
A Directed Acyclic Graph (DAG) Ensemble Classification Model: An

Alternative Architecture for Hierarchical Classification

Esra’a Alshdaifat, Frans Coenen, Keith Dures

Abstract

In this paper a hierarchical ensemble classification approach, that utilizes a Directed Acyclic

Graph (DAG) structure, is proposed as a solution to the multi-class classification problem. Two

main DAG structures are considered: (i) rooted DAG, and (ii) non-rooted DAG. The main

challenges that are considered in this paper are: (i) the successive misclassification issue

associated with hierarchical classification, and (i) identification of the starting node within the

non-rooted DAG approach. To address these issues the idea is to utilize Bayesian probability

values to: select the best starting DAG node, and to dictate whether single or multiple paths

should be followed within the DAG structure. The reported experimental results indicated that

the proposed DAG structure is more effective than when using a simple binary tree structure for

generating a hierarchical classification model.

Keywords: Hierarchical Classification, Ensemble, Directed Acyclic Graph (DAG), Multi-

class Classification.

Introduction

A recognized issue associated with Single-label Multi-class classification, where examples

are associated with exactly one element of the set of class labels C, C > 2, is that when the

number of class labels |C| increases the effectiveness of the classification tends to diminish. The

Ensemble methodology is considered to be one of the most effective strategies to handle the

multi-class problem (Bauer & Kohavi, 1999; Dietterich, 2000; Hansen & Salamon, 1990; Jiawei

et al., 2011; Opitz & Maclin, 1999; Oza & Tumer, 2008; Quinlan, 1996; Zhou, 2009). The

ensemble model is a composite model comprised of a number of learners (classifiers), often

referred to as base learners or weak learners, that “collaborate” to obtain a better classification

performance than can be obtained from using a single stand-alone model. Classifiers making up

an ensemble can be arranged in three main formats: (i) concurrent (Breiman, 1996, 2001;

Machov et al., 2006), (ii) sequential (Freund et al., 1999; Wirth &Catlett, 1988), and (iii)

hierarchical (Athimethphat & Lerteerawong, 2012; Chen et al., 2004; Kumar et al., 2002; Lei &

Govindaraju, 2005; Madzarov et al., 2008). A commonly adopted structure for hierarchical

model generation is a binary tree constructed in either a bottom-up or a top-down manner

(Beygelzimer et al., 2007; Kumar et al., 2002).

The novel idea presented in this paper is the generation and usage of a hierarchical

ensemble classification model that involves arranging the base classifiers in the form of Directed

Acyclic Graph (DAG) structure, where each node in the DAG holds a classifier. Nodes near the

root of the hierarchy hold classifiers designed to discriminate between groups of class labels

while the leaves hold classifiers designed to distinguish between individual class labels. So as to

distribute class labels across the DAG nodes the use of a “combination technique” is proposed.

One of the most significant advantages of the DAG classification approach, compared to (say)

the binary tree approach, is the ability to include a greater number of possible class label

combinations at each level. The work presented in this paper considers two alternative DAG

structures to support the generation of the desired DAG hierarchical classification approach: (i)

rooted DAG, and (ii) non-rooted DAG. The rooted DAG structure is the most straightforward;

however, as will become apparent later in this paper, it entails a number of disadvantages in the

context of scalability, effectiveness, and efficiency. The proposed non-rooted structure seeks to

address the disadvantages of the rooted DAG. The features provided by the non-rooted DAG

structure are that: (i) it enables the elimination of the root node where the largest number of class

combinations are considered, as well as reducing the overall number of levels in the desired

model (depth pruning); and (ii) it enables the application of breadth pruning, reducing the

number of classifiers that need to be generated at each DAG level so as to reduce the overall size

of the DAG further (note that breadth pruning can not be applied to the rooted DAG approach

because the rooted DAG requires inclusion of all classes combinations). An issue with respect to

the non-rooted DAG structure, as the name implies, is the need to determine the “starting node”

(the root) from which the classification process is to commence. To this end it is proposed that a

classifier generator, such as Naive Bayes classification, that produces probability values that can

be utilized to determine the starting node is used.

The presented work is also concerned with addressing the general drawback of hierarchical

classification, that of successive misclassification whereby, if a record is misclassified early on

in the process it will continue to be misclassified at deeper levels, regardless of the classifications

proposed at lower level nodes and the final leaf nodes. To address this problem a multiple path

strategy is proposed (facilitated by the probability values generated by the Naive Bayes

classifiers at the DAG nodes). The proposed multi-class DAG hierarchical ensemble model is

fully described in this paper. Its operation is evaluated by comparing it with: “stand alone”

classification, established ensemble classifiers, and a hierarchical binary tree structure based

approach.

Literature Review

This section provides a generic overview of the hierarchical ensemble methodology for

solving the multi-class classification problem. The hierarchical ensemble methodology is a

relatively recently proposed approach to address the multi-class classification problem which

involves the generation of a hierarchical “meta-algorithm” (Kumar et al., 2002; Madzarov et al.,

2008). A common structure adopted for hierarchical classification, as noted in the previous

section, is a binary tree structure constructed in either a bottom-up or top-down manner

(Beygelzimer et al., 2007; Kumar et al., 2002). In the top-down approach, the root node contains

the complete set of class labels {c1, c2, …, cn}. Starting from the root, the set of class labels at

each node is recursively split, and a classifier is trained to distinguish between the two subsets.

Using the bottom-up approach a merging process is adopted similar to agglomerative

hierarchical clustering. The two nodes with the closest distance are merged to form a node

describing a new meta-class (Beygelzimer et al., 2007). An example binary tree hierarchy is

presented in Figure 1. At the root we discriminate between two groups of class labels {a, b, c}

and {d, e}. At the next level we distinguish between smaller groups, and so on, till we reach

nodes with classifiers that can assign a single class label to a given record.

