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Abstract. A Classification Association Rule (CAR), a common type of mined 
knowledge in Data Mining, describes an implicative co-occurring relationship 
between a set of binary-valued data-attributes (items) and a pre-defined class, 
expressed in the form of an “antecedent ⇒ consequent-class” rule. Classification 
Association Rule Mining (CARM) is a recent Classification Rule Mining (CRM) 
approach that builds an Association Rule Mining (ARM) based classifier using 
CARs. Regardless of which particular methodology is used to build it, a classifier 
is usually presented as an ordered CAR list, based on an applied rule ordering 
strategy. Five existing rule ordering mechanisms can be identified: (1) Confi-
dence-Support-size_of_Antecedent (CSA), (2) size_of_Antecedent-Confidence-
Support (ACS), (3) Weighted Relative Accuracy (WRA), (4) Laplace Accuracy, 
and (5) χ2 Testing. In this paper, we divide the above mechanisms into two 
groups: (i) pure “support-confidence” framework like, and (ii) additive score 
assigning like. We consequently propose a hybrid rule ordering approach by 
combining one approach taken from (i) and another approach taken from (ii). The 
experimental results show that the proposed rule ordering approach performs well 
with respect to the accuracy of classification.  

Keywords: Classification Association Rules, Classification Association Rule 
Mining, Data Mining, Rule Ordering. 

1   Introduction 

Classification Rule Mining (CRM) [15] is a well-known Data Mining technique for 
the extraction of hidden Classification Rules (CRs) from a given database that is 
coupled with a set of pre-defined classes, the objective being to build a classifier to 
classify “unseen” data records. One recent approach to CRM is to employ Association 
Rule Mining (ARM) [1] techniques to identify the desired CRs, i.e. Classification 
Association Rule Mining (CARM). In [9], Coenen et al. suggest that results presented 
in [13] and [14] show that CARM seems to offer greater accuracy of classification, in 
many cases, than other CRM methods such as C4.5 [15]. CARM mines a set of 
Classification Association Rules (CARs) from a class transaction database (the  
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well-established transaction database in a class fashion), where a CAR describes an 
implicative co-occurring relationship between a set of binary-valued data attributes 
(items in a transaction database) and a pre-defined class, expressed in the form of an 
“antecedent ⇒ consequent-class” rule. Regardless of which particular methodology is 
used to generate CARs, a classifier is usually presented as an ordered CAR list, based 
on an applied rule ordering mechanism. In [7] Coenen and Leng evaluated a number 
of alternative case satisfaction and rule ordering strategies. They indicate that (1) 
three common case satisfaction approaches are best first rule, best K rule, and all 
rules; and (2) five existing rule ordering mechanisms are Confidence-Support-
size_of_Antecedent (CSA), size_of_Antecedent-Confidence-Support (ACS), Weigh-
ted Relative Accuracy (WRA), Laplace Accuracy, and χ2 Testing. In this paper, we 
further divide (2) into two groups: (i) pure “support-confidence” framework like, and 
(ii) additive score assigning like. We consequently propose a hybrid rule ordering 
approach by combining one mechanism taken from (i) and another mechanism taken 
from (ii). The experimental results show good performance regarding the accuracy of 
classification when using the proposed rule ordering approach with the best first rule 
case satisfaction. 

2   Related Work 

2.1   An Overview of CARM Algorithms 

The idea of CARM was first presented in [3]. Subsequently a number of alternative 
approaches have been described. Broadly CARM algorithms can be categorized into 
two groups according to the way that the CARs are generated: 

• Two stage algorithms where a set of CARs are produced first (stage 1), which 
are then pruned and placed into a classifier (stage 2). Examples of this approach 
include CBA [14] and CMAR [13]. CBA (Classification Based Associations), 
developed by Liu et al. in 1998, is an Apriori [2] based CARM algorithm, which 
(1) applies its CBA-GR procedure for CAR generation; and (2) applies its CBA-
CB procedure to build a classifier based on the generated CARs. CMAR 
(Classification based on Multiple Association Rules), introduced by Han and Jan 
in 2001, is similar to CBA but generates CARs through a FP-tree [11] based 
approach. 

