
A Generic and Extendible Multi-Agent Data

Mining Framework

Kamal Ali Albashiri, and Frans Coenen

Department of Computer Science, The University of Liverpool,
Ashton Building, Ashton Street, Liverpool L69 3BX, United Kingdom

{ali,frans}@csc.liv.ac.uk

Abstract. A generic and extendible Multi-Agent Data Mining (MADM)
framework, EMADS (the Extendible Multi-Agent Data mining System)
is described. The central feature of the framework is that it avoids the
use of agreed meta-language formats by supporting a system of wrappers.
The advantage offered is that the system is easily extendible, so that fur-
ther data agents and mining agents can simply be added to the system.
A demonstration EMADS framework is currently available. The paper
includes details of the EMADS architecture and the wrapper principle
incorporated into it. A full description and evaluation of the framework’s
operation is provided by considering two MADM scenarios.

1 Motivation and Goals

Multi-Agent Data Mining (MADM) seeks to harness the general advantages of
Multi-Agent Systems (MAS) in the application domain of Data Mining (DM).
MAS technology has much to offer DM, particularly in the context of various
forms of distributed and cooperative DM. The main issues with MADM are
the disparate nature of DM and the wide range of tasks encompassed. Any de-
sired generic MADM framework therefore requires a sophisticated communica-
tion mechanism to support it. In the work described here we address the commu-
nication requirements of MADM by using a system of mediators and wrappers
coupled with an Agent Communication Language (ACL) such as FIPA ACL [8].
We believe this can more readily address the issues concerned with the variety
and range of contexts to which a generic MADM can be applicable. The use of
wrappers also avoids the need for agreed meta-language formats.

To investigate and evaluate the expected advantages of wrappers and medi-
ators in the context of generic MADM, we have developed and implemented (in
JADE) a multi-agent framework, EMADS (the Extendible Multi-Agent Data
mining System). The primary goal of the EMADS framework is extendibility;
we wish to provide a means for integrating new DM algorithms and data sources
in our MADM framework. However, EMADS also seeks to address some of the
issues of DM that would benefit from the use of a generic framework. EMADS
provides:

– Flexibility in assembling communities of autonomous service providers, in-
cluding the incorporation of existing applications.



– Minimisation of the effort required to create new agents, and to wrap existing
applications.

– Support for end users to express DM requests without having detailed knowl-
edge of the individual agents.

The paper’s organisation is as follows. A brief review of some related work
on MADM is presented in Section 2. The conceptual framework, together with
an overview of the wrapper principle, is presented in Section 3 and Section 4.
The framework’s operation is illustrated in Section 5 using two DM scenarios,
and finally some conclusions are presented in Section 6.

2 Related Work

MAS have shown much promise for flexible, fault-tolerant, distributed problem
solving. Some MADM frameworks focus on developing complex features for spe-
cific DM tasks, without attempting to provide much support for usability or
extendibility [10]. The success of peer-to-peer systems and negotiating agents
has engendered a demand for more generic, flexible, robust frameworks.

There have been only few such generic MADM systems. An early example
was IDM [6], a multi-agent architecture for direct DM to help businesses gather
intelligence about their internal commerce agent heuristics and architectures for
KDD. In [3] a generic task framework was introduced, but designed to work
only with spatial data. The most recent system was introduced in [9] where
the authors proposed a multi-agent system to provide a general framework for
distributed DM applications. In this system the effort to embed the logic of a
specific domain has been minimised and is limited to the customisation of the
user. However, although its customisable feature is of a considerable benefit, it
still requires users to have very good DM knowledge. The EMADS system which
we describe below aims to allow DM algorithms to be embedded in a flexible
framework with minimum effort by the user.

3 System Architecture

The EMADS framework has several different modes of operation according to the
nature of the participant. Each mode of operation has a corresponding category
of User Agent. Broadly, the supported categories are:

– Developers: Developers are participants, who have full access and may
contribute DM algorithms in the form of Data Mining Agents (DM Agents).

– Data Miners: These are participants, with restricted access to the system,
who may pose DM requests through User Agents and Task Agents (see below
for further details).

– Data Contributors: These are participants, again with restricted access,
who are prepared to make data available, by launching Data Agents, to be
used by DM agents.



