
Data Stream Mining with Limited Validation
Opportunity: Towards Instrument Failure

Prediction

Katie Atkinson1, Frans Coenen1, Phil Goddard2, Terry Payne1 and Luke
Riley1,2

(1) Department of Computer Science, The University of Liverpool, Liverpool, L69
3BX, UK; (2) CSols Ltd., The Heath, Runcorn, Cheshire, WA7 4QX.

Abstract. A data stream mining mechanism for predicting instrument
failure, founded on the concept of time series analysis, is presented. The
objective is to build a model that can predict instrument failure so that
some mitigation can be invoked so as to prevent the failure. The proposed
mechanism therefore features the interesting characteristic that there is
only a limited opportunity to validate the model. The mechanism is fully
described and evaluated using single and multiple attribute scenarios.

Keywords: Data Stream Mining. Classification, Instrument Failure Pre-
diction

1 Introduction

Instrument failure within scientific and analytic laboratories can lead to costly
delays and compromise complex scientific workflows [14]. Many such failures
can be predicted by learning a failure prediction model using some form of
data stream mining. Data stream mining is concerned with the effective, real
time, capture of useful information from data flows [7–9]. This necessitates the
adoption of an incremental online mechanism to process the data as it becomes
available. Data stream mining is often applied in domains where we wish to
use data stream information for prediction purposes (for example in the case of
email, the prediction of spam email versus non-spam email [3]). Thus where we
wish to predict the value of some variable x in the context of a set of variables
y that feature in the data stream. The principal challenges is that the data is
potentially infinite and therefore only a fixed proportion can be stored.

A common application of data stream mining is the analysis of instrument
(sensor) data with respect to some target objective [4, 5, 12]. This paper explores
the idea of using data stream mining to predict the failure of the instruments
(sensors) themselves. This has the novel feature that persistent validation of the
data stream model is not possible, the idea is that on predicting instrument
failure appropriate maintenance is scheduled and therefore any predicted failure
cannot normally be confirmed. More specifically this paper presents a probabilis-
tic time-series analysis technique applied to data stream subsequences to predict

instrument failure. Of note is the mechanism whereby significant attributes in
the data stream are separated from noise attributes using a probabilistic learning
approach.

2 Formalism

We assume a set of k instruments Inst = {inst1, inst2, . . . , instk}. Periodically
each (operational) instrument insti transmits a “data packet” Di. A data packet
Di associated with an instrument insti comprises n values {v1, v2, . . . , vn} such
that each value is correlated with a data attribute. The set of available attributes
is indicated using the notation A = {a1, a2, . . . , an}. There is a one-to-one cor-
respondence between Di and A (Di| = |A|). All instruments in the set Inst are
assumed to subscribe to the same set of attributes. Periodically an instrument
fails as a consequence of some fault. The conjecture is that this failure can be
predicted by analysis of the attribute values.

The data packets continuously received from the collection of k instruments
form a data stream. The information in the data packets is processed to produce
a continuous time series. Each instrument insti has a collection of n time series
(one per data attribute), denoted by Ti, associated with it such that Ti =
{Ti,1, Ti,2, . . . , Ti,n}. Each time series Tij comprises m real-valued readings Tij =
{tij1

, tij2
, . . . , tijm

} ordered chronologically such that tijm
is the most recent. The

instruments continuously generate and transmit data and thus the value for m,
for each time series, increases with time. Note that at any specific time the values
for m across the set of instruments Inst is not necessarily the same, although
it will be constant with respect to the collection of time series Ti associated
with a specific instrument insti. Given a time series Tij = {tij1

tij2
, . . .} for

attribute j associated with instrument i the subsequence Sij = {sij1
, sij2

, . . .}
is a subsequence of Tij such that |Sij | < |Tij |). The current subsequence for
a time seres Tij is the sequence {tijm−p

, . . . , tijm
} where p is some predefined

subsequence length. Thus a current subsequence is the most recently received
set of p values for a particular attribute j associated with a particular instrument
i, we indicate this using the notation S′

ij .