• Integrated algorithms where the classifier is produced in a single processing 
step. Examples of this approach include TFPC1 [7] [9], and induction systems 
such as FOIL [16], PRM and CPAR [17]. TFPC (Total From Partial 
Classification), proposed by Coenen et al. in 2004, is a Apriori-TFP [8] based 
CARM algorithm, which generates CARs through efficiently constructing both 
P-tree and T-tree set enumeration tree structures. FOIL (First Order Inductive 
Learner) is an inductive learning algorithm for generating CARs developed by 
Quinlan and Cameron-Jones in 1993. This algorithm was later developed by Yin 
and Han to produce the PRM (Predictive Rule Mining) CAR generation 

                                                           
1 TFPC may be obtained from http://www.csc.liv.ac.uk/~frans/ KDD/Software. 
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algorithm. PRM was then further developed, by Yin and Han in 2003 to produce 
CPAR (Classification based on Predictive Association Rules). 

2.2   Case Satisfaction Approaches 

In [7] Coenen and Leng summarized three case satisfaction approaches that have been 
employed in different CARM algorithms for utilizing the resulting classifier to 
classify “unseen” data. These three case satisfaction approaches are itemized as 
follows (given a particular case): 

• Best First Rule: Select the first best rule that satisfies the given case according to 
some ordering imposed on the CAR list. The ordering can be defined according 
to many different ordering mechanisms, including: (1) CSA – combinations of 
confidence, support and size of antecedent, with confidence being the most 
significant factor (used in CBA, TFPC and the early stages of processing of 
CMAR); (2) ACS – an alternative to CSA that considers the size of the rule 
antecedent as the most significant factor; (3) WRA – which reflects a number of 
rule “interestingness” measures as proposed in [12]; (3) Laplace Accuracy – as 
used in PRM and CPAR; (5) χ2 Testing – χ2 values as used, in part, in CMAR; 
etc. 

• Best K Rules: Select the first best K rules that satisfy the given case and then 
select a rule according to some averaging process as used for example, in CPAR. 
The term “best” in this case is defined according to an imposed ordering of the 
form described in Best First Rule. 

• All Rules: Collect all rules in the classifier that satisfy the given case and then 
evaluate this collection to identify a class. One well-known evaluation method in 
this category is WCS (Weighted χ2) testing as used in CMAR. 

3   Rule Ordering Approaches 

As noted in the previous section five existing rule ordering mechanisms are identified 
to support the best first rule case satisfaction strategy. Each can be further separated 
into two stages: (1) a rule weighting stage where each CAR is labeled with a 
weighting score that represents the significance of this CAR indicates a predefined 
class; and (2) a rule re-ordering stage, which sorts the original CAR list in a 
descending manner, based on the score assigned in stage (1), of each CAR. Based on 
(1) we divide these existing rule ordering mechanisms into two groups: (i) pure 
“support-confidence” framework like, and (ii) additive score assigning like. With 
regards to both stages of rule weighting and rule re-ordering, each rule ordering 
mechanism can be described in more detail as follows: 

(i)   Pure “support-confidence” framework like 

• CSA: The CSA rule ordering mechanism is based on the well-established 
“support-confidence” framework. It does not assign an additive weighting score 
to any CAR in its rule weighting stage, but simply gathers the value of 
confidence and support, and the size of the rule antecedent to “express” a  
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weighting score for each CAR. In the rule re-ordering stage, CSA generally sort 
the original CAR list in a descending order based on the value of confidence of 
each CAR. For these CARs that share a common value of confidence, CSA sorts 
them in a descending order based on their support value. Furthermore for these 
CARs that share common values for both confidence and support, CSA sorts 
them in an ascending order based on the size of the rule antecedent. 

• ACS: The ACS rule ordering mechanism is a variation of CSA. It takes the size 
of the rule antecedent as its major factor (using a descending order) followed by 
the rule confidence and support values respectively. This rule ordering 
mechanism ensures that “specific rules have a higher precedence than more 
general rules” [7]. 

