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INTRODUCTION

Association rules (ARs) (Agrawal, Imielinski & 
Swami, 1993) are a well established data mining 
technique used to discover co-occurrences of items 
mainly in market basket data. An item is usually 
a product amongst a list of other products and an 
itemset is a combination of two or more products. 

The items in the database are usually recorded as 
binary data (present or not present). The technique 
aims to find association rules (with strong support 
and high confidence) in large databases. Classical 
Association Rule Mining (ARM) deals with the 
relationships among the items present in transac-
tional databases (Agrawal & Srikant, 1994; Bodon, 
2003). Typically, the algorithm first generates 
all large (frequent) itemsets (attribute sets) from 
which association rule (AR) sets are derived. A 
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large itemset is defined as one that occurs more 
frequently in the given data set according to a user 
supplied support threshold. To limit the number 
of ARs generated, a confidence threshold is used 
to limit the number by careful selection of the 
support and confidence thresholds. By so doing, 
care must be taken to ensure that itemsets with 
low support but from which high confidence rules 
may be generated are not omitted. We define the 
problem as follows:

Given a set of items I = {i1, i2,..,im}and a 
database of transactions D = {t1, t2,..,tn} where 
t I I Ii i i ip= { , ,.., }1 2 ,  p m  a n d I Ii j  i f 
X I  with k = |X| is called a k-itemset or sim-
ply an itemset. Let a database D be a multi-set of 
subsets of I as shown. Each supports an itemset 
X I  ifX T  holds. An association rule is 
an expressionX Y , where X, Y are item sets 
and X Y =  holds. Number of transactions 
T supporting an item X w.r.t D is called support 
of X, Supp X T D X T D( ) | { | } | / | |=  
. The strength or confidence (c) for an as-
sociation rule X Y is the ratio of the 
number of transactions that contain X Y  
to the number of transactions that contain X, 
Conf X Y Supp X Y Supp X( ) ( ) / ( ) =  .

For non-binary items, fuzzy association rule 
mining (firstly expressed as quantitative associa-
tion rule mining (Srikant & Agrawal, 1996) has 
been proposed using fuzzy sets such that quan-
titative and categorical attributes can be handled 
(Kuok, Fu & Wong, 1998). A fuzzy rule represents 
each item as< >item value,  pair. Fuzzy associa-
tion rules are expressed in the following form:

If X is A satisfies Y is B
For example,
if (age is young) → (salary is low)
Given a database T, attributes I with item-

sets X I Y I , and X x x xn= { , ,... }1 2 and 
Y y y yn= { , ,... }1 2 and X Y =  , we can 
define fuzzy sets A fx fx fxn= { , ,..., }1 2 and 
B fx fx fxn= { , ,..., }1 2 associated with X and Y 
respectively. For example (X, A) could be (age, 

young), (age, old) and (Y, B) as (salary, high) etc. 
The semantics of the fuzzy rule is that when the 
antecedent “X is A” is satisfied, we can imply that 
“Y is B” is also satisfied, which means there are 
sufficient records that contribute their counts to the 
attribute fuzzy set pairs and the sum of these counts 
is greater than the user specified threshold.

However, the classical ARM framework as-
sumes that all items have the same significance 
or importance.

In which case their weight within a transac-
tion or record is the same (weight=1) which is 
not always the case. For example, from Table 1, 
the rule [printer → computer, 50%] may be more 
important than [scanner → computer, 75%] even 
though the former holds a lower support because 
those items in the first rule usually come with 
more profit per unit sale.

The main challenge in weighted ARM is vali-
dating the “downward closure property (DCP)” 
which is crucial for the efficient iterative process 
of generating and pruning frequent itemsets from 
subsets. The holding concept of DCP is that every 
frequent itemset means that their subsets are also 
frequent. In this chapter, we address the issue of 
DCP in Weighted ARM. We generalize and solve 

Table 2. Transactions 

TID Items

1 1,2,4

2 2,3

3 1,2,3,4

4 1,3,4

Table 1. Weighted items database 

ID Item Profit Weight …

1 Scanner 10 0.1 …

2 Printer 30 0.3 …

3 Monitor 60 0.6 …

4 Computer 90 0.9 …
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the problem of downward closure property for 
databases with binary and quantitative items; use 
t-tree data structures to efficiently handle itemsets 
and then evaluate the proposed approach with 
experimental results.

This chapter is an amalgamation of the ma-
terial presented in (Khan, Muyeba & Coenen, 
2008) and (Muyeba, Khan & Coenen, 2008) with 
additional details provided on the structure and 
experimental results.