Figure 1. Binary Tree classifier example.

When considering hierarchical classification models the necessary class partitioning can be

conducted using a variety of methods such as data splitting or clustering. The performance of the

binary tree approach, the most commonly used hierarchical ensemble model, is significantly

influenced by the adopted class partitioning method; inappropriate choices can result in poor

performance (Alshdaifat, Coenen, & Dures, 2013a, 2013b, 2014). Other than the nature of the

grouping method to be adopted, a second drawback of the binary tree based hierarchical

ensemble model is that if a record is misclassified early on in the classification process (near the

root of the hierarchy) it will continue to be misclassified at deeper levels; the so called

“successive misclassification” problem. In previous work the authors have suggested a multiple-

path strategy, which allows for more than one path to be followed within the binary tree during

the classification stage. This multiple-path strategy was facilitated by the use of classifiers, such

as Naive Bayes or Classification Association Rule Mining (CARM), which feature probability or

confidence values that can be used to determine where one path should be followed and where

two paths should be followed. However, the multi-path strategy only partially resolves the

successive misclassification problem, fundamentally the binary tree structure is not sufficiently

expressive to capture the nature of multi-class classification.

A more recent work has utilised DAG structures to solve the multiclass classification

problem (Songsiri, Phetkaew & Kijsirikul, 2015). More specifically the DAG structure used to

combine the prediction results obtained from a set of binary classifiers, which can be considered

a special case of using a set of binary classifiers to solve the multi-class classification problem.

While with respect to the work presented in this paper, groups of class labels are considered at

each DAG node not two classes (binary classification), this will become more apparent later in

this paper.

The Rooted Directed Acyclic Graph (rootedDAG) Classification Model

Framework

This section describes the proposed rooted DAG classification model. The rooted DAG

classification model is founded on the idea of arranging the classifiers into a hierarchical form

utilizing a rooted DAG structure. Each node in the rooted DAG classification model holds a

classifier. Classifiers at leaves act as binary classifiers while the remaining classifiers (at the root

and intermediate nodes) are directed at groupings of class labels. Naive Bayes classifiers are

generated at each DAG node, the reason for using this type of classifier is because the

probability values produced can be used to direct the hierarchical classification process. In order

to group (partition) the input data D during the hierarchy generation process, combination

techniques are used (as opposed to clustering or splitting as used in the context of binary

structure based hierarchical classification systems). The intuition behind using combination

techniques to distribute classes between nodes within the DAG is that it could result in a better

classification accuracy than the cluster grouping techniques previously considered by the

authors, especially because of the large number of class combinations that need to be included at

each individual level in the DAG structure. An example rooted DAG classifier, for four class

labels C = {a, b, c, d}, is presented in Figure 2. At the root we classify into four class groups, all

possible combination of size |C|-1, at the next level we classify into three class groups.

Classifiers at the final level discriminate between two classes; as a result a single class label can

be assigned to each record.

Figure 2. Rooted DAG example.

The following sub-sections explain the generation and operation of the rooted DAG

classification model in more detail.

Rooted DAG Generation

To generate the desired rooted DAG classification model a Naive Bayes classifier was

generated at each DAG node, and combination techniques were utilized to distribute class labels

between nodes within the DAG. More specifically, starting at the root of the DAG with the

complete class set C (level i = 0), the class groupings at each level are identified by finding all

possible class combinations of size |C| − i (where i is the level number). As the process proceeds

i is increased by one and consequently the “combination size” is decreased by one. The process

continues until the combination size reaches two. The number of classifiers that need to be

learned in order to generate the DAG classification model can be calculated using (1).

Number Of Classifiers = 2N − N − 1 (1)

Where N is the number of class labels in a given dataset.

Algorithm 1 presents the generation process in more detail. The input to the algorithm is

the training data set D and the set of class labels C. The DAG is created in a recursive manner

using the function dagGen. On each recursion the dagGen function is invoked with two

parameters: combinationSize, the combination size (starting with |C| - 1 to 2); and CurrentNodes,

a reference to the current level nodes (resulting from the previous iteration, initially

CurrentNodes = root). The recursive process starts by finding the set of size combinationSize

class combinations, the set combinationsSet (line 12). After that we go through this set (line 14)

and on each iteration: (i) a new DAG node, newNode, is created (line 15), (ii) the set of training

set records that feature the class combination is identified (line 16), (iii) a classifier is trained

using the training set records (line 17); and (iv) the new node is added to the set of accumulated

level nodes so far, NodeSet (line 18). Then we loop through the set of current nodes and add a

link from each current node CurrentNode to the new node newNode whenever the set of class

labels associated with the new node is included in the set of class labels associated with a current

node. The recursive process terminates if combinationSize reaches 2 (line 25).

Rooted DAG Operation

In this section the operation of the rooted DAG classification model is explained. For

classifying a new record the most straightforward strategy is to follow a “path” from the root

node, according to the classification at each hierarchy node, until a node holding a classifier that

can assign a single class label is reached, thus a single path strategy. A disadvantage of the single

path strategy is that it is susceptible to the successive misclassification issue discussed earlier.

The multiple path strategy seeks to address this issue by using the probability values associated

with the Naive Bayes classifiers to decide, at each node, whether to follow single or multiple

paths.

Single path strategy. Starting with the single path strategy, Algorithm 2 summarizes the

procedure. The classification process is done in a recursive manner using the dagClassify

procedure. The dagclassify procedure is called with two parameters: (i) r, the record to be

classified; and (ii) Node, a pointer to the current node location in the DAG. On each recursion

the record r is classified using the classifier at the current DAG node (line 10). The process

proceeds depending on the nature of the returned class label. If it is a single class label then we

return this class (line 12). If we have a group of class labels, dagClassify is called again (line 15)

with r and a pointer (ChildNode) to the child node associated with the identified class group. If

only a single path is followed within the rooted DAG then N - 1 classifiers will be evaluated

(where N is the number of class labels in a given dataset).

