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Abstract. The quantitative analysis of retinal blood vessels is impor-
tant for the management of vascular disease and tackling problems such
as locating blood clots. Such tasks are hampered by the inability to ac-
curately trace back problems along vessels to the source. This is due to
the unresolved challenge of distinguishing automatically between vessel
branchings and vessel crossings. In this paper, we present a new tech-
nique for tackling this challenging problem by developing a convolutional
neural network approach for first locating vessel junctions and then clas-
sifying them as either branchings or crossings. We achieve a high accu-
racy of 94% for junction detection and 88% for classification. Combined
with work in segmentation, this method has the potential to facilitate
automated localisation of blood clots and other disease symptoms lead-
ing to improved management of eye disease through aiding or replacing
a clinicians diagnosis.

Keywords: Convolutional neural networks, retinal imaging, retinal vessels fun-
dus photography, vessel classification

1 Introduction

Vascular conditions present a challenging public health problem. They are often
life-threatening and damage to blood vessels can lead to significant complications
such diabetes, hypertension and stroke. The retina is the only inner organ which
can be directly imaged and also serve as a window for the diagnosis of systematic
diseases such as cerebral malaria, stroke, dementia and cardiovascular diseases
[10]. Tt is therefore of great importance to better understand and be able to
manage such conditions. It is also significant that pathologies can affect veins and
arteries differently. For example, in diabetic retinopathy, there is veinus beading.
With the availability of imaging techniques such as colour fundus photography,
fundus angiography and optical coherence tomography angiography, there has
been a significant need for automated vessel analysis techniques [15, 14].
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There has been a considerable amount of work in recent years aimed at the
effective segmentation of retinal blood vessels in fundus photography, which is a
fundamental step for a vessel analysis system. Work such as [2, 14, 15] has been
able to achieve increasingly improved segmentation of retinal vessels. However,
a significant remaining challenge is to distinguish between vessel branchings and
vessel crossings, where one blood vessel passes over another but does not connect
to it. This is important for tracking vessels, separating veins from arteries and
with occlusions.

When a blood clot needs to be located, we must be able to trace back along
the vessel. The current inability to accurately identify vessel crossings in vessel
segmentations hinders this. It is also important to monitor progress after vein
and artery occlusions; being able to identify and distinguish vessel crossings and
branchings facilitates this. Automating the detection and classification of vessel
junctions also allows us to aid clinicians in detecting vascular abnormalities.

In this paper, we present a new hierarchical approach to first automatically
determine the locations of blood vessel junctions in colour fundus images and
then distinguish between vessel branchings and crossings. We employ an avail-
able segmentation of the vessel structure, although an automatic segmentation
procedure could be incorporated, to identify points along blood vessels. We then
develop a convolutional neural network which is trained on expert annotated
data to identify vessel junctions. The same network architecture is then used
and trained to learn new convolution filters to distinguish between vessel branch-
ings and crossings. This results in a method which is capable of identifying and
classifying vessel junctions without user intervention.

For applications in image analysis and classification, Convolutional Neural
Networks (CNNs), a branch of deep learning, has achieved state of the art re-
sults for many problems. The 1970’s saw the introduction of network architec-
tures being used to analyse image data [4]. These had useful applications and
allowed challenging tasks such as handwritten character recognition [3] to be
achieved. Decades later, there were several breakthroughs in neural networks
that lead to vast improvements in their implementation such as the introduction
of dropout [13] and rectified linear units [11]. These theoretical enhancements
and the accompanying increase in computing power through graphical processor
units (GPUs) meant that CNNs became viable for more complex image recogni-
tion problems. Presently, large CNNs are used to successfully tackle highly com-
plex image recognition tasks with many object classes to an impressive standard.
CNNs are used in many of the current state-of-the-art image classification tasks
including medical imaging. Hence, we use this method combined with expert
segmented fundus images and skeletonisation [12][5] to detect and classify vessel
junctions within fundus images.

There are many different architectures for neural networks. Recently residual
networks have achieved impressive results on the highly competitive competition
of ImageNet detection, ImageNet localisation, COCO detection, and COCO seg-
mentation [6]. They were then widely used in the following 2016 ImageNet com-
petition due to impressive performance on general large data sets of small images
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such as the MNIST [9] dataset for handwritten digits 0-9 and CIFAR-10 [8] a
dataset of 10 classes of color images. This makes the network ideal for our patch
based method. Hence, the Res18 network structure containing 18 residual layers
is used in the CNNs throughout this paper.

