extraction function (i) a given collection of documents D", based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^n); a set of g-many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\lim_{m \to \infty} \in \mathcal{O}$; $\lim_{m \to \infty} \lim_{m \to \infty}$				
(8) if (L (9) retm (10) retm (11) end b Alt Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set (6) add (7) end l (8) for e (9) $r \in (12)$ add (12) add (13) if ((14) add (15) retm (16) end (17) retm	"[is a prime-number] then ove the minimum sized element from D"; m (D"); ggin Class-group Allocation (1) a given collection of documents D", based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of g-many (equally sized) class-groups G, where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\lim_{m \to \infty} \leftarrow \emptyset$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $\lim_{m \to \infty} \leftarrow 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0; = 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0 to g-1 \mathbf{do}$ $h \in \Theta$; $e \to 0 to g-1 \mathbf{do}$ $h \to $				
(8) if $(L (3) = 0)$ (9) return (10) return (11) end b All Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set ((6) add (7) end l (18) end l (19) $l \in (10, 10)$ (14) add (17) return (18) end l (18) end l (19) return (19) end l (19)	"[is a prime-number] then ove the minimum sized element from D"; $\mathbf{m}(D^n)$; egin parithm 2. The target- k^* class extraction function Class-group Allocation (i) a given collection of documents D", based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^n ; k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^n ; k^* target-classes; $\mathbf{C} = 0$ to $g - 1$ do $j \in \mathcal{O};$ \mathbf{G} into \mathbf{G}_{emp} ; \mathbf{G}' into \mathbf{G}_{emp} ; $\mathbf{G}' = D^n / g)$ then 1 $\mathbf{G}_{into} \mathbf{G}_{i}$; $\mathbf{G}_{into} \mathbf{G}_{into}$; \mathbf{G}' into $\mathbf{G}_{into} \mathbf{G}_{into}$; \mathbf{G}' into \mathbf{G}_{into} ; \mathbf{G}' into G				
(8) if (L (9) retu (10) retu (11) end b Alt Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set ((6) add (7) end (1) (5) Set (10) l (2) (10) l (2) (11) catt (12) add (13) retu (13) retu (13) retu (13) retu (14) add (15) retu (16) end b (17) retu (18) end b	"I is a prime-number) then ove the minimum sized element from D"; m (D"); egin gorithm 2. The target- k^+ class extraction function (i) a given collection of documents D", based on the k^+ target-classes; (ii) an integer $g (1 \le g \le k^+/2, \text{ and as a positive}$ divisor of k^-); a set of g-many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\lim_{m \to \infty} \in \mathcal{O}$; $\lim_{m \to \infty} \in \mathcal{O}$; $\lim_{m \to \infty} \in \mathcal{O}$; G into G_{comp} ; G ach class based document-set $K_i \in D$ " do get a random deciment between 0 and 1; $tr \times G_{comp} $; // U gives a floor integer h class-group $G \in G_{comp}$; K_i into G ; G_i into G ; for $move G_i$ from G_{comp} ; for m(G); egin				
(8) if (L (9) retm (10) retm (11) end b Al, Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set ((6) add (7) end l (8) for e (12) add (13) if ((14) add (15) ret (16) end t (17) retu (18) end b A	"I is a prime-number) then ove the minimum sized element from D^* ; m (D^*) ; egin Class-group Allocation (1) a given collection of documents D^* , based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of <i>g</i> -many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; imp $\notin \Theta$; $\lim_{m \to \infty} \in \mathcal{O}$; e 0 to $g - 1$ do g t a random decimal between 0 and 1; $I^* \times G_{semp} ; I^* / I^* gives a H oor integer th class-group G_I \in G_{temp};G_I = D^* / g ghten1 G finto G_{mov};G_I = [D^*] / g then1 G finto G_{mov};form (G); egginIgorithm 3. The class-group allocation function$				
(8) if (L (9) rem (10) retun (11) end b Al Function input: (1) begin (2) Set G (2) Set G (3) Set G (4) for l (5) Set ((6) add (7) end 1 (8) for e (9) $r \in \{(1, 1), (2, 1),$	"I is a prime-number) then ove the minimum sized element from D"; $\mathbf{m}(D^n)$; egin gorithm 2. The target- k^* class extraction function (I) a given collection of documents D", based on the k^* target-classes; (I) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^n ; $\mathbf{ast of g-many}$ (equally sized) class-groups G_i where each class-group is a collection of documents, based on at least 2 target-classes; $\mathbf{e} \otimes i;$ $\mathbf{e} \otimes i;$ $\mathbf{f} = 0$ to $g_1 - 1$ do $j \in \mathcal{O};$ $\mathbf{f} = 0$ to $g_1 - 1$ do $j \in \mathcal{O};$ $\mathbf{f} = 0$ to $g_1 - 1$ do $j \in \mathcal{O};$ $\mathbf{f} = 1$ D" $ \mathcal{O} j$ then 1 do ginto G_i : $\mathbf{f} = D^n /g $ then 1 do finto G_i : $\mathbf{f} = \mathbf{f}$ gorithm 3. The class-group allocation function Qualified-Document_Extraction_1				
(8) if (L (9) retu (10) retu (11) end b All Function input: (1) begin (2) Set G (3) Set G (4) for l (5) Set ((6) add (7) end 1 (7) end 1 (1) catt (10) l l c (11) catt (12) add (13) retu (13) retu (13) retu (14) add (15) retu (15) end t (17) retu (18) end t A Function input: (11) begin (2) Set G (3) Set G (4) for l (5) Set (10) l l c (11) catt (12) add (15) retu (16) end t (17) retu (17) retu (18) end t (17) retu (18) end t (18) retu (19) retu ("I is a prime-number) then ove the minimum sized element from D"; m (D"); egin gorithm 2. The target- k^+ class extraction function (i) a given collection of documents D", based on the k^+ target-classes; (i) an integer $g (1 \le g \le k^+/2, \text{ and as a positive}$ divisor of k^-); a set of g-many (equally sized) class-groups G , where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\bigoplus_{i} \in \emptyset$; $\bigoplus_{i} \in \emptyset$; G_i into G_{emp} ; $M = andom decimal between 0 and 1; t \times G_{emp} : I' gives a floor integerth class-group G \in G_{emp};K_i into G_i;G_i = [D^{-1}/G] g then1 \in G_i;G_i and G_i;G_i = [D^{-1}/G] g then1 \in G_i;G_i and G_i;G_i and G_i;G_i G_i;$				
(8) if (L (9) rem (10) retu (11) end b Al; Function input: (1) begin (2) Set G (3) Set G (3) Set G (3) Set G (4) for 1 (5) Set ((6) add (7) end 1 (8) for e (9) $r \in (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, $	"[is a prime-number] then ove the minimum sized element from D"; m (D"); egin Class-group Allocation (1) a given collection of documents D", based on the k^* target-classes; (ii) an integer $g (1 \le g \le k^*/2, \text{ and as a positive}$ divisor of k^*); a set of g-many (equally sized) class-groups G, where each class-group is a collection of documents, based on at least 2 target-classes; $\notin \emptyset$; $\lim_{m \to \infty} \notin Q$; $\lim_{m \to \infty} \# Q$				