The chapter is organised as follows: section 2 
presents background and related work; section 3 
gives problem definition for weighted ARM with 
binary and fuzzy data and details weighted down-
ward closure property; section 4 gives frameworks 
comparison; section 5 reviews experimental evalu-
ation and section 8 concludes the chapter.

BACKGROUND AND 
RELATED WORK

In association rule mining literature, weights of 
items are mostly treated as equally important i.e. 
weight one (1) is assigned to each item until re-
cently where some approaches generalize this and 
give item weights to reflect their significance to the 
user (Lu, Hu, & Li 2001). The weights may be as 
a result of particular promotions for such items or 
their profitability etc. There are two approaches for 
analyzing data sets with weighted settings: pre- and 
post-processing. Post processing handles firstly 
the non-weighted problem (weights=1) and then 
perform the pruning process later. Pre-processing 
prunes the non-frequent itemsets after each itera-
tion using weights. The issue in post-processing 
weighted ARM is that first; items are scanned 
without considering their weights and later, the 
rule base is checked for frequent weighted ARs. 
By doing this, we end up with a very limited item-
set pool to check weighted ARs and potentially 
missing many itemsets.

In pre-processed classical ARM, itemsets are 
pruned by checking frequent ones against weighted 

support after every scan. This results in less rules 
being produced as compared to post processing 
because many potential frequent super sets are 
missed. In (Cai et al., 1998) a post-processing 
model is proposed with two algorithms proposed 
to mine itemsets with normalized and un-normal-
ized weights. The authors use a k-support bound 
metric to ensure validity of the DCP but does not 
guarantee that every subset of a frequent set will 
be frequent unless the k-support bound value of 
(k-1) subsets was higher than (k).

An efficient mining methodology for Weighted 
Association Rules (WAR) is proposed in (Wang, 
Yang & Yu, 2000). A Numerical attribute was as-
signed for each item where the weight of the item 
was defined as part of a particular weight domain. 
For example, soda[4,6] → snack[3,5] means that 
if a customer purchases soda in the quantity be-
tween 4 and 6 bottles, he is likely to purchase 3 
to 5 bags of snacks. WAR uses a post-processing 
approach by deriving the maximum weighted 
rules from frequent itemsets. Post WAR doesn’t 
interfere with the process of generating frequent 
itemsets but focuses on how weighted AR’s can 
be generated by examining weighting factors of 
items included in generated frequent itemsets.

Similar techniques for weighted fuzzy associa-
tion rule mining are presented in (Lu, 2002; Wang 
& Zhang, 2003; Yue et al., 2000). In (Gyenesei, 
2000), a two-fold pre processing approach is used 
where firstly, quantitative attributes are discre-
tised into different fuzzy linguistic intervals and 
weights assigned to each linguistic label. A mining 
algorithm is applied then on the resulting dataset 
by applying two support measures for normalized 
and un-normalized cases. The downward closure 
property is addressed by using the z-potential fre-
quent subset for each candidate set. An arithmetic 
mean is used to find the possibility of frequent 
k+1itemset, which is not guaranteed to validate 
the valid downward closure property.

Another significance framework that handles 
DCP is proposed in (Tao, Murtagh & Farid, 
2003). Weighting spaces were introduced as inner-
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transaction spaces, item spaces and transaction 
spaces, in which items can be weighted depending 
on different scenarios and mining focus. In this 
framework, however, support is calculated by 
only considering the transactions that contribute 
to the itemset. Further, no discussions were made 
on interestingness issue of the rules produced.

In this chapter, we present an approach to 
mine weighted binary and quantitative data (by 
fuzzy means) to address the issue of invalidation 
of DCP. We then show that using the proposed 
technique, rules can be generated efficiently with 
a valid DCP without any biases found in pre- or 
post-processing approaches.

PROBLEM DEFINITION

In this section, we define terms and basic con-
cepts for item weight, itemset transaction weight, 
weighted support and weighted confidence for 
both binary (boolean attributes) and fuzzy (quanti-
tative) data. The technique for binary data is termed 
as Binary Weighted Association Rule Mining 
(BWARM) and that for fuzzy data Fuzzy Weighted 
Association Rule mining (FWARM). Interested 
readers can see (Muyeba, Khan & Coenen, 2008) 
for formal definitions and more details.