Algorithm 1. Rooted DAG Generation

Multiple paths strategy. The Multiple-Path strategy is designed to address the successive

misclassification issue, discussed earlier, that is associated with hierarchical classification. In the

multiple-path strategy more than one path can be followed within the DAG classification model.

More specifically, the Bayesian probability P associated with individual class groups will be

used to dictate whether one or more paths will be followed, at each node, according to a

predefined threshold sigma  (01). Although many paths can be followed at each DAG

node, only two paths are suggested as a maximum, at each DAG node, so that comparisons can

be made with the binary tree hierarchical ensemble model (where only a maximum of two paths

can be followed at each tree node). A second reason is to limit the complexity of the proposed

DAG model, the need for this will become clear later in this paper in the evaluation section

1. Input:

2. D = the input training dataset

3. C = the set of Classes featured in D

4. Output: The generated DAG

5. Start

6. combinationSize = |C|−1

7. root = the root node for the DAG

8. create root classifier

9. dagGen(combinationSize, root)

10. End
11. function dagGen(combinationSize, currentNodes)

12. combinationsSet = set of all class combinations of size combinationSize in C

13. NodeSet = set of new nodes, initially NodeSet ={}

14. for each class combination in the combinationSet do

15. create new node (newNode)

16. generate newNode training records according to class combinations

17. generate newNode classifier using training records

18. add newNode to NodeSet

19. for each node in the currentNodes do
20. if newNode class set is subset of currentNode class set then

21. Add newNode to the currentNode as a child

22. end if

23. end for

24. end for
25. if k > 2 then

26. dagGen(combinationSize − 1, NodeSet)

27. end if

28. end function

where the classification time is reported for single and multiple path strategies. An issue

associated with the suggested multiple-path strategy is how to decide the final class label from

the collection of “candidate classes” resulting from following multiple paths. Several

mechanisms can be adopted, such as: (i) applying some voting scheme and selecting the

candidate class associated with the highest vote, or (iii) generating an accumulated weight for

each candidate class and selecting the class associated with the highest accumulated weight.

According to previous work conducted by the authors (Alshdaifat, Coenen, & Dures, 2013b,

2014)the last strategy is likely to produce the best classification performance, thus it is adopted

with respect to the work presented in this paper. Using this strategy we take into consideration all

probability values in a followed path to produce an accumulated value. More specifically, the

probability values for a followed path are summed and then divided by the number of classifiers

used in the path to produce a NormalisedAccumulatedProbability value, (0 < Normalised

Accumulated Probability <1). The normalized accumulated probability value is calculated for

each candidate class, the candidate class associated with the highest value will be retrieved as the

class label for a given record. Because of space limitations the Multi-Path procedure is included

in Algorithm 4. In the worst case the number of classifiers to be evaluated is given by:

Number Of Classifiers = 2(N−1) − 1 (2)

Where N is the number of class labels in a given dataset.

Algorithm 2. Rooted DAG single path Classification

The Non-rooted Directed Acyclic Graph (non-rooted DAG) Classification

Model Framework

This section describes the proposed non-rooted DAG classification model. A simple

1. Input:

2. r = A new unseen record

3. Root = Start node for the DAG

4. Output:

5. The predicted class label c for the input record r

6. Start

7. c = dagClassify(r, Root)

8. End

9. function dagClassify(r,Node)

10. C = Classification result for r using Node classifier

11. if |C| == 1 then

12. return c (c ∈ C)

13. else

14. ChildNode = child node representing class group C

15. return (dagclassify(r, ChildNode))

16. End if

17. End function

example non- rooted DAG classifier for four class labels, C = {a, b, c, d}, is presented in Figure

3. The first level nodes are assigned class combinations of size three (|C| − 1), while the second

level nodes are assigned class combinations of size two (|C| - 2). The distinction between this

DAG structure and the rooted DAG structure can clearly be seen by comparison with Figure 2.

Figure 3. Non-rooted DAG example.

Non-rooted DAG Generation

The distinctions between the generation of the non- rooted DAG and rooted DAG are: (i)

the elimination of the root node, and (ii) the breadth pruning applied during the generation

process. Note that the breadth pruning is not shown in Figure 3 in which all nodes are generated

except the root node. As mentioned in the introduction to this paper, breadth pruning cannot be

applied in the case of the rooted DAG approach. This is because the rooted DAG requires the

inclusion of all class combinations. More specifically we cannot create a root node, then

eliminate nodes from the next level as this will result in a “null” references preventing the DAG

classification from operating as intended. The aim of the breadth pruning is to eliminate weak

classifiers that may exist at each DAG level, so that only strong classifiers are maintained as part

of the proposed ensemble classification model. The potential advantages are: (i) improving the

classification effectiveness by eliminating weak classifiers that can affect classification accuracy,

and (ii) improving the complexity of the proposed model by reducing the number of nodes in the

DAG model. The breadth pruning scheme is realized by utilizing the AUC (Area Under the

receiver operating Curve) values generated when evaluating the internal classifiers, weak

classifiers are then identified by their low associated AUC values. The breadth pruning process

can be viewed as a two steps process: (i) pruning the first level nodes by evaluating them and

pruning those nodes associated with low AUC values (based on a predefined AUC threshold)

with the proviso that the classes associated with any node to be pruned are still covered by at

least one remaining node in the level, and (ii) pruning the remaining levels by only generating

nodes that are referred to by previous level nodes.

As noted earlier, the flexibility of the non-rooted DAG structure, and the adopted

combination procedure, allows the generation of a DAG with any predefined number of levels.