(ii)   Additive score assigning like 

• WRA: The use of WRA can be found in [12], where this technique is used to 
determine an expected accuracy for each CAR. In its rule weighing stage, WRA 
assigns an additive weighting score to each CAR. The calculation of the value of 
a CAR r, confirmed in [7], is: wra(r) = support (r.antecedent) * (confidence (r) – 
support (r.consequent)). In the rule re-ordering stage the original CAR list is 
simply sorted in a descending order based on the assigned wra value of each 
CAR. 

• Laplace Accuracy: The use of the Laplace expected error estimate [5] can be 
found in [17]. The principle of applying this rule ordering mechanism is similar 
to WRA. The calculation of the Laplace value of a CAR r is: Laplace(r) = 
(support (r.antecedent ∪ r.consequent) + 1) / (support (r.antecedent) + c), where 
c represents the number of pre-defined classes. 

• χ2 Testing: χ2 Testing is a well known technique in statistics, which can be used 
to determine whether two variables are independent of one another. In χ2 
Testing a set of observed values (O) is compared against a set of expected values 
(E) – values that would be estimated if there were no associative relationship 
between the variables. The value of χ2 is calculated as: ∑[i = 1…n] (Oi – Ei)

2 / Ei, 
where n is the number of observed/expected values, which is always 4 in 
CARM. If the χ2 value between two variables (the antecedent and consequent-
class of a CAR) above a given threshold value (for CMAR the chosen threshold 
is 3.8415), thus it can be concluded that there is a relation between the rule 
antecedent and consequent-class, otherwise there is not a relation. After 
assigning an additive χ2 value to each CAR, it can be used to re-order the CAR 
list in a descending basis. 

4   The Hybrid Rule Ordering Strategy 

In [17] Yin and Han believe that there are only a limited number, say at most K in 
each class, of CARs that are required to distinguish between classes and should be 
thus used to make up a classifier. They suggest a value of 5 as an appropriate value 
for K, and employ the Laplace accuracy (a method in the additive score assigning 
like) to estimate the accuracy of CARs. With respect to the above suggestions, we  
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propose a hybrid rule ordering strategy by combining one rule ordering mechanism 
taken from (i) the pure “support-confidence” framework like, and another rule 
ordering mechanism taken from (ii) the additive score assigning like. We sketch the 
process of the proposed rule ordering approach in Figure 1 as follows. 
 
 

Procedure HYBRID RULE ORDERING; 
Input:  a list of CARs ℜ (in a CSA or ACS 

    ordering manner); 
Output: a re-ordered list of CARs ℜ+; 

(1)begin 
(2)  ℜ+ := {∅}; 
(3)  ℜ◊ := {∅}; 
(4)  ℜ◊ ← catch the best K rules in ℜ using 

 a method in (ii); 
(5)  ℜ◊ ← re-order ℜ◊ based on a method in (i); 
(6)  ℜ+ ← ℜ◊ + ℜ; 
(7)  return (ℜ+); 
(8)end 

Fig. 1. The HYBRID RULE ORDERING Procedure 

Six different schemes can be identified in this hybrid approach: 

• Hybrid CSA/WRA: Selects the best K rules in a WRA manner, and re-orders 
both the best K CAR list and the original CAR list in a CSA fashion. (Note: we 
assume that both CAR lists use the same ordering fashion as either CSA or 
ACS); 

• Hybrid CSA/Laplace: Selects the best K rules in a Laplace manner, and re-
orders both the best K CAR list and the original CAR list in a CSA fashion; 

• Hybrid CSA/χ2: Selects the best K rules in a χ2 manner, and re-orders both the 
best K CAR list and the original CAR list in a CSA fashion; 

• Hybrid ACS/WRA: Selects the best K rules in a WRA manner, and re-orders 
both the best K CAR list and the original CAR list in an ACS fashion. 

• Hybrid ACS/Laplace: Selects the best K rules in a Laplace manner, and re-
orders both the best K CAR list and the original CAR list in an ACS fashion; and 

• Hybrid ACS/χ2: Selects the best K rules in a χ2 manner, and re-orders both the 
best K CAR list and the original CAR list in an ACS fashion. 

5   Experimental Results 

In this section, we aim to evaluate the proposed hybrid rule ordering approach with 
respect to the accuracy of classification. All evaluations were obtained using the 
TFPC algorithm coupled with the best first rule case satisfaction strategy, although  
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any other CARM classifier generator, founded on the best first rule strategy, could 
equally well be used. Experiments were run on a 1.20 GHz Intel Celeron CPU with 
256 Mbyte of RAM running under Windows Command Processor. 