3 Failure Prediction

From the foregoing the idea is to predict instrument failure according to the
nature of the current time series subsequences associated with a particular in-
strument insti. We can learn the nature (shape) of subsequences that are good
predictors of failure from observing the subsequences associated with instru-
ments that have failed immediately prior to their failure. This is conceptualised
as a two class classification (prediction) problem, failure versus non-failure.

There are a variety of ways of conducting time series based classification but it
is generally acknowledged that the most satisfactory is the K Nearest Neighbour
algorithm (KNN) [1, 2] where K is the number of neighbours considered (in
many cases K = 1 is used, hence 1NN). The main issue is the distance measure

to be used [6]. The simplest measure is Euclidean distance; in which case the
distance between two equal length subsequences M = {m1,m2, . . . ,ml} and
N = {n1, n2, . . . , nl} is calculated using Equation 1. An alternative might have
been to use something more sophisticated like Dynamic Time Warping (DTW)
[13, 15]; however, for the short time series considered with respect to the work
presented in the paper, this seems unnecessary. The Euclidean based approach
was therefore adopted.

dist(M,N) =
i=l∑
i=1

(mi − ni)2 (1)

As noted above, a particular challenge associated with the form of data
stream mining considered in this paper is that we do not know which attribute
is the sentinel attribute. So that we can learn which is the relevant attribute we
need to allow λ instruments to fail. If we start making predictions at too early
a stage in the process, instrument failure will be predicted unnecessarily caus-
ing the affected instrument to be taken off line, so that mitigating maintenance
can be undertaken, when this was not required. Thus the process begins with a
“learning phase” where we allow a number of instruments to fail so that we can
build an effective KB for the purpose of future instrument failure prediction.
This learning phase is measured in terms of the parameter λ.

Algorithm 1 Instrument Failure Prediction Engine (main())
1: Input Di

2: if Di = null then
3: Instrument has failed addSubsequencesToKB(S′i)
4: pruneKB()
5: else
6: for ∀vij ∈ Di do
7: Update time series S′ij in DB by removing S′ijm−p

and adding adding vij

8: end for
9: if Not in learning phase then

10: prediction(insti)
11: end if
12: end if

Algorithm 2 Failure Prediction (prediction(insti))
1: for j = 1 to j = n do
2: for ∀Sj ∈ KB do
3: if distance(S′ij ∈ DB,S) ≤ σ) then
4: Predict failure for insti
5: Break
6: end if
7: end for
8: end for

The top level instrument failure prediction process is presented in Algorithm
1. The algorithm uses two storage structures KB (Knowledge Base) and DB
(Database). The first is a set of subsequences of length p that are indicative of
failure. KB is empty on startup and built up as the data stream starts to be
processed. With respect to KB we used the following notations: (i) S indicates
the complete set of time series subsequence, each of length p, contained in KB;
(ii) Sj indicates the set of subsequences belonging to attribute j (Sj ⊆ S), and
(iii) Sjz

indicates a specific subsequence z associated with attribute j (Sjz
∈ Sj).

The second storage structure, DB, holds a set of subsequences of length p, one for
each attribute j, associated with each instrument i. DB is also empty on startup
and built up as the data stream starts to be processed. With respect to DB
we use the following notation: (i) S′

i to indicate the set of current subsequences
associated with instrument intsi, and (ii) S′

ij to indicate the current subsequence
associated with instrument intsi for attribute j. The input to Algorithm 1 is the
most recent data packet Di for instrument insti. If this is empty (Di = null)
then this indicates an instrument failure and KB is updated with the set of
current subsequences S′

i associated with instrument insti using the function
addSubsequenceToKB(Sij) (line 3). A KB pruning process is then applied (line
4); the significance of this will become clear later in this section. Otherwise we
update the DB entry for insti by, for each attribute j, removing the oldest value
and appending the newly received value (line 7). Recall that subsequences are
of length p. If we are no longer in the learning phase we then enter into the
prediction phase (line 10).