With respect to the work presented in this paper two different variations of the non-rooted DAG

structure are considered: (i) the standard non- rooted DAG, and (ii) the two-level DAG. In the

first variation the combination sizes range from |C|-1 to 2, while in the second the combination

sizes range from 3 to 2 (only two levels generated). Note that breadth pruning is still applied in

both cases. The conjecture here is that by reducing the number levels to 2 the classification

performance (with respect to efficiency, effectiveness and scalability) of the DAG classification

model will be enhanced, because: (i) the number of classifiers to be generated will be reduced, as

a result the proposed model can be generated for datasets that feature larger number of class

labels than would be possible otherwise; (ii) the internal classifiers are not required to

discriminate between large numbers of class combinations; and (iii) the number of classifiers that

are required to be evaluated during the classification stage will be decreased, as a result the

probability of misclassification will also be decreased as well as the classification run time.

Non-rooted DAG Operation

In this section the operation of the suggested non- rooted DAG classification model is

explained. Two methods of operation are considered: (i) the single path strategy and (ii) the

multiple path strategy. A challenging issue associated with both strategies is how to identify the

best starting node among the set of nodes at the first level in a given DAG. This is addressed by

using the probability values associated with the Naive Bayes classifiers generated for each DAG

node.

Single path strategy. The single path classification strategy can be viewed as a two-step

process: (i) determine a best start node amongst the set of nodes available at the first level in the

DAG by evaluating all the classifiers that exist at this level and selecting the node with the

classifier that generates the highest probability value, and then (ii) drilling down as dictated by

subsequent internal node classifications until a classifier that can assign a single class label to the

given record is arrived at. Algorithm 3 presents the Single path procedure. The inputs to the

algorithm are: (i) a new unseen record r; and (ii) a reference to the nodes at the first level in the

given DAG, FirstLevelNodes (from which all the DAG child nodes can be identified). The

output is a predicted class label for r. The process commences by identifying the best starting

node among nodes at the first level in the DAG (line 8-13) by: (i) looping through the nodes at

the first level (line 8), and (ii) for each node in the first level: classifying r using the respective

node classifier (line 9), and adding the resulting class group, with the associated probability, to S,

the set of class groups and associated probabilities resulting from evaluating first level nodes

(line 10). The best start node is then the node with the highest associated probability value (line

12). The next node will be the child node for the identified startNode representing the class

group associated with maximum probability value (line 13). The next step is a recursive process

using the dagclassify function described in lines 17 to 25. The operation of the dagclassify

function is the same as explained earlier for Algorithm 2.

Algorithm 3. Non-Rooted DAG single path classification

Multiple paths strategy. The multiple-path classification strategy can be viewed as a three-step

process: (i) determine the start node(s) from the set of nodes available at the first level in the

DAG by evaluating all the classifiers that exist at this first level and selecting one or two nodes

as start nodes based on the probability threshold , (ii) for each identified node drill down

following one or two paths as indicated and repeat until a classifier that can assign a single class

label to the given record is arrived at, and finally (iii) identify the class label associated with the

highest generated accumulated weight value. Algorithm 4 summarizes the multiple-path

procedure. The inputs to the algorithm are: (i) the new unseen record r; (ii) a reference,

FirstLevelNodes, to the first level DAG; and (iii) the path selection threshold σ. For simplicity

the algorithm is decomposed into two main functions: dagFirstLevelMultiPathClassify, and

dagMultiPathClassify.

Starting with the dagFirstLevelMultiPathClassify function, which is responsible for determining

the start node (or nodes) amongst the set of nodes available at the first level. The process

commences by evaluating all the classifiers that exist at the first level (lines 14-16), and selecting

the two nodes that generate the highest probability values (lines 18-19). If the second highest

probability value is greater than  then both nodes will be considered as start nodes, otherwise

only the node associated with the highest probability value will be considered as the start node

1. Input

2. r = A new unseen record

3. FirstLevelNodes = nodes at DAG first level

4. Output

5. The predicted class label c for the input record r

6. Start

7. S = Results for r, using DAG first level classifiers, comprised of: (i) class groups

and (ii) associated Bayesian probability values (initially S = {})

8. for each Node in the FirstLevelNodes do

9. classify r using Node classifier

10. add the resulting class group with the associated Bayesian probability value to S

11. Endfor

12. startNode = node associated with the maximum probability value in S

13. ChildNode = child node for startNode representing class group associated with

the maximum probability

14. c = dagclassify(r, ChildNode)

15. End

16.
17. function dagClassify(r, Node)

18. C = Classification result for r using Node classifier

19. if |C| == 1 then

20. return c (c  C)

21. else

22. ChildNode = child node representing class group C

23. return (dagclassi f y(r, ChildNode))

24. End if

25. End function

(lines 18-21). After determining the start node(s) the recursive function dagMultiPathClassify is

called. The dagMultiPathClassify function operates in a similar manner to the dagClassify

function presented in Algorithm 3 except that it uses: (i) the  threshold to decide whether one or

two branches will be followed at each node; (ii) uses the variable accumProb to store the

accumulated Bayesian probability values in a followed path; (iii) maintains a counter to count

the number of probability values in a followed path; and (iv) uses a data structure, Path, in which

to hold candidate class labels with their associated normalized Bayesian probability values. On

each recursion of the dagMultiPathClassify function the Bayes classifier held at the current node

is used to produce a probability value (lines 27-30) with respect to r for each class group. Only

the class groups associated with the two highest probability values are considered (as maximum

of two branches will be followed at each node). Whenever the size of a class group considered at

a node is equal to one (lines 31 and 39), indicating that the group comprises a single class label,

the class label and associated normalized probability value are added to Path (lines 33 and 41).

Note that the normalized probability is calculated by dividing the accumulated probability

generated so far, accumProb, by the number of classifiers used in the current path, counter (lines

32 and 40). Whether one or two paths are followed depends on the probability values returned

using the Bayes classifier at the current node and the  threshold. If the second highest

probability value is greater than  (line 38) then two paths will be followed, otherwise only a

single path will be followed. At the end of the process the Path data structure is processed to

identify the class label with the highest associated normalized probability value (line 8).