Conceptually the nature of the requests that may be posted by EMADS
users is extensive. In the current demonstration implementation a number of
generic requests are supported directed at classification and Association Rule
Mining (ARM) scenarios. Two exemplar scenarios are used to illustrate this
paper (Section 5).

Fig. 1. EMADS Architecture as Implemented in Jade

Fig. 1 presents the EMADS architecture as implemented in JADE (The Java
Agent Development Environment) [4]. It shows a sample collection of several
application agents and housekeeping agents, organised as a community of peers
by a common relationship to each other, that exist in a set of containers. In
particular the main container holds the housekeeping agents (an Agent Manage-
ment System (AMS) agent and a Directory Facilitator (DF) agent). These are
specialized server agents responsible for facilitating agents to locate one another.

A user agent runs on the user’s local host and is responsible for: (i) accepting
user input (request), (ii) launching the appropriate Task Agent to process user
requests, and (iii) displaying the results of the (distributed) computation. The
user expresses a task to be executed using standard interface dialogue mecha-
nisms by clicking on active areas in the interface and, in some cases, by entering
threshold values. Note that the user does not need to specify which agent or
agents should be employed to perform the desired task. For instance, if the
question “What is the best classifier for my data?” is posed in the user interface,
this request will trigger a Task Agent. The Task Agent requests the facilitator
to match the action part of the request to capabilities published by other agents.
The request is then routed by the Task Agent to the appropriate combination
of agents to execute the request. On completion the results are sent back to the
user agent for display.



Cooperation among the various EMADS agents is achieved via messages
expressed in FIPA ACL and is normally structured around a three-stage process:

1. Service Registration where providers (agents who wish to provide ser-

vices) register their capability specifications with a facilitator.
2. Request Posting where User Agents (requesters of services) construct re-

quests and relay them to a Task Agent,
3. Processing where the Task Agent coordinates the efforts of the appropriate

service providers (Data Agents and DM Agents) to satisfy the request.

Note that Stage 1 (service registration) is not necessarily immediately fol-
lowed by stage 2 and 3; it is possible that a services provider may never be used.
Note also that the facilitator (the DF and AMS agents) maintains a knowledge
base that records the capabilities of the various EMADS agents, and uses this
knowledge to assist requesters and providers of services in making contact.

4 System Extendibility

One of the principal objectives of EMADS is to provide an easily extendible
MADM framework that can easily accept new data sources and new data min-
ing techniques. The desired extendibility is achieved by a system of wrappers.
EMADS wrappers are used to “wrap” data mining artefacts so that they be-
come EMADS agents and can communicate with other EMADS agents. As such
EMADS wrappers can be viewed as agents in their own right that are subsumed
once they have been integrated with data or tools to become data or data min-
ing agents. The wrappers essentially provide an application interface to EMADS
that has to be implemented by the end user; this has been designed to be a fairly
trivial operation.

EMADS provides the definition of an abstract parent agent class and every
instance agent object (i.e., a program that implements a learning DM algorithm)
is then defined as a subclass of this parent class. Through the variables and
methods inherited by all agent subclasses, the parent agent class describes a
simple and minimal interface that all subclasses have to comply to. As long as
an agent conforms to this interface, it can be introduced and used immediately as
part of the EMADS system. Two broad categories of wrapper have been defined:
(i) data wrappers and (ii) tool wrappers.

4.1 Data Wrappers

Data wrappers are used to “wrap” a data source and consequently create a data
agent. A data wrapper holds the location (file path) of a data source, so that it
can be accessed by other agents; and meta information about the data. To assist
end users in the application of data wrappers a data wrapper GUI is available.
Once created, the data agent announces itself to the DF agent as a consequence
of which it becomes available to all EMADS users.



4.2 Tool Wrappers

Tool wrappers are used to “wrap” up data mining software systems and thus
create a mining agent. Generally the software systems will be data mining tools
of various kinds (classifiers, clusters, AR miners, etc.) although they could also
be (say) data normalisation/discretization or visualization tools. It is intended
that EMADS will incorporate a substantial number of different tool wrappers
each defined by the nature of the desired I/O which in turn will be informed by
the nature of the generic data mining tasks that it us desirable for EMADS to
be able to perform.