(1) begin
 (2) Set G' ← Ø;
 (3) for i = 0 to |G|-2 do

(4) catch the class based document-set $K_i \in G$; (5) for each document $d_a \in K_i$ do (6) Boolean delete \leftarrow false; (7) for j = i+tn (G|-1 do (8) catch the class based document-set $K_j \in G$; (9) if $(d_a \in K)$ then (10) delete \leftarrow true; (11) remove d_a from K_j ; (12) end for (13) if delete then (14) remove d_a from K_i ; (15) end for (16) add K_i into G; (17) end for (18) add K_i into G; (19) return (G); (20) end begin Algorithm 4. The qualified-document extraction function Algorithm 4. The qualified-document extraction function (Part 1) Function Qualified-Document_Extraction_2 input: a given collection of documents G', presented as a class-group (each document is single-labeled); output: a further refined collection of documents G'', where each single-labeled document contains more than δ recognized words; recognized words; (1) begin (2) Set $C^* \leftarrow \emptyset$; (3) for each class based document-set $K_i \in G'$ do (4) for each document $d_a \in K_i$ do (5) if ((num. of recognized words in $d_a) < \delta$) then (6) remove d_a from K_i : (7) end for (8) add K_i into G''; (9) end for (10) return (G''); (11) end begin Montifue 5. The multified document attraction function Algorithm 5. The qualified-document extraction function (Part 2) Function Document_Shuffle input: an ordered set of qualified documents G", presented as a sufficiently refined class-group; output: a (shuffled) document-base D; **The set of the set o**