The rest of this paper is organised as follows. In §2, we present our new
method for locating and identifying crossings and branchings of retinal vessels,
in §3 we present our experimental results and in §4 and §5 we discuss this work
and present our conclusions.

2 Methods

The images used to implement out method are from the Digital Retinal Images
for Vessel Extraction (DRIVE) database with manual segmentations [14]. The
images in the DRIVE dataset were obtained from a diabetic retinopathy screen-
ing program in The Netherlands. The images were acquired using a Canon CR5
non-mydriatic 3CCD camera with a 45 degree field of view (FOV) using 8 bits
per color plane at 768 by 584 pixels.

Our framework consists of identifying patches of fundus images z(x) and
identifying those patches which include junctions, and then distinguishing the
type of junction located. We make use of available vessel segmentations given as
binary functions ¢(x) defined on the domain R x R. In practice, we are dealing
with the discrete counterparts z and ¢ of the image and segmentation function
respectively defined over the discrete domain 2 C Z x Z.

2.1 Skeletonisation and patch extraction

We consider patches of the fundus images centred along the segmented vessels.
In order to restrict the number of patches for training to a manageable amount
and reduce bias, we aim to reduce to segmentation of the vessels to a skeleton
and consider regions centred only on these points. We achieve this by performing
a skeletonisation of the level set function ¢(x) for each image. We convolve the
level set function with the kernels
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where 7; denotes rotation of the matrix by a multiple j of 7/2 radians and
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segmentation of the vessels by removing the points which are centred on regions
matching the above filters. That is, we set such points as background points. We
achieve this by iterating
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Fig. 1: Kernel functions for skeletonisation

beginning with I} = 0 and cycling through i € {1,2}, j € {0,1,2,3}.

Following this, we extract the patches by cropping the image z(x) to 21 x 21
pixel windows @ centred on points p in the set 1" of points considered the
foreground of the skeletonised vessel map. The patch size was selected so that
junctions and branches in the vessel would fit within one patch. The patches are
given by

Op ={qa € ||p—q| <10}, pel ={pe | =1}

In the training stage, these patches @ of the images in the training set are
used to train the neural network to identify whether a branching or crossing is
contained in the image patch. In the test stage, the trained CNN classifies the
patches accordingly. This step is described below.

2.2 Junction Identification - CNN C;

To identify the vessel junctions within the patches created we train our CNN
on a high-end graphics processer unit (GPU). The large random access memory
of the Nvidia K40c means that we were able to train on the whole dataset of
patches at once. The Nvidia K40c contains 2880 CUDA cores and comes with
the Nvidia CUDA Deep Neural Network library (cuDNN) for GPU learning.
The deep learning package Keras [1] was used alongside the Theano machine
learning back end to implement the network. After training, the feed forward
process of the CNN can classify the patches produced from a single image in
under a second.

We use the Res18 network architecture [6] as deep levels of convolution were
required to distinguish the vessel junction type in our small patches. The resid-
ual layers incorporate activation, batch normalisation, convolutional, dense and
maxpooling layers. We also use L? regularisation to improve weight training.
There were approximately 100,000 patches for training and 30,000 for testing
in the junction identification problem. The classes were weighted as a ratio of
junction to background due to the fact that junctions in the training and testing
patches were sparse at a ratio of 1:39. The network was trained using Adam
stochastic optimisation for backpropegation [7]. The network was trained to
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classify the patches in to a binary classification of either vessel junction or back-
ground. Gaussian initialisation was used within the network to reduce initial
training time. The loss function used to optimise was the widely used categor-
ical cross-entropy function. Training was undertaken until reduction of the loss
plateaued to obtain optimal results.

(a) Fundus Image z(x) (b) Vessel Map ¢(x) (c) Skeletonisation p(x)

(d) Patch Boundaries (e) Patch Classification (f) Junction Location

Fig. 2: Example of first part of algorithm: locating junctions.