The prediction process is described in Algorithm 2. During this process the
set of current time series sub sequences S′

i in DB, associated with instrument
insti, is compared with the corresponding subsequences contained in KB (using
the Euclidean distance measured calculate using equation 1; however, any other
similarity measure could equally well have been adopted). If the computed dis-
tance is less than or equal to a given similarity threshold σ (line 3) failure for
instrument insti is predicted (line 4) and as a result appropriate maintenance
applied.

The KB update process, addSubsequenceToKB(S′
i), is presented in Algo-

rithm 3. As noted above the challenge here is that we do not know which at-
tribute is the sentinel attribute. We assume at least one, but it may be all n
attributes or some proportion between 1 and n. Each subsequence S in KB has
a weighting w associated with it. This weighting is adjusted as further current
time series subsequences are added to KB. Whenever a weighting associated
with a subsequence falls below a given threshold γ the subsequence is removed;
this is the pruning step included in Algorithm 1 (line 4). The weighting wjz

for
a particular KB subsequence Sjz

is calculated as presented in Equation 2 where:
(i) countjz

is a count of the number of occasions that Sjz
has been recorded as

a result of instrument failure, and (ii) |KB| is the size of KB in terms of the
number of subsequences held.

wjz
=
countjz

|KB|
(2)

Algorithm 3 Update KB (addSubsequencesToKB(S′
i))

1: Input S′i
2: for j = 1 to j = n do
3: if S′ij ∈ KB then
4: countj = countj + 1
5: else
6: Add S′ij to KB
7: countj = 1
8: end if
9: end for

10: for j = 1 to j = n do
11: for z = 1 to z = |Sij | (Sij ∈ KB) do

12: weightjz =
countjz
|KB| (Equation 2)

13: end for
14: end for

Algorithm 4 KB pruning (prune(S′
i))

1: for j = 1 to j = n do
2: for z = 1 to j = |Sj | (Sj ∈ KB) do
3: if weightjz < γ then
4: remove Sjz from KB
5: end if
6: end for
7: end for
8: if KB has changed then
9: Recalculate weightings as per lines 10 to1 4 in Algorithm 3

10: end if

Returning to Algorithm 3 the input is a set of current time series subse-
quences S′

i, one subsequence per attribute in the system, associated with instru-
ment insti. The set S′

i = {S′
i1, S

′
i2, . . . , S

′
in} is processed attribute by attribute.

If S′
ij is already in KB its count is updated (line 4), otherwise S′

ij is added to
KB (line 6) and its associated count set to 1 (line 7). Once the process of incor-
porating S′

i into KB is complete the weightings are (re)calculated for the entire
contents of KB.

Algorithm 4 presents the KB pruning process whereby subsequences with
associated weightings of less than γ are pruned from the KB on the grounds
that they have only been infrequently associated with instrument failure and
are therefore not good predictors of such failure. If such sequences were retained
in KB this would cause erroneous instrument failure prediction causing the in-
strument to be taken off-line unnecessarily. Selection of the most appropriate
value for γ is thus important and is discussed further in Section 4.

4 Evaluation

The proposed instrument failure prediction mechanism, as described in Section
3 above, was evaluated using a simulated environment comprising a collection of

virtual instruments. The nature of this environment is presented in Sub-section
4.1. The metric used to measure performance is introduced in Sub-section 4.2.
Evaluation was then conducted by considering two categories of scenario. The
first was a simplistic scenario that considered instruments that featured only one
sentinel attribute. The second considered instruments that featured a collection
of attributes one of which was the sentinel attribute. The results obtained are
presented and discussed in Sub-sections 4.3 and 4.4 respectively.