Experiments and Evaluation

This section presents an overview of the adopted experimental set up and an evaluation of the

results obtained. Twelve datasets, with various numbers of class labels, were used to evaluate the

effectiveness of the proposed DAG classification approaches. These datasets were taken from the

UCI data repository (Bache & Lichman, 2013), and were pre-processed using LUCS-KDD-DN

software (Coenen, 2003). Ten-fold Cross Validation (TCV) was used throughout. The evaluation

measures used were average accuracy and average AUC. To determine whether the results

obtained were statistically significant, or not, the Wilcoxon signed rank test, for comparing two

classification models, and the Friedman test (for comparing several classification models) were

used. All experiments were conducted using a 2.7 GHz Intel Core i5 with 16 GB 1333 MHz

DDR3 memory, running OS X 10.9.2 (13C64). In addition to the suggested DAG classification

approaches (rooted DAG, non-rooted DAG, and two-level DAG), the datasets were also

classified using: (i) a Binary Tree hierarchical classification model, (ii) a stand-alone Naive

Bayes classifier, and (iii) a Bagging classifier.

The objectives of the evaluation were as follows:

1. To compare the operation of the suggested DAG approaches, rooted DAG, non-rooted

DAG, and two-level DAG

2. To compare the use of the single and multiple path strategies with respect to each of the

DAG approaches.

3. To compare the operation of the proposed DAG hierarchical ensemble classification with

a simple binary tree hierarchical ensemble model.

Algorithm 4. Non-Rooted DAG Multi-Path

1. Input:

2. r = A new unseen record

3. FirstLevelNodes = nodes at the first level in the DAG

4.  = Path selection threshold

5. Output

6. The predicted class label c for the input record r

7. Start

8. Path = Set of identified paths each comprised of: (i) a class label and (ii) an associated

normalised Bayesian probability value, initially Path = {}

9. dagFirstLevelMultiPathClassify(r, FirstLevelNodes)

10. c = Class label with highest probability value in Path

11. End

12. function dagFirstLevelMultiPathClassify(r, FirstLevelNodes)

13. S = Classification results for r using the classifiers at the first level in the DAG

comprised of: (i) class groups, and (ii) the associated Bayesian probability values (initially

S = {})

14. for each Node in the FirstLevelNodes do

15. classify r using Node classifier

16. add the resulting class group with the associated Bayesian probability value to S

17. Endfor

18. startNode1 = node associated with the highest probability value in S
19. startNode2 = node associated with the second highest probability value in S

20. dagMultiPathClassify(r, startNode1, 0, 0)

21. if second highest probability in S ≥  then

22. dagMultiPathClassify(r, startNode2, 0, 0)

23. end if

24. end function

25. function dagMultiPathClassify(r, Node,accumProb,counter) 

26. classify r using Node classifier

27. C1 = Class group in C associated with highest probability value 

28. p1 = Bayesian probability associated with C1

29. C2 = Class group in C associated with second highest probability value

30. p2 = Bayesian probability associated with C2

31. if |C1| == 1 then

32. normProb = (AccumProb + p1)/(counter + 1)

33. Path = Path  ⟨ c, normProb⟩ (c  C1)

34. else
35. ChildNode = child node representing class group C1

36. dagMultiPathClassify(r,ChildNode,accumProb+p1,counter+1)

37. end if

38. if p2 ≥  then 

39. if |C2| == 1 then

40. normProb = (AccumProb + p2)/(countert + 1)

41. Path = Path  ⟨ c, normProb⟩ (c  C2)

42. else

43. ChildNode = child node representing class group C2

44. dagMultiPathClassify(r,ChildNode,accumProb+p2,counter+1)

45. end if

46. end if

47. end function

4. To compare the operation of the proposed DAG hierarchical ensemble classification with

stand-alone classification and with an alternative well-known ensemble method

(bagging).

5. To compare the run time, for both the training and testing stages, for all the methods

considered.

The results in the context of the above evaluation objectives are discussed in the following sub-

sections.

Comparison Between DAG Based Hierarchical Classification Approaches

This section presents a comparison between the operation of the three DAG variations: (i)

rooted DAG, (ii) non-rooted DAG, and (iii) two-level DAG, each coupled with either the single

or the multiple path strategy. The objective was to determine the most effective and efficient

DAG structure and to compare the use of the single and multiple path strategies for hierarchical

ensemble classification as a solution for successive misclassification. With respect to the

Multiple Path strategy a threshold of  = 0.7 × 10−4 was used with the rooted DAG, and  = 0.1

× 10−4 with the non-rooted and two-level DAG. Experiments using a range of alternative σ

values (not reported here because of space limitations) were conducted from which it was

concluded that  = 0.7 × 10−4 and  = 0.1 × 10−4 were the most appropriate thresholds.

Regarding the AUC threshold value used in the breadth pruning with respect to the non-rooted

and two-level DAG approaches, experiments using a range of alternative AUC values were

conducted from which it was demonstrated that identifying a different threshold value for each

dataset is better than identifying a single threshold value for all datasets because this value will

affect the multiple-path results if it is not the most appropriate value for the specific dataset.

The obtained results, using the DAG approaches and with respect to the ten datasets

considered, are presented in Tables 1 and 2. For simplicity, and because the evaluation datasets

include unbalanced datasets, the results will be discussed according to the AUC values presented

in Table 2. From this table it can firstly be observed that following multiple paths within the

DAG classification model (especially when using rooted and non-rooted DAGs) improves the

classification performance. Comparing the operation of the three approaches it can be clearly

seen that the two-level DAG, which combines depth and breadth pruning, outperformed the

rooted and non-rooted DAG approaches. More specifically, the average (mean) AUC obtained

from using the two-level DAG approach for the ten datasets was 0.63, while rooted DAG and

non-rooted DAG produced average AUC results of 0.62, when multiple paths were followed on

both cases. Although there is a noticeable differences in the effectiveness of the considered DAG

variations, at least according to average recorded AUC values, these differences were not found

to be statistically significant according to the conducted Friedman test.