Algorithm 6. The document shuffle function

- Qualified Document Extraction: For each class-group G (either collected 4. originally as a text collection or generated from $\langle \text{state}(s) 1, 2 \text{ and/or } 3 \rangle$), we now extract all "qualified" documents from G. We define a qualified document as a document that (i) belongs to only one predefined class; and (ii) consists of at least δ recognized words. Regarding (i), it is possible to discover single documents that are simultaneously labeled with two classes although they do not share a super-and-sub class-relationship (as per state 2). To solve this problem, we provide the Qualified-Document Extraction 1 function (see Algorithm 4). Regarding (*ii*), a further refined document-base will be generated — at least δ recognized words are ensured within each extracted document. Hence, multiword (phrases, quasi phrases and/or single-word combinations) are more likely to be discovered. This addresses a diversified feature selection approach (i.e. "bag of phrases" vs. "bag of words") in a further document-base preprocessing phase. The Qualified-Document_Extraction_2 function, aiming to filter away such non-text documents from the output of Qualified-Document_Extraction_1, is provided (see Algorithm 5).
- **Document Shuffle:** Given an ordered set of documents G'', presented as a class-5. group with qualified documents only, we finally shuffle these documents, and construct a document-base D. Note that when investigating single-label TC, especially the multi-class problem, the cross-validation procedure is suggested to be addressed in a further training-and-test experimental phase. Employing the cross-validation procedure in a TC experiment requires (i) dividing the given document-base into f-fold (normally f = 10); (*ii*) in each of the f runs, treating the *i*th-fold as a test set (of instances) whereas the rest folds as the training dataset; and (iii) calculating the average of f-run TC results (accuracies). The crossvalidation procedure requires inputting a sufficiently shuffled document-base, where documents sharing a common predefined class should be evenly and dispersedly distributed within the entire document-base. This ensures that when randomly picking up a fraction of the document-base having its minimum size \approx σ , where σ represents the size of the smallest class (containing the least documents) in G'', a sufficient number of documents are found within each predefined class. In this state, we introduce the Document_Shuffle function (see Algorithm 6).

4 Results

In this section, we show four extracted document-basess regarding the case of singlelabel multi-class TC, where one is generated from Reuters-21578, two from "20 Newsgroups", and another one from MedLine-OHSUMED.

• The Reuters-21578 based Document-base: Given Reuters-21578 in its original form, we first of all identified the Top-10 populous classes by applying the Topk_Class_Extraction function, which confirm the 10 most populous classes,

⁵ The four extracted document-bases may be obtained from http://www.csc.liv.ac.uk/~jwang/

suggested in [12] and [17]. Since super-and-sub class-relationships were not found within the Top-10 classes, we skipped the state of determination of the k^* target-classes. We treated the Top-10 classes as a unique class-group that ensures only one document-base would be extracted from this data source. After running an implementation of both Qualified-Document_Extraction_1 and Qualified-Document_Extraction_2 (with $\delta = 20$) functions, we found that the class "wheat" contains only one qualified document, and no qualified document was contained in class "corn". Hence, the final document-base, namely RE.D6643.C8, omitted these classes of "wheat" and "corn", leaving a total of 6,643 documents in 8 classes. To complete the document-base extraction, we fairly shuffled these 6,643 documents finally. A description of this documentbase is given in Table 1.

- **Two "20 Newsgroups" based Document-bases:** When generating document-bases from "20 Newsgroups", the first and second states of our proposed approach were skipped because (*i*) all of the 20 given classes are equally populous and (*ii*) there is not a hierarchy of class relationships within the 20 classes. We decided to adopt the approach of Deng et al. [4] and randomly split the entire data source, by applying the Class-Group_Allocation function, into two class-groups covering 10 classes each.
 - Focusing on the first class-group, we then checked the qualification of each document. Since all documents are known to be single-labeled, we skipped to the Qualified-Document_Extraction_1 function. Having $\delta = 20$, we refined this class-group by using the Qualified-Document_Extraction_2 function. A total of 518 non-text documents were filtered away. We finally shuffled this class-group and created the NG.D9482.C10 document-base. Table 2(a) shows the detail of NG.D9482.C10.
 - Focusing on the second class-group, the qualification of each document was then verified. Again, since all "20 Newsgroups" based documents are singlelabeled, we skipped the Qualified-Document_Extraction_1 function. Having $\delta = 20$, we refined this class-group by applying the Qualified-Document_Extraction_2 function. A total of 383 non-text documents were filtered away. We finally shuffled this class-group and created the NG.D9614.C10 document-base. A description of NG.D9614.C10 is provided in Table 2(b).
- The OHSUMED based Document-base: When generating document-bases • from MedLine-OHSUMED, we first of all identified the Top-100 populous classes by applying the Top-k_Class_Extraction function. It is obvious that some of the Top-k classes are originally named in hierarchies (as previously described in section 2.3). Hence we assume that the super-and-sub classrelationships exist among these classes. Due to the difficulty of obtaining a precise tree structure that describes all possible taxonomy-like class-relationships within the Top-100 classes, instead of applying the Target k^* Class Extraction function, we simply selected 10 target-classes from these classes by hand, so as to exclude obvious super-and-sub class-relationships. We simply treated the Top-10 classes as a unique class-group that ensures only one