4.1 Simulation Environment

The simulation environment used for evaluation purposes assumed k instruments
that featured n attributes each. The simulation operated on a loop. On each iter-
ation a proportion of the instruments performed some sample measuring activity
Whether an instrument is active or not is decided in a probability driven random
manner (a probability value of psample = 0.4 was used). On each iteration the
attribute values associated with each instrument were updated. To this end two
different types of attribute were utilised: (i) activity dependent attributes and
(ii) activity independent attributes. The values associated with the first were
incremented/decremented on each simulation iteration whenever an instrument
was active. Activity independent attributes were incremented/decremented on
each iteration regardless of whether an instrument was active or not. Activity
dependent attributes were designated to cause instrument failure once a partic-
ular sentinel value was reached, we refer to such attributes as sentinel attributes.
In any given simulation the number of designated attributes that can potentially
cause failure could be between 1 and n (thus between one and all); however, with
respect to the evaluation presented here, scenarios featuring only one activity
dependent attribute were used, this was therefore designated as the sentinel
attribute. Attributes not so designated simply acted as providers of “noise”.

The simulation operated using a Multi-Agent Based Simulation (MABS)
environment such that each agent (instrument) communicated with a central
controller agent, the Instrument Failure Prediction Engine (IFPE), which would
in turn form part of a Laboratory Instrument Management System (LIMS)1.
The IFPE monitors the incoming instrument data and, using the algorithms
presented in Section 3, predicts instrument failure. The interface between an
instrument and the IFPE was enabled using a bespoke software interface called
a Dendrite2. In the simulation, whenever instrument failure is detected, the
affected instrument goes into a maintenance state for a simulation time tmaint

after which it comes back “on stream” but with its attribute value set reset to
the start values. Should the IFPE fail to detect an instrument failure in time the
instrument will fail and, within the realm of the simulation, require replacement.
The replacement time is given by a simulation time of treplace (treplace > tmaint).
For the evaluation reported here treplace = 20 and tmaint = 10 was used.

1 A LIMS is a software system designed to manage laboratory operations. LIMS are
used throughout the laboratory analysis industry.

2 The Dendrites software is available from CSols Ltd, http://www.csols.com.

4.2 Evaluation Metrics

Prediction/classification systems are typically evaluated using metrics such as
precision and recall, true positive and false positive rate [11]. However in our
case, because we wish to intervene prior to failure we have no information as
to whether our predictions were correct or not. Instead we use an accumulated
“gross profit” (GP) measure. On each iteration of the simulation, whenever an
instrument conducts some sampling activity, a profit of gsample is gained. Instru-
ment maintenance incurs a cost of gmaint and instrument replacement a cost of
greplace such that gsample < gmaint < greplace (off course when an instrument is
undergoing maintenance or is being replaced there is an additional cost because
the instrument is also not earning anything).

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 711 706 687 657 627 593 561 528 504 480
3 691 696 692 683 666 650 623 601 583 557
4 650 683 687 677 672 663 654 639 622 605
5 575 657 677 675 667 660 654 645 640 627
6 470 615 659 668 667 661 650 644 636 633
7 351 558 634 657 660 658 651 644 636 632
8 248 479 595 635 650 655 653 646 639 632
9 167 389 540 606 635 646 648 645 641 634

Table 1. Comparison in terms of gross profit (k = 20).

4.3 Single Sentinel Attribute Evaluation

The aim of the single attribute evaluation was to determine the effect of different
σ (similarity threshold), p (subsequence length) and k (number of instruments)
settings on the GP measure and to provide some insight into the failure predic-
tion mechanism. This was done by running the simulation using a range of σ
values ([0, 9]) against a range of p values ([2, 10]) and using k = 20 and k = 40.
Recall that the minimum size of a subsequence is 2 (otherwise it will not be a se-
quence). For each parameter combination 1000 simulation runs were conducted,
with 200 iterations for each run, and average values recorded for gross profit,
number of instrument failures, number of maintained instruments and the size
of KB. Throughout a single incremental, activity dependent, attribute was used
with the sentinel value set to 20.