The results obtained for the run-time experiments with respect to the DAG based

approaches are presented in Table 3. The table presents the generation and classification time for

each DAG approach. From the table it can be observed that the two-level DAG structure requires

the least generation time, as well as, the least classification time when the multiple path strategy

is adopted. It is also clear that the multiple paths strategy consumes more time than the single

path strategy for all the DAG variations.

Table 1. Average Accuracy values obtained using the DAG based classification approaches.

Dataset Classes

Single Path Strategy Multiple Path Strategy

Rooted
Non-

Rooted

Two-

Level
Rooted

Non-

Rooted

Two-

Level

Nursery 5 90.26 79.83 91.44 90.28 82.32 90.02

Heart 5 55.91 57.01 59.91 55.37 56.25 59.64

PageBlocks 5 92.69 91.83 92.02 92.65 91.87 92.05

Dermatology 6 87.23 87.23 86.09 87.23 87.23 85.51

Glass 7 69.81 69.81 57.58 72.99 71.16 57.18

Zoo 7 92.18 92.18 92.18 92.18 92.18 92.18

Ecoli 8 84.43 84.43 82.40 82.56 82.26 80.89

Led 10 75.66 75.66 75.75 75.56 75.53 75.66

PenDigits 10 83.58 83.59 83.84 83.58 83.59 83.84

Soybean 15 90.75 90.57 90.04 90.75 90.57 90.04

Mean 82.25 81.21 81.23 82.32 81.30 80.80

Table 2. Average AUC values obtained using the DAG based classification approaches.

Dataset

Single Path Strategy Multiple Path Strategy

Rooted
Non-

Rooted

Two-

Level
Rooted

Non-

Rooted

Two-

Level

Nursery 0.45 0.40 0.54 0.45 0.41 0.58

Heart 0.35 0.39 0.40 0.35 0.37 0.40

PageBlocks 0.52 0.53 0.49 0.52 0.54 0.47

Dermatology 0.85 0.85 0.84 0.85 0.85 0.84

Glass 0.46 0.46 0.48 0.51 0.50 0.49

Zoo 0.58 0.58 0.59 0.58 0.59 0.59

Ecoli 0.41 0.41 0.40 0.38 0.38 0.39

Led 0.76 0.76 0.76 0.76 0.76 0.76

PenDigits 0.83 0.84 0.84 0.83 0.84 0.84

Soybean 0.92 0.92 0.92 0.92 0.92 0.92

Mean 0.61 0.61 0.63 0.62 0.62 0.63

Table 3: Run time results (in seconds) obtained using DAG based classification approaches.

Dataset

Generation Time Single Path

Classification Time

Multiple Path

Classification Time

Rooted Non-

Rooted

Two-

Level
Rooted

Non-

Rooted

Two-

Level
Rooted

Non-

Rooted

Two-

Level

Nursery 5.982 4.380 3.142 0.012 0.007 0.010 0.595 0.601 0.625

Heart 0.333 0.299 0.245 0.001 0.001 0.001 0.015 0.017 0.016

PageBlocks 2.510 2.043 1.408 0.008 0.004 0.003 0.266 0.274 0.261

Dermatology 0.445 0.377 0.288 0.001 0.001 0.001 0.020 0.021 0.019

Glass 0.539 0.415 0.261 0.001 0.000 0.001 0.016 0.017 0.013

Zoo 0.491 0.360 0.221 0.001 0.000 0.001 0.009 0.009 0.007

Ecoli 1.032 0.801 0.342 0.001 0.000 0.001 0.031 0.034 0.019

Led 33.701 22.142 1.097 0.011 0.005 0.022 0.261 0.266 0.163

PenDigits 264.369 150.180 4.508 0.039 0.033 0.047 0.723 0.658 0.526

Soybean 1520.706 639.260 1.467 0.009 0.003 0.025 0.068 0.063 0.057

Mean 183.011 82.026 1.298 0.008 0.005 0.011 0.200 0.196 0.171

Comparison Between DAG Based Hierarchical Classification and Binary Tree

Based Hierarchical Classification
This section presents a comparison between a binary tree hierarchical ensemble model, and the

two-level DAG classification approach (the previous section has established that the two-level

DAG structure produces the best classification performance). With respect to the binary tree

classifier, a Naive Bayes classifier was generated for each tree node, and data segmentation was

used to distribute class labels between nodes within the tree, both single path and multi-path

strategies were considered. Because of the efficiency of the two-level DAG approach, compared

to the rooted and non-rooted DAG approaches, in this section we include results obtained using

two further datasets that featured large numbers of class labels (Chess KRvK, and Letter

Recognition) in addition to the ten datasets presented in Table 1 and 2. Table 4 shows the results

obtained (best results highlighted in bold font). From the table it can be clearly observed that the

two-level DAG approach (using either the single and the multiple path strategies) outperformed

the binary tree hierarchical ensemble classification model for most of the datasets considered in

the evaluation, especially datasets that featured large numbers of class labels such as: Led, Pen

Digits, Soybean, and Letter Recognition (notice the last column in the table). According to the

conducted statistical tests, usage of the DAG structure was found to be significantly more

effective with respect to the generation of the hierarchical classification model than the Binary

Tree structure, regardless of the adopted classification strategy (Single or Multiple Path).

Unfortunately space limitations preclude the presentation of a detailed analysis of the run time

results; however, it can be seen that the binary tree approach clearly requires less run time

(because the proposed DAG structure is more complex).