document-base would be extracted from this data source. We then checked the qualification of each document. Since a document may be multi-labeled, we called the Qualified-Document_Extraction_1 function to remove the documents that do not label to exactly 1 of the 10 target-classes. Having $\delta = 20$, we further refined this class-group by applying the Qualified-Document_Extraction_2 function. As a consequence 6,855 documents within 10 classes were comprised in the refined form of this class-group. We finally shuffled it and created the OH.D6855.C10 document-base. Table 3 shows the detail of this document-base.

Table 1. Document-base description (RE.D6643.C8).

Class	# of documents	Class	# of documents
acq	2,108	interest	216
crude	444	money	432
earn	2,736	ship	174
grain	108	trade	425

Table 2. Document-base description (NG.D9482.C10 & NG.D9614.C10).

(a) NG.D9482.C10		(b) NG.D9614.C10	
Class	# of documents	Class	# of documents
comp.windows.x	940	comp.graphics	919
rec.motorcycles	959	comp.sys.mac.hardware	958
talk.religion.misc	966	rec.sport.hockey	965
sci.electronics	953	sci.crypt	980
alt.atheism	976	sci.space	977
misc.forsale	861	talk.politics.guns	976
sci.med	974	comp.os.ms-windows.misc	928
talk.politics.mideast	966	rec.autos	961
comp.sys.ibm.pc.hardware	955	talk.politics.misc	980
rec.sport.baseball	932	soc.religion.christian	970

Table 3. Document-base description (OH.D6855.C10).

Class	# of documents	Class	# of documents
amino_acid_sequence	333	kidney	871
blood_pressure	635	rats	1,596
body_weight	192	smoking	222
brain	667	tomography,_x-ray_computed	657
dna	944	united_states	738

These four (extracted) document-bases were further evaluated in a single-label TC environment. All evaluations described here were conducted using the TFPC (Total From Partial Classification) associative text classifier₆ [18]; although any other classifier could equally well have been used. All algorithms involved in the evaluation were implemented using the standard Java programming language. The experiments

⁶ TFPC associative text classier may be obtained from http://www.csc.liv.ac.uk/~frans/KDD /Software/TextMiningDemo/textMining.html

were run on a 1.87 GHz Intel(R) Core(TM)2 CPU with 2.00 GB of RAM running under Windows Command Processor.

In the preprocessing of each document-base, we first of all treated these very common and rare words (with a document-base frequency > 20% or < 0.2%) as the noise words and eliminated them from the document-base. For the rest of words, we simply employed the *mutual information* feature selection approach [14] to identify these *key* words that significantly serve to distinguish between classes. Finally the top 100 words (based on their mutual information score) were decided to be remained in each class. With a support threshold value of 0.1% and a confidence threshold value of 35% (as suggested in [18]), we identified (using Ten-fold Cross Validation): the classification accuracy generated using the RE.D6643.C8 document-base was 86.23%, whereas NG.D9482.C10 and NG.D9614.C10 produced the accuracies of 77.49% and 81.26%, and 79.27% was given by using the OH.D6855.C10 document-base. We expect better TC results, based on these extracted document-bases, when applying improved textual data preprocessing and/or classification approaches.