Tables 1 and 2 show the GP values obtained (best results indicated in bold
font) when k = 20 and k = 40. From the tables it can be seen that there is
a clear correlation between σ and p in terms of GP, for best results larger p
values require a larger associate σ value. In both cases (k = 20 and k = 40)
the best result, highest GP, was obtained using a combination of σ = 0 (exact
matching) and p = 2 (GP of 711 and 1445 respectively). The lowest GP was
generated using σ = 9 and p = 9 because prediction was at its least precise
using these parameters and consequently maintenance was frequently conducted
prior to this being a necessity. For reference the average GP value over 1000

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 1445 1425 1381 1319 1260 1186 1126 1064 1014 967
3 1425 1409 1396 1374 1338 1300 1256 1210 1167 1120
4 1381 1400 1395 1369 1352 1333 1312 1277 1245 1211
5 1299 1374 1387 1368 1343 1330 1310 1299 1285 1259
6 1156 1326 1369 1364 1348 1331 1306 1291 1277 1268
7 949 1250 1338 1353 1347 1336 1316 1291 1276 1262
8 712 1136 1292 1332 1340 1334 1321 1303 1284 1265
9 501 986 1223 1299 1325 1328 1320 1308 1291 1275

Table 2. Comparison in terms of gross profit (k = 40).

repeated simulations and 200 iterations per simulation, when failure prediction
and maintenance was not conducted, using k = 20 was 44, decreasing steadily
as the simulation continued (88 when k = 40).

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 2 1 1 1 1 1 1 1 1 1
3 3 2 1 1 1 1 1 1 1 1
4 7 3 2 2 1 1 1 1 1 1
5 12 5 3 2 2 2 1 1 1 1
6 20 9 5 3 2 2 2 2 1 1
7 29 13 7 4 3 2 2 2 2 2
8 37 19 10 6 4 3 3 2 2 2
9 44 26 14 9 6 4 4 3 2 2

Table 3. Comparison in terms of number
of failed machines (k = 20).

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 2 1 1 1 1 1 1 1 1 1
3 4 2 1 1 1 1 1 1 1 1
4 7 3 2 2 1 1 1 1 1 1
5 13 6 3 2 2 2 1 1 1 1
6 24 10 5 3 2 2 2 2 1 1
7 39 16 8 5 3 3 2 2 2 2
8 57 25 12 7 5 4 3 2 2 2
9 74 36 18 10 7 5 4 3 3 2

Table 4. Comparison in terms of number
of failed machines (k = 40).

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 60 62 63 66 68 70 73 75 76 78
3 58 61 62 64 65 66 68 70 71 73
4 55 60 62 63 64 65 66 67 68 69
5 48 57 60 62 63 64 65 66 67 67
6 40 53 58 61 63 64 65 66 67 67
7 30 47 55 59 61 63 64 65 66 67
8 21 41 51 56 59 61 63 64 65 66
9 13 33 46 53 57 60 61 63 64 65

Table 5. Comparison in terms
of number of maintained machines
(k = 20).

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 122 125 129 133 138 143 147 151 155 158
3 120 125 127 129 132 135 138 141 144 148
4 116 123 126 129 131 132 134 136 139 141
5 109 119 124 127 130 131 133 134 136 138
6 97 115 121 125 128 131 133 135 136 137
7 80 107 118 123 126 129 131 133 135 137
8 60 97 112 119 124 127 130 132 134 136
9 42 84 106 115 121 125 128 130 132 134

Table 6. Comparison in terms of number of
maintained machines (k = 40).

Tables 3 and 4 show comparisons of the average number of instruments that
fail during the simulation runs. The number of instruments that fail decreased
as the value for the σ threshold increased. This was because instruments were
going into maintenance well before they would actually fail. Using σ = 9 similar-
ity between a time series sequence in the KB and that currently associated with
an instrument is measured in a fairly course manner hence more instruments go
into maintenance. This is illustrated in Tables 5 and 6 which show the number

of instruments maintained. From these two tables it can be seen that as the
similarity threshold σ increased, the number of machines maintained increased
also, because the prediction becomes coarser. It can also be noted that the num-
ber of machines maintained increased as p decreased. Comparing the statistics
for the number of instruments maintained given in the tables with those for
the number of failed instruments, these are roughly inversely proportional. For
completeness, when running the simulation without failure prediction (over 1000
simulation runs with 200 iterations per simulation) the average number of failed
machines when k = 20 is 54, and when k = 40 it is 109.