5 System Demonstration

The operation of EMADS is described in the following two subsections by con-
sidering two demonstration applications (scenarios).

5.1 Meta ARM (Association Rule Mining) scenario

Meta Mining is defined here as the process of combining individually obtained
results of N applications of a DM activity. The motivation behind the scenario is
that data relevant to a particular DM application may be owned and maintained
by different, geographically dispersed, organizations.

The meta ARM scenario comprises a set of N data agents, N ARM mining
agents and a meta ARM agent. Note that each ARM mining agent could have
a different ARM algorithm associated with it, although, it is assumed that a
common data structure is used to facilitate data interchange. For the scenario
described here a set enumeration tree structure called a T-tree [7] was used.
Once generated the N local T-trees are passed to the Meta ARM agent which
creates a global T-tree. During the global T-tree generation process the Meta
ARM agent interacts with the various ARM agents. There are a number of
strategies that can be adopted with respect to when in the process intra agent
communication should be made. The authors identified five distinct strategies
(Benchmark, Apriori, Brute Force, Hybrid 1 and Hybrid 2). A full description
of the algorithms can be found in [1].

5.1.1 Experimentation and Analysis

To evaluate the five Meta ARM algorithms, in the context of the EMADS vision,
a number of experiments were conducted designed to analyze the effect of: (i)
the number of data agents, (ii) the size of the data agents’ datasets in terms
of number of records, and (iii) the size of the data agents’ datasets in terms of
number of attributes. For each of the experiments we measured: (i) processing
time, (ii) the overall size of the communications (Kbytes), and (iii) the number
of individual communications.

The results shown in Fig. 2 indicate, with respect to Meta ARM, that
EMADS offers positive advantages in that all the Meta ARM algorithms were
more computationally efficient than the bench mark algorithm (no intra agent



cooperation). The results of the analysis also indicated that the Apriori Meta
ARM approach coped best with a large number of data sources, while the Brute
Force and Hybrid 1 approaches coped best with increased data sizes (in terms
of column/rows).

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Fig. 2. Effect of number of data sources.

5.2 Classifier Generation scenario

The Classifier Generation scenario is that of an end user who wishes to obtain
a “best” classifier founded on a given, pre-labelled, data set; which can then
be applied to further unlabelled data. The assumption is that the given data
set is binary valued and that the user requires a single-label, as opposed to a
multi-labelled, classifier. The request is made using the individual’s user agent
which in turn will spawn an appropriate task agent. For this scenario the task
agent interacts with mining agents that hold single labelled classifier generators
that take binary valued data as input. Each of these mining agents generate
a classifier, together with an accuracy estimate. Once received the task agent
selects the classifier with the best accuracy and returns this to the user agent.

From the literature there are many reported techniques available for generat-
ing classifiers. For the scenario reported here the authors used implementations



of eight different algorithms1. These were placed within an appropriately defined
tool wrapper to produce eight (single label binary data classifier generator) DM
agents. This was found to be a trivial operation indicating the versatility of the
wrapper concept.

Data Set Classifier Name Accuracy Generation Time (sec)

connect4.D129.N67557.C3 RDT 79.76 502.65

adult.D97.N48842.C2 IGDT 86.05 86.17

letRecog.D106.N20000.C26 RDT 91.79 31.52

anneal.D73.N898.C6 FOIL 98.44 5.82

breast.D20.N699.C2 IGDT 93.98 1.28

congres.D34.N435.C2 RDT 100 3.69

cylBands.D124.N540.C2 RDT 97.78 41.9

dematology.D49.N366.C6 RDT 96.17 11.28

heart.D52.N303.C5 RDT 96.02 3.04

auto.D137.N205.C7 IGDT 76.47 12.17

penDigits.D89.N10992.C10 RDT 99.18 13.77

soybean-large.D118.N683.C19 RDT 98.83 13.22

waveform.D101.N5000.C3 RDT 96.81 11.97

Table 1. Classification Results

5.2.1 Experimentation and Analysis

To evaluate the classification scenario, a sequence of data sets taken from the UCI
machine learning data repository [5] were used (pre-processed by data agents so
that they were discretized/normalized into a binary valued format). The results
are presented in Table 1. Each row in the table represents a particular request
and gives the name of the data set, the selected best algorithm as identified
from the interaction between agents, the resulting best accuracy and the total
EMADS execution time from creation of the initial task agent to the final “best”
classifier being returned to the user.