5 Conclusion

When investigating text mining and its applications, especially when dealing with different TC problems, being able to show a set of experimental results using common text collections is required. Due to a list of major limitations (see section 1), we indicate that most text collections (textual data sources), in their original form, are not suggested to be directly addressed in TC experiments. In this paper, we investigated the problem of textual data preparation, and introduced a standard document-base extraction approach for single-label TC. Based on three well-known textual data sources (Reuters-21578, Usenet Articles, and MedLine-OHSUMED), we extracted four document-bases and tested them (with a simple preprocessing approach and an associative classifier) in a single-label TC environment. The experimental results demonstrate the effectiveness of our approach. Further single-label TC related studies are invited to utilize our proposed document-base extraction approach or directly make use of our generated document-bases (RE.D6643.C8, NG.D9482.C10, NG.D9614.C10, and OH.D6855.C10) in their result and evaluation part. In the future, many further textual data preparation approaches can be proposed for a variety of text mining applications. One possible task is to extract qualified document-bases from a large textual data source for multi-label TC experiments.

References

- Antonie, M.-L., Zaïane, O.R.: Text Document Categorization by Term Association. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, December 2002. IEEE (2002) 19-26
- Berger, H., Merkl, D.: A Comparison of Text-Categorization Methods applied to N-Gram Frequency Statistics. In: Proceedings of the 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 2004. Springer-Verlag (2004) 998-1003

- 3. Cardoso-Cachopo, A.: Improving Methods for Single-label Text Categorization. Ph.D. Thesis, Instituto Superior Técnico Universidade Ténica de Lisboa / INESC-ID, Portugal.
- Deng, Z.-H., Tang, S.-W., Yang, D.-Q., Zhang, M., Wu, X.-B., Yang, M.: Two Odds-radiobased Text Classification Algorithms. In: Proceedings of the Third International Conference on Web Information Systems Engineering Workshop, Singapore, December 2002. IEEE (2002) 223-231
- Feng, Y., Wu, Z., Zhou, Z.: Multi-label Text Categorization using K-Nearest Neighbor Approach with M-Similarity. In: Proceedings of the 12th International Conference on String Processing and Information Retrieval, Buenos Aires, Argentina, November 2005. Springer-Verlag (2005) 155-160
- Fragoudis, D., Meretaskis, D., Likothanassis, S.: Best Terms: An Efficient Feature-Selection Algorithm for Text Categorization. Knowledge and Information Systems 8, 1 (2005) 16-33
- Giorgetti, D., Sebastiani, F.: Multiclass Text Categorization for Automated Survey Coding. In: Proceedings of the 2003 ACM Symposium on Applied Computing, Melbourne, FL, USA, March 2003. ACM Press (2003) 798-802
- Hersh, W.R., Buckley, C., Leone, T.J., Hickman, D.H.: OHSUMED: An Interactive Retrieval Evaluation and New Large Test Collection for Research. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, July 1994. ACM/Springer (1994) 192-201
- Hotho, A., Nürnberger, A., Paaß, G.: A Brief Survey of Text Mining. LDV Forum GLDV Journal for Computational Linguistics and Language Technology 20, 1 (2005) 19-62
- Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. LS-8 Report 23 – Research Reports of the Unit no. VIII (AI), Computer Science Department, University of Dortmund, Germany.
- Lang, K.: NewsWeeder: Learning to Filter Netnews. In: Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, July 1995. Morgan Kaufmann Publishers (1995) 331-339
- Li, X., Liu, B.: Learning to Classify Texts using Positive and Unlabeled Data. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 2003. Morgan Kaufmann Publishers (2003) 587-594
- Maron, M.E.: Automatic Indexing: An Experimental Inquiry. Journal of the ACM (JACM) 8, 3 (1961) 404-417
- Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34, 1 (2002) 1-47
- Wu, H., Phang, T.H., Liu, B., Li, X.: A Refinement Approach to Handling Model Misfit in Text Categorization. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002. ACM Press (2002) 207-215
- Wu, K., Lu, B.-L., Uchiyama, M., Isahara, H.: A Probabilistic Approach to Feature Selection for Multi-class Text Categorization. In: Proceedings of the 4th International Symposium on Neural Networks, Nanjing, China, June 2007. Springer-Verlag (2007) 1310-1317
- Zaïane, O.R., Antonie, M.-L.: Classifying Text Documents by Associating Terms with Text Categories. In: Proceedings of the 13th Australasian Database Conference, Melbourne, Victoria, Australia, January-February 2002. CRPIT 5 Australian Computer Society (2002) 215-222
- Coenen, F., Leng, P., Sanderson, R., Wang, Y.J.: Statistical Identification of Key Phrases for Text Classification. In: Proceedings of the 5th International Conference on Machine Learning and Data Mining, Leipzig, Germany, July 2007. Springer-Verlag (2007) 838-853