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 2 1 1 1 1 1 1 1 1 1
3 3 2 1 1 1 1 1 1 1 1
4 6 3 2 2 1 1 1 1 1 1
5 12 5 3 2 2 2 1 1 1 1
6 20 9 4 3 2 2 2 2 1 1
7 29 13 7 4 3 2 2 2 2 2
8 37 19 10 6 4 3 3 2 2 2
9 44 26 14 9 6 4 4 3 2 2

Table 7. Comparison in terms of KB size
(k = 20).

p Similarity threshold σ

0 1 2 3 4 5 6 7 8 9

2 2 1 1 1 1 1 1 1 1 1
3 3 2 1 1 1 1 1 1 1 1
4 6 3 2 2 1 1 1 1 1 1
5 13 6 3 2 2 2 1 1 1 1
6 23 10 5 3 2 2 2 2 1 1
7 39 16 8 5 3 3 2 2 2 2
8 57 25 12 7 5 4 3 2 2 2
9 74 36 17 11 7 5 4 3 3 2

Table 8. Comparison in terms of KB size
(k = 40).

Final # KB
Atts. σ p ω λ Fail. Main. KB Values GP
(n) Inst. Inst. Size Pruned

2 1 2 0.250 22 23 319 1 28 2884
3 1 2 0.225 25 26 323 1 60 2727
4 1 2 0.250 27 28 320 1 93 2701
5 1 2 0.175 31 32 325 1 137 2527
6 1 2 0.150 29 30 342 1 160 2333
7 1 2 0.125 30 31 352 1 194 2176
8 1 2 0.125 35 36 332 1 261 2308
9 1 2 0.100 36 37 352 1 300 2009
10 2 2 0.100 33 34 394 1 313 1502

Table 9. Best parameter settings for a range of attribute set sizes, and k = 20. Average
results obtained from 500 simulation runs per parameter permutation, 1000 iterations
per simulation

Tables 7 and 8 show the recorded sizes, in terms of number of time series
subsequences, of KB for k = 20 and k = 40. As anticipated the number of sub-
sequences in KB decreases as the σ value increases. As already noted, this is
because as σ is increased the prediction becomes less precise so the KB requires
fewer subsequences. The number of subsequences in the KB also decreases with
p; this is because as the p value is reduced the number of possible value combi-
nations making up a time series subsequence also decreases (there are therefore
fewer possible subsequences that can be included in the KB when p is small).

4.4 Multiple Attribute Evaluation with a Single Sentinel Attribute

To evaluate the proposed instrument failure prediction mechanism in the context
of multiple attributes a single sentinel attribute was used, selected at random
from the set A. In the simulation the value for the remaining attributes were
modelled using a sin curve with a fixed amplitude of 20 and a multiple of the
attribute number as the frequency. For the “key attribute” (the attribute desig-
nated as the cause of failure) a sentinel value of 20 was again used. Experiments
were conducted to investigate the effect of using a range of values for ω and
λ. Recall that ω is the weighting threshold used to prune unwanted TSS val-
ues from KB; while λ is the learning window size, in other words the number
of instruments that the mechanism allows to fail prior to commencing failure
prediction.