The results demonstrate firstly that EMADS can usefully be adopted to pro-
duce a best classifier from a selection of classifiers. Secondly that the operation
of EMADS is not significantly hindered by agent communication overheads, al-
though this has some effect. Generation time, in most cases does not seem to be
an issue, so further classifier generator mining agents could easily be added. The
results also reinforce the often observed phenomenon that there is no single best
classifier generator suited to all kinds of data set. Further details of this process
can be also found in Albashiri et al. [2].

6 Conclusions

This paper described EMADS, a generic multi-agent framework for DM. The
principal advantages offered by the system are that of experience and resource

1 Taken from the LUCS-KDD software repository at http :
//www.csc.liv.ac.uk/f̃ rans/KDD/Software/



sharing, flexibility and extendibility, protection of privacy and intellectual prop-
erty rights and information hiding. The framework’s operation was illustrated
using meta ARM and classification scenarios. Extendibility is demonstrated by
showing how wrappers are used to incorporate existing software into EMADS.
Experience to date indicates that, given an appropriate wrapper, existing DM
software can very easily be packaged to become a DM agent. Flexibility is illus-
trated using the classification scenario. Information hiding is demonstrated in
that users need have no knowledge of how any particular piece of DM software
works or the location of the data used.

A good foundation has been established for both DM research and genuine
application based DM. The research team is at present working towards in-
creasing the diversity of mining tasks that can be addressed. There are many
directions in which the work can (and is being) taken forward. One interesting
direction is to build on the wealth of distributed DM research that is currently
available and progress this in a MAS context. The research team is also enhanc-
ing the system’s robustness so as to make it publicly available. It is hoped that
once the system is live other interested DM practitioners will be prepared to
contribute algorithms and data.

References

1. Albashiri, K., Coenen, F., Sanderson, R. and Leng. P., “Frequent Set Meta Mining:
Towards Multi-Agent Data Mining”. In Bramer, M., Coenen, F.P. and Petridis, M.
(Eds.), Springer, London, pp139-151, (2007).

2. Albashiri, K., Coenen, F., and Leng. P., “EMADS: An Extendible Multi-Agent Data
Miner”. In Bramer, M., Coenen, F.P. and Petridis, M. (Eds.), Springer, London,
pp263-276, (2008).

3. Baazaoui H., Faiz S., Hamed R., and Ghezala H., “A Framework for data mining
based multi-agent: an application to spatial data”. 3rd World Enformatika Confer-
ence, Istanbul, (2005).

4. Bellifemine, F. Poggi, A. and Rimassi, G., “JADE: A FIPA-Compliant agent frame-
work”. Proceedings Practical Applications of Intelligent Agents and Multi-Agents,
pg 97-108, (1999). (See http://sharon.cselt.it/projects/jade for latest information).

5. Blake, C. and Merz, C. , “UCI Repository of machine learning databases”. Irvine,
CA: University of California, Department of Information and Computer Science.
http://www.ics.uci.edu/mlearn/MLRepository.html, (1998).

6. Bose, R. and Sugumaran, V., “IDM: An Intelligent Software Agent Based Data
Mining Environment”. In Proceedings of IEEE Press, San Diego, CA, (1998).

7. Coenen, F., Leng, P., and Goulbourne, G., “Tree Structures for Mining Association
Rules”. Journal of DM and Knowledge Discovery, Vol 8, No 1, pp25-51, (2004).

8. Foundation for Intelligent Physical Agents, FIPA 2002 Specification. Geneva,
Switzerland. (See http://www.fipa.org/specifications/index.html), (2002).

9. Giuseppe, D., Giancarlo, F., “A customisable multi-agent system for distributed
data mining”. Proceedings ACM symposium on applied computing, (2007).

10. Klusch, M., Lodi, G., ”Agent-based Distributed Data Mining: The KDEC Scheme.
Intelligent Information Agents” The AgentLink Perspective. Lecture Notes in Com-
puter Science 2586, Springer, (2003).