Binary Weighted Association 
Rule Mining (BWARM)

Let the input data D with transactions t = {t1, 
t2,..,tn} have a set of items I i i iI= { , ,.., }| |1 2

and a set of positive real numbered weights 
W w w wI= { , ,.., }| |1 2  corresponding to each item 
i. Each ith transaction ti is some subset of I and a 
weight w is attached to each item t ii j[ ](jth item 
in the “ith” transaction). A pair (i, w) is called 
a weighted item where i I and the “” item’s 
weight in the “” transaction is given byt i wi j[ [ ]] .

We illustrate the terms and concepts using 
Tables 3 and 4. Table 3 contains 10 transactions of 

up to 5 items. Table 4 has corresponding weights 
corresponding to each item i in T. We use sum of 
votes (counts) for each itemset by aggregating 
weights per item as a standard approach (Tao, 
Murtagh & Farid 2003).

Definition 1. Item Weight is a non-negative 
real value given to each item ranging [0..1] with 
some degree of importance, a weight .

Definition 2. Itemset Transaction Weight is the 
aggregated weight of all the items in the itemset 
present in a single transaction. Itemset transaction 
weight for an itemset X can be calculated as:

vote for t satisfying X t i wi t w X i k
k

x

=  
=
( [ [ ]][ [ ]] )

| |

1   
 (1)

Itemset transaction weight of item-
set (A, B) from Table 4 is calculated as: 
ITW A b x( , ) . . .= =0 6 0 9 0 54 .We can use other 
aggregation operators other than product but we 
choose this for simplistic reasons and for easy 
compliance with the DCP property.

Definition 3.Weighted Support WS is the ag-
gregated sum of itemset transaction weight ITW 
of all the transactions in which itemset is present, 
divided by the total number of transactions. It is 
calculated as:

WS X
t i w

n

t w X i k
k

x

i

n

( )
( [ [ ]][ [ ]] )

| |

=
 

==


11  (2)

Table 3. Transactional database 

T Items T Items

t1 A B C D t6 A B C D E

t2 B D t7 B C E

t3 A D t8 D E

t4 C t9 A C D

t5 A B D E t10 B C D E
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WS of itemset (A, B) is calculated as: 
0 54 0 54 0 54

10
0 162. . . .+ + =

Definition 4.Weighted Confidence WC is the 
ratio of sum of votes satisfying both X Y to the 
sum of votes satisfying X. It is formulated (with 
Z X Y=  ) as:

WC X Y WS Z
WS X

t z w

t

z w Z i k
k

Z

i w X

( ) ( )
( )

[ [ ]]( [ [ ]] )

| |

( [ [ ]] )

 = =
 

=

 


1

ii k
k

X
i

n

x w[ [ ]]
| |

=

= 


1

1

 
 (3)

Weighted Confidence of itemset (A, B) is 

calculated with WS A( ) * . .= =5 0 6
10

0 3  as 

WS A B WS A B
WS A

( , ) ( )
( )

.

.
.=  = =0 16

0 30
0 54

Fuzzy Weighted Association 
Rule Mining (FWARM)

A fuzzy dataset D consists of fuzzy transactions 
T t t tn' { , ,.., }= 1 2 with fuzzy sets associated with 
each item in I i i iI= { , ,.., }| |1 2 , which is identified 
by a set of linguistic labels L l l l I= { , ,.., }| |1 2 (for 
example L small medium l e= { , , arg } ). We 
assign a weight w to each l in L associated with 
i. Each attribute t ii j' [ ]  is associated (to some 
degree) with several fuzzy sets. The degree of 
association is given by a membership value in the 
range [0..1], which indicates the correspondence 

between the value of a given t ii j' [ ]  and the set 
of fuzzy linguistic labels. The “kth”weighted fuzzy 
set for the “jth” item in the “ith” fuzzy transaction 
is given by t i l wi j k' [ [ [ ]]] .

We illustrate the fuzzy weighted ARM defini-
tion terms and concepts using Tables 5 and 6. Table 
5 contains transactions for 2 quantitative items 
discretised into two overlapped intervals with 
fuzzy values. Table 6 has corresponding weights 
associated to each fuzzy item i[l] in T.