Comparison Between Stand-Alone Classification, Bagging, and DAG Based

Hierarchical Classification

This section presents the results obtained from a comparison between the operation of: a

“conventional” form of classification using a single Naive Bayes classifier, a Bagging ensemble

classifier and the two-level DAG approach. The results are presented in Table 5. From the table

it can be observed that the best average AUC value, with respect to the twelve datasets

considered, was obtained when using the two-level DAG approach. It is interesting to note that

the proposed two-level DAG tends to improve the classification effectiveness for unbalanced

datasets such as: Nursery, Heart, PageBlocks, Glass, Ecoli and chess KRvK. It is conjectured

that the combination techniques, used to distribute class labels between nodes within the DAG,

helps in the handling of unbalanced datasets. More specifically, instead of letting a single

classifier handle an unbalanced dataset, the combination mechanism distributes classes between

DAG nodes, some nodes will handle unbalanced subsets while other nodes will handle balanced

subsets. During the classification stage only a few good quality classifiers will then be used to

predict the class label for a given record, there is thus opportunity for the classifiers used to

operate using balanced subsets. Consequently it is conjectured that good results are likely to be

obtained. With respect to the statistical evaluation, it was found that there was no statistically

significant difference in effectiveness between Naive Bayes classification, Bagging of Naive

Bayes classifiers and Naive Bayes DAG.

Table 4. Average Accuracy and AUC values obtained using a Binary Tree classification model and the

proposed two-level DAG approach.

Dataset

Single Path Multiple Path

Binary Tree Two-level DAG Binary Tree Two-level DAG

ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 90.12 0.44 91.44 0.54 89.09 0.58 90.02 0.58

Heart 57.70 0.41 59.91 0.40 53.77 0.36 59.64 0.40

PageBlocks 91.96 0.34 92.02 0.49 91.27 0.48 92.05 0.47

Dermatology 79.80 0.79 86.09 0.84 84.60 0.84 85.51 0.84

Glass 63.94 0.43 57.58 0.48 55.28 0.51 57.18 0.49

Zoo 93.18 0.59 93.18 0.59 92.18 0.58 93.18 0.59

Ecoli 82.31 0.36 82.40 0.40 64.15 0.27 80.89 0.39

Led 60.16 0.60 75.75 0.76 61.13 0.61 75.66 0.76

PenDigits 68.56 0.68 83.84 0.84 81.18 0.81 83.84 0.84

Soybean 79.55 0.81 90.04 0.92 83.71 0.83 90.04 0.92

ChessKRvK 35.18 0.27 34.58 0.33 33.88 0.37 35.36 0.36

LetterRecog. 39.16 0.39 55.85 0.56 53.44 0.53 55.84 0.56

Mean 70.14 0.51 75.22 0.60 70.31 0.56 74.93 0.60

Table 5. Average Accuracy and AUC values obtained using stand-alone Naive Bayes classification,

Bagging and the proposed two-level DAG classification approach.

Dataset
Naïve Bayes Bagging Ensemble Two-level DAG

ACC. AUC ACC. AUC ACC. AUC
Nursery 90.22 0.45 89.96 0.46 90.02 0.58

Heart 54.60 0.34 51.28 0.30 59.91 0.40

PageBlocks 92.69 0.52 92.62 0.52 92.02 0.49

Dermatology 86.66 0.85 81.00 0.81 86.09 0.84

Glass 67.83 0.49 55.28 0.46 57.18 0.49

Zoo 92.27 0.59 94.27 0.62 93.18 0.59

Ecoli 81.70 0.38 82.56 0.39 82.40 0.40

Led 75.59 0.76 75.50 0.76 75.75 0.76

PenDigits 84.94 0.85 84.57 0.85 83.84 0.84

Soybean 91.11 0.93 86.83 0.89 90.04 0.92

ChessKRvK 36.32 0.33 35.66 0.34 35.36 0.36

LetterRecog. 57.37 0.57 56.93 0.57 55.85 0.56

Mean 75.94 0.59 73.87 0.58 75.14 0.60

The results obtained for the run-time experiments with respect to the conventional Naive

Bayes classification and the Bagging ensemble (and the two-level DAG) are presented in Table

6. From the table it can be observed that the lowest generation and classification time was

recorded when using the single Naive Bayes classifier. However, although the two-level DAG

takes longer to be generated, the model needs only to be generated once after which it can be

used repeatedly.

Table 6. Run time results (in seconds) obtained using stand-alone Naive Bayes classification, Bagging

and the proposed two-level DAG classification approach.

Dataset
Naïve Bayes Bagging Two-level DAG

Gen.Time Class.Time Gen.Time Class.Time Gen.Time Class.Time

Nursery 0.974 0.003 1.180 0.011 3.142 0.625

Heart 0.202 0.000 0.216 0.001 0.245 0.016

PageBlocks 0.676 0.001 0.775 0.005 1.408 0.261

Dermatology 0.242 0.000 0.296 0.000 0.288 0.019

Glass 0.178 0.000 0.182 0.000 0.261 0.013

Zoo 0.163 0.000 0.136 0.001 0.221 0.007

Ecoli 0.206 0.000 0.208 0.000 0.342 0.019

Led 0.529 0.002 0.547 0.004 1.097 0.163

PenDigits 1.100 0.006 1.121 0.010 4.508 0.526

Soybean 0.353 0.001 0.329 0.003 1.467 0.057

ChessKRvK 1.470 0.006 1.674 0.008 70.401 1.881

LetterRecog. 1.398 0.007 1.580 0.011 76.011 4.321

Mean 0.624 0.002 0.687 0.005 13.283 0.659

Conclusion and Future Work
In this paper a DAG hierarchical ensemble classification model has been presented as a

solution to the multi-class classification problem. Broadly the approach entails: generating a

Naive Bayes classifier for each DAG node and the use of combination techniques to distribute

class labels between nodes within the DAG. Three DAG variations were proposed: (i) rooted