ω Learning window size (λ)

24 26 28 30 32 34 36 38

0.050 -14543 -14492 -13685 -13652 -13360 -13448 -12686 -12774
0.075 -6801 -6072 -5522 -5010 -5033 -4498 -4460 -4518
0.100 -1131 -1056 -529 -637 -173 -12 22 12
0.125 890 1540 1174 1377 1359 1306 1373 1245
0.150 1913 1788 2049 2097 2194 2061 2245 2125
0.175 2251 2291 2307 2355 2401 2377 2393 2285
0.200 2276 2406 2364 2292 2454 2428 2481 2448
0.225 -138 -140 -139 -138 -139 -137 -139 -138
0.250 -139 -137 -138 -137 -138 -138 -139 -139

Table 10. Learning window size (λ) versus Weighting threshold (ω), comparison in
terms of gross profit (k = 20, n = 5, σ = 1 and p = 2)

Table 9 shows the mean best parameter settings for a range of numbers of
attributes (n = [1, 10]) that serve to maximise the GP value. For each parameter
combination (σ, p, ω and λ) the simulation was run 1000 times for 1000 itera-
tions and mean values recorded. In addition to the best parameter settings, the
number of failed and maintained instruments, the size of KB at the end of each
run and the number of pruned KB values was also recorded as well as the final
GP value. Without prediction and consequent maintenance the average number
of failed machines was 281, and the average GP was -140. Note that as n was in-
creased the number of noise attributes increased and it became harder to predict
instrument failure hence the value of λ increases with n. Consequently erroneous
instrument failure prediction causes larger numbers of instruments to, perhaps
unnecessarily, go into maintenance. The increase in the number of instruments
going into maintenance as n increases is reflected by the decreasing recorded
GP values. The prediction becomes harder because the number of potential KB
values increases, hence the amount of KB pruning that is undertaken also in-
creases with n. From the table it is interesting to note that σ = 1 and p = 2
consistently produce the best result. It is also interesting to note that |KB| = 1
is consistently recorded; this is because when using p = 2 there are only two
possible time series subsequences that can be included in KB and if σ = 1 is
used one of these will then be superfluous.

Tables 10 and 11 shows the effect on GP using a range of values for ω ({0.050,
0.075, 0.100, 0.125, 0.150, 0.175, 0.200, 0.225, 0.250}) and a range of values for
λ ({24, 26, 28, 30, 32, 34, 36, 38}) when n = 5 and n = 10 respectively. For the
experiment σ = 1 and p = 2 was used because, as demonstrated above, these
settings produced good results. For each parameter combination the simulation
was again run 1000 times for 1000 iterations and the average GP values recorded.
From the tables it can be seen that the choice of the most appropriate value for
ω is important, either side of the optimum value, GP quickly starts to fall. This
is particularly so with larger values of n as can be seen by comparing the two
tables.

ω Learning window size (λ)

24 26 28 30 32 34 36 38

0.050 -11099 -10851 -10638 -10668 -11150 -10689 -10414 -10499
0.075 -1838 -1735 -1058 -995 -888 -1411 -786 -932
0.100 1005 1191 1057 1098 1011 1561 1338 1314
0.125 -137 -139 -138 -138 -139 -139 -138 -139
0.150 -138 -139 -138 -138 -137 -138 -138 -139
0.175 -138 -139 -139 -139 -140 -138 -138 -138
0.200 -140 -140 -140 -138 -139 -139 -138 -139
0.225 -138 -139 -139 -140 -138 -140 -138 -140
0.250 -139 -138 -139 -137 -140 -140 -140 -139

Table 11. Learning window size (λ) versus Weighting threshold (ω), comparison in
terms of gross profit (k = 20, n = 10, σ = 1 and p = 2)