Definition 5. Fuzzy Item Weight FIW is a 
non-negative value in the range [0..1] attached 
to each fuzzy set wrt some degree of importance 
(Table 6). Weight of a fuzzy set for an item ij is 
denoted as ij[lk[w]]

Definition 6.Fuzzy Itemset Transaction Weight 
FITW is the aggregated weights of all the fuzzy 
sets associated with items in the itemset present 
in a single transaction. Fuzzy Itemset transaction 
weight for an itemset (X, A) can be calculated 
as:

vote for  satisfying t X t i l wi i l w X i
k

L

j k
'

( [ [ [ ]]] )
'

| |

[ [ [=  
=


1

]]]]
 

 (4)

Let’s take an example of itemset <(X, Medium), 
(Y, Small)> denoted by (X, Medium) as A and (Y, 
Small) as B. Fuzzy Itemset transaction weightof 
itemset (A, B) in transaction 1 is calculated as:

FITW A B x x x( , ) ( . . ) ( . . ) .= =0 5 0 7 0 2 0 5 0 035  

Table 4. Items with weights 

Items i Item Weights (IW)

A 0.60

B 0.90

C 0.30

D 0.10

E 0.20

Table 5. Fuzzy transactional database 

TID X Y

Small Medium Small Medium

t1 0.5 0.5 0.2 0.8

t2 0.9 0.1 0.4 0.6

t3 1.0 0.0 0.1 0.9

t4 0.3 0.7 0.5 0.5
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Definition 7.Fuzzy Weighted Support FWS is 
the aggregated sum of FITW of all the transaction’s 
itemsets present divided by the total number of 
transactions, represented as:

FWS X
t i l w

n

i l w X i j k
i

L

( )
( ) '[ [ [ ]]][ [ [ ]]]

| |

=
 

=


1  (5)

FWS of itemset (A, B) is calculated as: 

FWS A B( , ) . .= =0 297
4

0 074

Definition 8.Fuzzy Weighted Confidence FWC 
is the ratio of sum of votes satisfying both X Y
to the sum of votes satisfying X with Z X Y=   
and given as:

FWC X Y FWS Z
FWS X

t z wz w Z i k
k

Z

i w

( ) ( )
( )

[ [ ]]( [ [ ]] )
'

| |

( [ [ ]]

 = =
 

=




1


=

= 


X i k
k

X
i

n

t x w)
'

| |

[ [ ]]
1

1

 
 (6)

FWC of itemset (A, B) is calculated as: 

FWC A B( , ) .
.

.= =0 074
0 227

0 325
:

Weighted Downward 
Closure Property (DCP)

In classical ARM algorithm, it is assumed that 
if the itemset is large, then all its subsets should 
be large, a principle called downward closure 
property (DCP). For example, in classical ARM 
using DCP, it states that if AB and BC are not 

frequent, then ABC and BCD cannot be frequent, 
consequently their supersets are of no value as 
they will contain non-frequent itemsets. This 
helps algorithm to generate large itemsets of 
increasing size by adding items to itemsets that 
are already large. In the weighted ARM where 
each item is given a weight, the DCP does not 
hold in a straightforward manner. Because of the 
weighted support, an itemset may be large even 
though some of its subsets are not large and we 
illustrate this in Table 7.

In Table 7, all frequent itemsets are generated 
using 30% support threshold. In column two, item-
set {ACD} and {BDE} are frequent with support 
30% and 36% respectively. And all of their subsets 
{AC}, {AD}, {CD} and {BD}, {BE}, {DE} are 
frequent as well. But in column 3 with weighted 
settings, itemsets {AC}, {CD} and {DE} are no 
longer frequent and thus violates the DCP.

We argue that the DCP with binary and quan-
titative data can be validated using the proposed 
approach. We prove this by showing that if an 
itemset is not frequent, then its superset cannot 
be frequent and WS subset WS erset( ) (sup )  
is always true (see Table 7, column 4, Proposed 
Weighted ARM, only the itemsets are frequent 
with frequent subsets). A formal proof and more 
detailed description of the weighted DCP is given 
in (Muyeba, Khan & Coenen, 2008).

Frameworks Comparison

In this section, we give a comparative analysis 
of frequent itemset generation between classical 
ARM, weighted ARM and the proposed binary 
and fuzzy ARM frameworks. In Table 7 all the 
possible itemsets are generated using Tables 3 and 
4 (i.e. 31 itemsets from 5 items), and the frequent 
itemsets generated using classical ARM (column 
2), weighted ARM (column 3) and proposed 
weighted ARM framework (column 4). Column 
1 in Table 7 shows itemset’s ids.