2.3 Locate the centres

Following the neural network classification, which tell us if a branching or cross-
ing is contained within a patch, we aim to find the locations of of the points. We
achieve this by forming the cumulative sum image

t(q) = Z Sp(qal)a Sp(q,l) = {

pPeT

I, if ¢ € O(p)
0 otherwise

(3)

and taking the local maxima r € 7" as points of interest. We then aim to deter-
mine whether points are at crossings or branchings.

2.4 Junction Classification C,

We extract the patches ©(r) and use these to train a neural network to distin-
guish between crossing and branchings. The second neural network was trained
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with the Res18 architecture, like the first. Using a relatively small training set
of patches, as from our images the majority of patches did not contain junc-
tions, we trained our network in similar fashion to that used in the previous
step. Weighted classes were introduced again to cater for the imbalance, in that
images from the branching class were substantially more prominent than that of
the cross class.

Depending on the patch method there were around 800-2500 patches con-
taining a junction that were used for training. In all methods there were approx-
imately twice as many junction patches containing branching vessels compared
to patches containing vessels crossing. Training was performed until a plateau in
the reduction of the loss function was reached indicating no further improvement.

(a) Identified Junctions (b) Branching Points (c) Vessel Crossings

Fig. 3: Example of second part of algorithm: classifying junctions as branchings
and crossings.

3 Results

3.1 Overall

We test the ability of our algorithm using 40 images from the DRIVE database
with manual segmentations [14]. This data was split to provide 30 images for
training the neural networks, leaving 10 for testing. While this may seem a small
number for a machine learning approach, is should be noted that the number
of patches generated numbered more than 100,000 providing sufficient training
data.

4 Discussion

We have produced a method that can learn to detect and classify vessel junctions
using a very small dataset of 40 fundus images images that had been manually
classified for junctions and their type. Using the CNN C;, we managed to de-
tect the junctions to an impressive detection accuracy of over 94% due in part
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Fig. 4: Example of Cy input. Rows 1 and 2 (resp. 3 and 4): training patches with
crossings (resp. branchings) and their enhanced counterparts for presentation.
The neural networks were able to achieve good results using the patches without
enhancement.
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Skeletonisation of vessel map
Set ¢ (x) = 6(x)
for ¢ <— 0 : maxit do
fori+ 1:2do
for j «+ 0:3 do
"« Fij (#°) using equation (2)
end for
end for
end for

: Extract and classify the patches
:Set Y ={peR]pp) =1}
: for pe T do

Op ={q€2||p—ql <10}
Ip = Ci1 (Gp)

: end for
: Calculate the cumulative sum image ¢(q) using (3) and determine the set of points

of interest P.

: Vp € P, extract the patches O, = {q € 2| |p — q|] < 10}
: Classify the extracted patches to obtain I3 = Ca (Op)
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(d) ()

Fig. 5: Example of identifying junctions in fundus images.

to the relatively large amount of patches containing junctions. Along with the
skeletonisation, our deep learning classification Cqy for vessel type gave us an ac-
curacy of 88%. Increasing the size of our dataset would allow better distinction
in the classification of the vessel junctions. It is worth noting that junction type
training was undertaken on a couple of thousand patches and tested on around
800. Through training on more images the model could be fine tuned to refine
the filters and increase identification accuracy.

The current algorithm works well for images which have been manually seg-
mented but this time-consuming task could be further extended to incorporate
automatic segmentation techniques [15]. A further very useful extension would
be to automatically determine whether the artery or vein is in front with arteri-
ovenous crossings along with consideration of intra and inter-observer variability.
In order to better identify and classify junctions with other nearby junctions, it
would be useful to consider extending our method to a multi-scale approach.

5 Conclusion

The challenging task of detecting and classifying vessel junctions in fundus im-
ages is shown to be possible using our method. The ability to expand on this
method to make the detection both quicker and more accurate than manual
classification is possible. These preliminary results demonstrate that the overall
framework including the deep learning approach proposed is a viable technique
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Fig.6: Example of distinguishing between crossings and branchings in fundus
images. In each column, rows one and three show branchings and rows two and
four show the crossings for the respective examples.
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to accurately find and identifying vessel junctions with little training data. More
extensive testing of this framework could be undertaken to assess the transfer-
ability of these results to different size images and different datasets. However,
there is no reason why this framework would not be directly applicable to another
dataset.
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