The experiments were conducted using a range of datasets taken from the LUCS-
KDD discretised/normalized ARM and CARM Data Library [6]. The chosen datasets 
are originally taken from the UCI Machine Learning Repository [4]. These datasets 
have been discretised and normalized using the LUCS-KDD DN software2, so that 
data are then presented in a binary format suitable for use with CARM applications. It 
should be noted that the datasets were rearranged so that occurrences of classes were 
distributed evenly throughout the datasets. This then allowed the datasets to be 
divided in half with the first half used as the training set and the second half as the test 
set. Although a “better” accuracy figure might have been obtained using Ten-Cross 
Validation [10], it is the relative accuracy that is of interest here and not the absolute 
accuracy. 

The first set of evaluations undertaken used a confidence threshold value of 50% 
and a support threshold value 1% (as used in the published evaluations of CMAR 
[11], CPAR [17], TFPC [7] [9]). The results are presented in Table 1 where 120 
classification accuracy values are listed based on 24 chosen datasets. The row labels 
describe the key characteristics of each dataset: for example, the label  
 

Table 1. Classification accuracy – five existing rule ordering approaches 

DATASETS CSA ACS WRA Laplace χ2 
adult.D97.N48842.C2 80.83 73.99 81.66 76.07 76.07 
anneal.D73.N898.C6 91.09 75.50 87.75 77.51 77.51 
auto.D137.N205.C7 61.76 53.92 50.00 47.06 50.00 
breast.D20.N699.C2 89.11 89.11 87.68 65.62 65.62 
connect4.D129.N67557.C3 65.83 64.83 67.93 65.83 65.83 
cylBands.D124.N540.C2 65.93 42.59 64.07 57.78 57.78 
flare.D39.N1389.C9 84.44 83.86 84.15 84.44 84.44 
glass.D48.N214.C7 58.88 43.93 50.47 52.34 50.47 
heart.D52.N303.C5 58.28 28.48 55.63 54.97 54.97 
hepatitis.D56.N155.C2 68.83 48.05 71.43 79.22 79.22 
horseColic.D85.N368.C2 72.83 40.76 79.89 79.89 63.04 
ionosphere.D157.N351.C2 85.14 61.14 86.86 64.57 64.57 
iris.D19.N150.C3 97.33 97.33 97.33 97.33 97.33 
led7.D24.N3200.C10 68.38 61.38 63.94 63.88 65.56 
letRecog.D106.N20000.C26 31.13 26.21 26.33 26.33 28.52 
mushroom.D90.N8124.C2 99.21 65.76 98.45 98.45 49.43 
nursery.D32.N12960.C5 80.35 55.88 70.17 70.17 70.17 
pageBlocks.D46.N5473.C5 90.97 90.97 90.20 89.80 89.80 
pima.D38.N768.C2 73.18 71.88 72.92 65.10 65.10 
soybean-
large.D118.N683.C19 86.22 79.77 36.36 36.07 77.42 
ticTacToe.D29.N958.C2 71.61 36.12 68.06 65.34 65.34 
waveform.D101.N5000.C3 61.56 47.96 56.24 57.84 57.28 
wine.D68.N178.C3 56.18 37.08 80.90 73.03 70.79 
zoo.D42.N101.C7 80.00 42.00 56.00 42.00 42.00 
Average 74.13 59.10 70.18 66.28 65.34 
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adult.D97.N48842.C2 denotes the “adult” dataset, which includes 48,842 records in 2 
pre-defined classes, with attributes that for the experiments described here have been 
discretised and normalized into 97 binary categories. 

From Table 1 it can be seen that with a 50% confidence threshold and a 1% 
support threshold the CSA rule ordering mechanism worked better than other 
alternative approaches. When applying the CSA rule ordering mechanism, the 
average accuracy of classification throughout the 24 datasets is 74.13%, whereas 
using ACS is 59.10%, WRA is 70.18%, Laplace is 66.28%, and χ2 is 65.34%. 