A support threshold for classical ARM is set 
to 30% and for classical WARM and proposed 

Table 6. Fuzzy items with weights 

Fuzzy Items i[l] Weights (IW)

(X, Small) 0.9

(X, Medium) 0.7

(Y, Small) 0.5

(Y, Medium) 0.3
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Weighted ARM it is set to 0.3 and 0.03 respec-
tively). Itemsets with a highlighted background 
indicate frequent itemsets. This experiment is 
conducted in order to illustrate the effect of item’s 
occurrences and their weights on the generated 
rules.

Frequent itemsets in column 3 are generated 
using classical weighted ARM pre-processing 
technique. In this process all the frequent itemsets 
are generated first with count support and then 
those frequent itemsets are pruned using their 
weights. In this case only itemsets are generated 
from the itemset pool that is already frequent 
using their count support. Itemsets with shaded 
background and white text are those that WARM 
does not consider because they are not frequent 
using count support. But with weighted settings 
they may be frequent due to significance associ-
ated with them. Also, the generated itemsets do 
not hold DCP as described in sect. 3.2.

In column 4 frequent itemsets are generated 
using proposed weighted ARM framework. It is 
noted that the itemsets generated are mostly fre-
quent using count support technique and interest-
ingly included fewer rules like {AB→C} that is 
not frequent, which shows that the non-frequent 
itemsets can be frequent with weighted settings 
due to their significance in the data set even if 
they are not frequent using count support.

In column 4, itemsets {A→B} and {B→C} are 
frequent due to high weight and support count in 
transactions. It is interesting to have a rule {B→D} 
because D has very low weight (0.1) but it has 
the highest count support i.e. 80% and it appears 
more with item B than any other item i.e. with 
50% support. Another aspect to note is that, B is 
highly significant (0.9) with high support count 
(60%). These kinds of rules can be helpful in 
“Cross-Marketing” and “Loss Leader Analysis” 
in real life applications.

Also the itemsets generated using our approach 
holds valid DCP as shown in sect. 3.2. Table 7 gives 
a concrete example of our approach and we now 
perform experiments based on this analysis.

Weighted Apriori-T Algorithm (WAT)

The proposed Weighted Apriori-T ARM (WAT) 
algorithm is developed using T-tree data struc-
tures (Coenen, Leng, & Goulbourne, 2004) and 
works in a fashion similar to the Apriori algorithm 
(Agrawal & Srikant, 1994). The WAT algorithm 
consists of two major steps:

1.  Apply Apriori-T association rule mining 
algorithm using weighted support measures 
of the form described above to produce a set 
of frequent item sets F.

2.  Process F and generate a set of weighted 
ARs R such that  r R the interesting-
ness threshold (confidence as desired by 
the end user) is above some user specified 
threshold.

The Fuzzy Apriori-T algorithm (Apriori-Total) 
is founded on a tree structure called the T-tree 
(Coenen, Leng & Ahmed 2004). This is a set enu-
meration tree structure in which to store frequent 
item set information. What distinguishes the T-tree 
from other set enumeration tree structures is:

1.  Levels in each sub-branch of the tree are 
defined using arrays. This thus permits 
“indexing in” at all levels and consequently 
offers computational advantages.

2.  To aid this indexing the tree is built in “re-
verse”. Each branch is founded on the last 
element of the frequent sets to be stored. This 
allows direct indexing with attribute number 
rather than first applying some offset.

Thus given a data set of the form:
{ 1 3 4 }
{ 2 4 5 }
{ 2 4 6 }with weights: 1=0.6, 2=0.1, 3=0.3, 

4=0.9, 5=0.2, 6=0.1, and assuming a support count 
of 0.01, we can identify the following frequent sets 
(weighted support counts in parenthesis):



54

Effective Mining of Weighted Fuzzy Association Rules

These can be presented in a T-tree of the form 
given in Figure 1 (note the reverse nature of the 
tree). The internal representation of this “reverse” 
T-tree founded on arrays of T-tree nodes that can 
be conceptualised as shown in Figure 2.