DAG, (ii) non-rooted DAG and (iii) two-level DAG. In addition a strategy for following multiple

paths within the DAG model was proposed as a solution to the successive misclassification issue

associated with hierarchical classification. From the reported experimental results it was

demonstrated that there was no statistically significant difference in effectiveness between the

different proposed DAG variations. However, the two-level DAG, with depth and breadth

pruning, is the most efficient. Of course, scalability is another advantage of the two-level DAG

where the DAG classification model can be generated for data sets that feature larger numbers of

class labels, such as the Chess KRvK and Letter Recognition data sets used as part of the

evaluation. According to the statistical tests results, no statistically significant difference in

performance between single path and multiple path strategies, regardless of the adopted DAG

variation, was identified. The reason for this is that the combination technique used to distribute

classes between nodes in the DAG resulted in well-defined class labels at each DAG node;

consequently the number of misclassifications is less and the effect of following multiple paths

within the DAG is not highly significant. With respect to the comparison with the binary tree

ensemble classification model, the results showed that the two-level DAG significantly

outperforms the binary tree ensemble classification model; the suggested reason for this is that

the misclassification issue is handled well by the combination mechanism and the pruning

techniques used, in addition to the multiple path strategy. The evaluation also indicated that the

proposed two-level DAG hierarchical classification approach could be successfully used to

classify data in a more effective manner than when stand-alone classifiers (or types of other

ensemble classifier such as bagging) were used in the context of some data sets considered in the

evaluation, especially unbalanced datasets. For additional improvements the authors intend to

investigate further techniques whereby depth and breadth pruning can be applied so as to reduce

the overall numbers of classifiers within the DAG structures, it is consequently conjectured that

an even higher classification accuracy might be obtained.

References

Alshdaifat, E., Coenen, F., Dures, K. (2013). Hierarchical single label classification: An alternative

approach. In Max Bramer and Miltos Petridis (Eds.), the thirty-third BCS SGAI International

Conference on Artificial Intelligence (pp. 39–52).

Alshdaifat, E., Coenen, F., Dures, K. (2013). Hierarchical classification for solving multi-class

problems: A new approach using naive bayesian classification. In H. Motoda, Z. Wu, L. Cao, O.

R. Za ̈ıane, M. Yao, W. Wang (Eds.), the 9th International Conference on Advanced Data Mining

and Applications (pp. 493–504).

Alshdaifat, E., Coenen, F., Dures, K. (2014). A multi-path strategy for hierarchical ensemble

classification. In P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition (pp.

198– 212).

Athimethphat, M., Lerteerawong, B. (2012). Binary classification tree for multiclass classification

with observation-based clustering. In Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-CON) (pp. 1–4).

Bache, K., Lichman, M. (2013). UCI machine learning repository. From http://archive.ics.uci.edu/ml.

Bauer, E., Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging,

boosting, and variants, Machine learning, 36, 105–139.

Beygelzimer, A., Langford, J., Ravikumar, P. (2007). Multiclass Classification with Filter Trees.

Retrieved Jun 12, 2013, from http://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf

Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

Chen, Y., Crawford, M.M., Ghosh, J. (2004). Integrating support vector machines in a hierarchical

output decomposition framework. In Proceedings of the 2004 IEEE International Geoscience and

Remote Sensing Symposium (pp. 949–953).

Coenen, F. (2003). The LUCS-KDD discretised/normalised arm and carm data library. From

http://www.csc.liv.ac.uk/ frans/KDD/Software /LUCS KDD DN.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Proceedings of the First

International Workshop on Multiple Classifier Systems (pp. 1–15). London, UK.

Freund, Y., Schapire, R. Abe, N. (1999). A short introduction to boosting. Journal of Japanese

Society for Artificial Intelligence 14 (5), 771–80.

Hansen, L. K., Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 12 (10), 993-1001.

Jiawei, H., Micheline, K., & Jian, P. (2011). Data Mining: Concepts and Techniques. San Francisco,

CA, USA: Morgan Kaufmann.

Kumar, S., Ghosh, J., Crawford, M. (2002). Hierarchical fusion of multiple classifiers for

hyperspectral data analysis, Pattern Analysis and Applications, 5 (2), 210–220.

Lei, H., Govindaraju, V. (2005). Half-against-half multi-class support vector machines. In

Proceedings of the 6th International Workshop on Multiple Classifier Systems (pp 156-164).

Seaside, CA, USA.

Machov, K., Bark, F., Bednr, Bednar, P. (2006). A bagging method using decision trees in the role of

base classifiers. Acta Polytechnica Hungarica, 3 (2), 121-132.

Madzarov, G., Gjorgjevikj, D., Chorbev, I. (2009). A multi-class svm classifier utilizing binary

http://archive.ics.uci.edu/ml
http://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf

decision tree. Informatica, 33 (2), 233-241.

Opitz, D., Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial

Intelligence Research, 11, 169-198.

Oza, N., Tumer, K. (2008). Classifier ensembles: Select real-world applications. Information Fusion,

9 (1), 4–20.

Quinlan, J. R. (1996). Bagging, boosting, and c4.5. In Proceedings of the Thirteenth National

Conference on Artificial Intelligence, AAAI Press (pp. 725–730).

Songsiri, P., Phetkaew, T., Kijsirikul B. (2015). Enhancements of multi-class support vector machine

construction from binary learners using generalization performance, Neurocomputing, 151 (1),

434–448.

Wirth, J., Catlett, J. (1988). Experiments on the costs and benefits of windowing in id3. In J. E. Laird

(Ed.), ML, Morgan Kaufmann (pp. 87–99).

Zhou, Z. (2009). Ensemble learning. In: S. Z. Li, A. K. Jain (Eds.). Encyclopedia of Biometrics,

Springer US (pp. 270–273).

http://www.sciencedirect.com/science/journal/09252312/151/supp/P1