5 Summary and Conclusions

A mechanism, founded on time series analysis, for predicting instrument failure
using data stream mining has been proposed. The mechanism has been fully
described. The novel feature of the mechanism is that, unlike in the case of
more standard data stream mining prediction applications, there is only limited
opportunity for validation. Evaluation was conducted using a simulated multi-
agent based environment comprising k virtual machines communicating, via a
bespoke interface called a Dendrite, with a central Instrument Failure Prediction
Engine (IFPE). The mechanism uses four parameters: (i) a time series subse-
quence similarity threshold σ, (ii) a time series subsequence length value p, (iii) a
weighting threshold ω used when pruning KB and (iv) a learning window mea-
sured in terms of the number of instruments allowed to fail λ. The presented
evaluation indicated that best results are obtained when σ = 1 (almost exact
matching between current time series subsequences associated with individual
instruments and subsequences in KB) and p = 2 (the size of a subsequence).
The optimum value for λ increases with n. Finding the optimum value for ω is
challenging. The sensitivity associated with the ω parameter is thus a subject for
future work. The intention is also to investigate the operation of scenarios where
we have several sentinel attributes and alternative prediction mechanisms using
(for example) dynamic classification association rule or decision tree based tech-
niques. The advantage of these last two techniques is that they take into account

the negatives as well as the positives; the mechanism that has been presented
in this paper, although operating well, only predicts failure, not non-failure.
Incorporating both might provide for a better predictor.

References

1. Bagnall, A. and Lines, J. (2014). An Experimental Evaluation of Nearest Neighbour
Time Series Classification. Technical report 1406.4757, Cornell University Library.

2. Batista, G., Wang, X and Keogh, E (2011). A complexity-Invarient Distance Mea-
sure for Time Series. Proc 2011 SIAM International Conference on Data Mining,
pp699-710.

3. Carmona-Cejudo, J.M., Manuel Baena-Garcá, N. del Campo-Ávila, J., Morales-
Bueno, R., Gama, J. and Bifet, A. (2011). Using GNUsmail to Compare Data
Stream Mining Methods for On-line Email Classification. Proc. 2nd Workshop on
Applications of Pattern Analysis, JMLR (Journal of Machine Learning Research)
Workshop and Conference Proceedings, Vol. 17, pp1218.

4. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J. and Chase, J.S. (2004). Cor-
relating instrumentation data to system states: A building block for automated
diagnosis and control. Proc 6th Symposium on Operating Systems Design and
Implementation (OSDI’04), pp231-244.

5. Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., and Kipersztok, O. (2008)
Real time data mining-based intrusion detection. Information Fusion (Special Issue
on Distributed Sensor Networks), 9(3), pp344-354.

6. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and Keogh,E. (2008). Query-
ing and Mining of Time Series Daya: Experimental Comparison of Representations
and Distance Measures. Proc. VLDB’08, pp1542-1552.

7. Gaber, M.M., Zaslavsky, A. and Krishnaswamy S. (2005) Mining Data Streams: A
Review. ACM SIGMOD Record, 34(2), pp18 - 26.

8. Gaber, M.M., Gama, J., Krishnaswamy, S., Gomes, J.B. and Stahl, F. (2014). Ar-
ticle: Data stream mining in ubiquitous environments: state-of-the-art and current
directions Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery;
4(2), pp116-138.

9. Gama, J (2010). Knowledge Discovery from Data Streams. Chapman and Hall.
10. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M. and Bouchachia, A (2014). A

survey on concept-drift adaptation. ACM Computing Surveys, 46(4), 2014.
11. Hand, D.J. (2009). Measuring classifier performance: a coherent alternative to the

area under the ROC curve. Machine Learning, 77(1), pp103123.
12. Kargupta, H., Bhargava, R., Lou, K., Powers, M., Blair, P., Bushra, S. and Dull,

J. (2004). VEDAS: A Mobile and Distributed Data Stream Mining System for
Real-Time Vehicle Monitoring Proc. 2004 SIAM International Conference on Data
Mining, pp300-311.

13. Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal
Processing, 26(1) pp43-49.

14. Stein, S., Payne, T.R. and Jennings, N.R. (2008). Flexible QoS-Based Service Selec-
tion and Provisioning in Large-Scale Grids. UK e-Science 2008 All Hands Meeting
(AHM), HPC Grids of Continental Scope.

15. Vintsyuk, T.K. (1968). Speech discrimination by dynamic programming. Kiber-
netika, Vol. 4, pp8188.