Table 7. Frequent itemsets comparison 

ID Classical ARM Classical Weighted ARM Proposed Weighted ARM

1. A (50%) A (30%) A (0.300)

2. A→B (30%) A→B (45%) A→B (0.162)

3. A→B→C (20%) A→B→C (36%) A→B→C (0.032)

4. A→B→C→D (20%) A→B→C→D (38%) A→B→C→D (0.003)

5. A→B→C→D→E (10%) A→B→C→D→E (21%) A→B→C→D→E (0.000)

6. A→B→C→E (10%) A→B→C→E (20%) A→B→C→E (0.003)

7. A→B→D (30%) A→B→D (48%) A→B→D (0.016)

8. A→B→D→E (20%) A→B→D→E (36%) A→B→D→E (0.002)

9. A→B→E (20%) A→B→E (34%) A→B→E (0.022)

10. A→C (30%) A→C (27%) A→C (0.054)

11. A→C→D (30%) A→C→D (30%) A→C→D (0.005)

12. A→C→D→E (10%) A→C→D→E (12%) A→C→D→E (0.000)

13. A→C→E (10%) A→C→E (11%) A→C→E (0.004)

14. A→D (50%) A→D (35%) A→D (0.030)

15. A→D→E (20%) A→D→E (18%) A→D→E (0.002)

16. A→E (20%) A→E (16%) A→E (0.024)

17. B (60%) B (54%) B (0.540)

18. B→C (40%) B→C (48%) B→C (0.108)

19. B→C→D (30%) B→C→D (39%) B→C→D (0.008)

20. B→C→D→E (20%) B→C→D→E (30%) B→C→D→E (0.001)

21. B→C→E (30%) B→C→E (42%) B→C→E (0.016)

22. B→D (50%) B→D (50%) B→D (0.045)

23. B→D→E (30%) B→D→E (36%) B→D→E (0.005)

24. B→E (40%) B→E (44%) B→E (0.072)

25. C (60%) C (18%) C (0.180)

26. C→D (40%) C→D (16%) C→D (0.012)

27. C→D→E (20%) C→D→E (12%) C→D→E (0.001)

28. C→E (30%) C→E (15%) C→E (0.018)

29. D (80%) D (8%) D (0.080)

30. D→E (40%) D→E (12%) D→E (0.008)

31. E (50%) E (10%) E (0.100)

1 (0.067) 
2 (0.056) 
3 (0.067) 
4 (0.067) 
5 (0.067) 
6 (0.033)

1 3 (0.060) 
1 4 (0.040) 
2 4 (0.033) 
2 5 (0.010) 
3 4 (0.040) 
3 6 (0.030)

4 5 (0.040) 
4 6 (0.020) 
1 3 4 (0.012) 
2 4 5 (0.020)
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The storage required for each node (repre-
senting a frequent set) in the T-tree is then 12 
Bytes:

1.  Reference to T-tree node structure (4 
Bytes)

2.  Support count field in T-tree node structure 
(4 Bytes)

3.  Reference to child array field in T-tree node 
structure (4 Bytes)

Thus house keeping requirements are still 8 
Bytes; however storage gains are obtained because 
it is not necessary to explicitly store individual 
attribute labels (i.e. column numbers represent-
ing instantiated elements) as these are implied by 
the indexing. Of course this approach must also 
require storage for “stubs” (4 Bytes) where nodes 
are missing (unsupported). Overall the storage 
advantages for this technique is thus, in part, de-
pendent on the number of missing combinations 
contained in the data set.

We used a generalised version of T-tree data 
structure and it remains the same for binary and 
fuzzy data under the weighted settings. The only 

difference is the way the algorithm calculates 
support count and generates frequent sets for 
each binary weighted and the fuzzy weighted 
approaches.

The T-tree described above is built in an 
Apriori manner, as proposed in (Coenen, Leng & 
Goulbourne, 2004), starting with the one item sets 
and continuing until there are no more candidate 
N-itemsets. Thus, at a high level, a standard Apriori 
algorithm is used as shown in Figure 3.

In more detail the Apriori-T algorithm com-
mences with a method createTotalSupportTree 
which is presented in Figure 4. The method starts 
by generating the top level of the T-tree (crea-
teTtreeTopLevel) and then generating the next 
level (generateLevel2) from the supported sets 
in level 1. Remember that if a 1-itemset is not 
supported none of its super sets will be supported. 
Once we have generated level 2 further levels can 
be generated (createTtreeLevelN).

The method to generate the top level of a T-tree 
is as presented in Figure 5. Note that the method 
includes a call to a general T-tree utility method 
pruneLevelN described later.

The generateLevel2 method loops through the 

Figure 1. Conceptual example of the T-tree data structure

Figure 2. Internal representation of T-tree presented in Figure 1
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top level of the T-tree creating new T-tree arrays 
where appropriate (i.e. where the immediate par-
ent nodes is supported). The method is outlined in 
Figure 6. Note that the method includes a call to a 
general T-tree utility method generateNextLevel() 
(also described later).

Once we have a top level T-tree and a set of 
candidate second levels (arrays) we can proceed 
with generating the rest of the T-tree using an 
iterative process, the createTtreeLevelN method 
presented in Figure 7. The createTtreeLevelN() 
method calls a number of other methods addSup-
portToTtreeLevelN(), pruneLevelN (also called 
by the createTtreeTopLevel() method) and gen-
erateLevelN() which are presented in Figures 8 
and 9 respectively.

Experimental Evaluation

In this section we will test our algorithms with 
different datasets in order to evaluate the quality, 
efficiency and effectiveness of our approaches. 
The experiments are divided into two (i) Quality 
measures (ii) Performance measures, for datasets 
with weighted settings. Both synthetic and real 
datasets are used in experiments. Data sets are 
obtained as follows: retail (Brijs et al., 1999), 
T10I4D100K (Dataset 2), Poker Hand (Merz & 
Murph, 1998), Connect-4 (Merz & Murph, 1998), 
Connect (Merz & Murph, 1998; DataSet 1), Pumsb 
(Dataset 2) and Pumsb Star (Dataset 2).

Table 8 characterises the datasets in terms of 
the number of transactions, the number of dis-
tinct items, the average transaction size, and the 
maximum transaction size. It is worth mentioning 
that datasets contains sparse and dense data, since 
most association rules discovery algorithms were 
designed for these types of problems. Weights were 
generated randomly and assigned to all items in 
the dataset to show their significance. Both Retail 
and T10I4D100K datasets (Table 8) were fuzzi-
fied to obtain fuzzy sets by using the approach 
described in (Khan, Muyeba & Coenen, 2008) to 
generate a fuzzy dataset where each attribute was 

divided into five different fuzzy sets.
Experiments were undertaken using four dif-

ferent association rule mining algorithms. Four 
algorithms were used for each approach, namely 
Binary Weighted Apriori-T (BWAT), Fuzzy 
Weighted Apriori-T (FWAT), standard ARM as 
Classical ARM and WARM as post processing 
weighted ARM algorithm.

For quality measures, we compared the number 
of frequent itemsets and the interesting rules gen-
erated using four algorithms described above. In 
the second experiment, we showed the scalability 
of the proposed BWAT and FWAT algorithms by 
comparing the execution time with BWARM, 
FWARM and WARM (Muyeba, Khan & Coenen, 
2008) by varying user specified support thresholds 
and size of data (number of records).

Quality Measures

For quality measures, both synthetic and real 
retail datasets with binary and fuzzy extensions 
described above were used. Each item is assigned 
a weight range between [0..1] according to their 
significance in the dataset.

In Figures 10 and 11, the x-axis shows support 
thresholds from 2% to 10% and on the y-axis the 
number of frequent itemsets. Four algorithms are 
compared, BWAT (Binary Weighted Apriori-T) 
algorithm using weighted binary datasets; FWAT 
(Fuzzy Weighted Apriori-T) algorithm using fuzzy 
attributes and weighted fuzzy linguistic values; 
Classical ARM using standard ARM with binary 
dataset and WARM using weighted binary datasets 
and applying a post processing approach. Note 
that the weight of each item in classical ARM is 
1 i.e. all items have equal weight.

The results show quite similar behavior of the 
three algorithms to classical ARM. As expected 
the number of frequent itemsets increases as the 
minimum support decreases in all cases. Number 
of frequent itemsets generated using the WARM 
algorithm are always less than the number of 
frequent itemsets generated by classical ARM 
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Figure 3. Apriori Algorithm

Figure 4. The createTotalSupportTree method

Figure 5. The createTtreeTopLevel method
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Figure 6. The createTtreeLevelN method

Figure 7. The addSupportToTtreeLevelN method and its related addSupportToTtreeFindLevel method
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because WARM uses only generated frequent 
itemsets in the same manner as classical ARM. 
This generates less frequent itemsets and misses 
many potential ones (Muyeba, Khan & Coenen, 
2008).

We do not use the classical ARM approach 
to first find frequent itemsets and then re-prune 
them using weighted support measures. Instead 
all the potential itemsets are considered from the 
beginning for pruning using Apriori approach 
(Agrawal & Srikant, 1994) in order to validate 
the DCP. Results of proposed approach are bet-
ter than WARM because all possible frequent 
itemsets and rules are generated as we consider 
both itemset weights and their support count. 
Moreover, BWAT, classical ARM and WARM 
utilise binary data. FWAT generates more rules 
because of the extended fuzzy attributes, and 
it considers the degree of membership instead 

of attribute presence only (count support) in a 
transaction. Figures 12 and 13 show the number 
of interesting rules generated using confidence 
measures. In all cases, the number of interesting 
rules is less because the interestingness measure 
generates fewer rules.

FWAT produces more rules because of the 
high number of initially generated frequent 
itemsets due to the introduction of more fuzzy 
sets for each quantitative attribute. Given a high 
confidence, BWAT outperforms classical WARM 
because the number of interesting rules produced 
is greater than WARM. This is because BWAT 
generates rules with items more correlated to 
each other and consistent at a higher confidence 
unlike WARM, where rules keep decreasing even 
at high confidence.

The experiments show that the proposed 
framework produces better results as it uses all the 

Figure 8. The pruneLevelN
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Figure 9. The generateLevelN method and its related generateNextLevel method

Table 8. Data sets used for experiments 

Dataset # of Transactions Distinct Items Avg. Trans. Size Max. Trans. Size

Retail 88,163 16,470 13 76

T10I4D100K 100,000 1000 10 30

Poker Hand 1000000 95 11 11

Connect-4 67557 129 42 42

Connect 67557 129 43 43

Pumsb 49046 7116 74 74

Pumsb Star 49046 7116 50 63
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possible itemsets and generates rules effectively 
using valid DCP. Further, the novelty is the abil-
ity to analyse both binary and fuzzy datasets with 
weighted settings.

Performance Measures

Experiment two compares the execution time 
of BWAT and FWAT algorithms with BWARM, 
FWARM and WARM algorithms. We investigated 
the effect on execution time caused by varying 
the weighted support threshold with fixed data 
size (number of records) and by varying the data 
size with fixed support. In Figures 14 and 15, a 
support threshold from 2% to 10% is used.

We have showed in the experiments that pro-
posed BWAT and FWAT algorithm outperform 
the previous weighted ARM approaches in terms 
of execution time.

Results show that BWAT has almost similar 

execution time to FWAT. The minor difference 
is due to the way it generates frequent sets i.e. it 
considers items weights and their count support. 
Similarly from Figure 10, it can be noted that 
BWAT and FWAT algorithms scale linearly with 
increasing weighted support threshold, which is 
similar behavior to Classical ARM.

Finally the approach is tested on several real 
and synthetic datasets in order to show its ap-
plicability. Five different datasets were used to 
show the effect on execution time and the number 
of frequent sets generated using both sparse and 
dense datasets. Figure 18 shows the execution 
time of proposed algorithm by varying the sup-
port threshold for different datasets. It can be seen 
that the execution time increases as the threshold 
decreases in all cases irrespective of dataset type. 
Similarly in Figure 19 number of frequent sets 
increases as the support threshold decreases and 
it affects the execution time, again similar to the 

Figure 10. No. of frequent itemsets generated 
using user specified support threshold

Figure 11. No. of frequent itemsets generated 
using user specified support threshold

Figure 12. No. of interesting rules generated using 
user specified confidence

Figure 13. No. of interesting rules generated using 
user specified confidence
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behavior of Classical ARM.

CONCLUSION

We have presented a generalised approach for 
effectively mining weighted fuzzy association 
rules from databases with binary and quantitative 

(fuzzy) data. A classical model of binary and fuzzy 
association rule mining is adopted to address the 
issue of invalidation of downward closure property 
(DCP) in weighted association rule mining. This 
was addressed using an improved model. We used 
classical and weighted ARM examples to compare 
support and confidence measures and evaluated 
the effectiveness of the proposed approach ex-

Figure 14. Performance measures: Varying 
weighted support (WS) threshold

Figure 15. Performance measures: Varying 
weighted support (WS) threshold

Figure 16. Performance measures: Varying data 
siz (num. of records)

Figure 17. Performance measures: Varying data 
size (num. of records)

Figure 18. Execution time (different datasets) Figure 19. Frequent itemsets (different datasets)
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perimentally. We have demonstrated the validity 
of the DCP with formal comparisons to classical 
weighted ARM. It is notable that the approach as 
presented is effective in analysing databases with 
binary and fuzzy attributes with weighted settings. 
Moreover the proposed WAT algorithms (BAWT 
and FWAT with binary and fuzzy data) generate 
weighted association rules efficiently as compared 
to the previous weighted ARM approaches and is 
demonstrated experimentally. Further work will 
extend the framework to utility mining and how 
temporal features could be incorporated knowing 
for example the fact that weights and utilities can 
be dynamic entities in the life cycle of an item. 
Performance issues will then form the basis of 
the evaluation of such a framework.
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