The second set of evaluations undertaken used a confidence threshold value of 
50%, a support threshold value of 1%, and a value of 5 as an appropriate value for K 
when selecting the best K rules (as suggested by Yin and Han in [17]). The results are 
presented in Table 2 where 144 classification accuracy values are listed based on 24 
chosen datasets. 

Table 2. Classification accuracy – six hybrid rule ordering schemes 

DATASETS 
CSA/ 
WRA 

CSA/ 
Laplace

CSA/ 
χ2 

ACS/ 
WRA 

ACS/ 
Laplace

ACS/ 
χ2 

adult.D97.N48842.C2 83.33 79.95 79.95 78.56 83.76 80.14 
anneal.D73.N898.C6 91.09 91.54 91.54 80.40 80.62 88.20 
auto.D137.N205.C7 59.80 58.82 53.92 55.88 54.90 52.94 
breast.D20.N699.C2 89.11 88.54 89.11 89.11 88.54 89.11 
connect4.D129.N67557.C3 67.67 65.83 65.83 64.88 64.88 64.88 
cylBands.D124.N540.C2 67.04 69.26 57.78 61.11 70.00 53.33 
flare.D39.N1389.C9 84.29 84.44 84.44 83.86 83.86 83.86 
glass.D48.N214.C7 66.36 66.36 66.36 65.42 65.42 68.22 
heart.D52.N303.C5 55.63 56.95 58.94 52.32 50.33 50.33 
hepatitis.D56.N155.C2 84.42 84.42 84.42 63.64 71.43 68.83 
horseColic.D85.N368.C2 83.15 83.15 79.89 75.00 83.15 71.20 
ionosphere.D157.N351.C2 90.29 89.71 88.00 90.29 89.71 88.00 
iris.D19.N150.C3 97.33 97.33 97.33 97.33 97.33 97.33 
led7.D24.N3200.C10 68.19 68.19 68.38 62.06 62.06 62.31 
letRecog.D106.N20000.C26 31.49 31.49 31.56 27.39 27.39 28.41 
mushroom.D90.N8124.C2 98.45 98.82 98.45 98.45 98.82 98.45 
nursery.D32.N12960.C5 78.86 78.86 78.86 66.73 66.73 66.73 
pageBlocks.D46.N5473.C5 90.97 90.97 90.97 90.97 90.97 90.97 
pima.D38.N768.C2 73.18 73.18 72.66 73.18 73.18 72.66 
soybean-
large.D118.N683.C19 80.94 80.94 82.11 75.66 75.66 78.01 
ticTacToe.D29.N958.C2 74.95 74.74 72.65 60.75 70.35 67.22 
waveform.D101.N5000.C3 57.96 57.96 60.60 59.20 59.20 60.60 
wine.D68.N178.C3 77.53 77.53 77.53 77.53 77.53 77.53 
zoo.D42.N101.C7 84.00 90.00 72.00 80.00 80.00 80.00 
Average 76.50 76.62 75.14 72.07 73.58 72.47 

From Table 2 it can be seen that with a 50% confidence threshold, a 1% support 
threshold, and 5 as the value of K, the approach hybrid CSA/Laplace preformed better  
 



346 Y.J. Wang, Q. Xin, and F. Coenen 

than other alternative hybrid schemes. When applying the hybrid CSA/Laplace, the 
average accuracy of classification throughout the 24 datasets is 76.62%. Let CSA and 
Laplace be the “parents” of the hybrid CSA/Laplace, we indicate that the 
classification accuracy obtained using the hybrid CSA/Laplace is significantly higher 
than using its “parents”, where CSA is 74.13% and Laplace is 66.28%. Furthermore 
we identify: 

• The classification accuracy of the hybrid CSA/WRA is significantly higher than 
the accuracies of its “parents”, where the average accuracy of the hybrid 
CSA/WRA is 76.50% whereas CSA is 74.13% and WRA is 70.18%. 

• The classification accuracy of the hybrid CSA/χ2 is significantly higher than the 
accuracies of its “parents”, where the accuracy of the hybrid CSA/χ2 is 75.14% 
whereas CSA is 74.13% and χ2 is 65.34%; 

• The accuracy of the hybrid ACS/WRA is significant higher than the accuracies of 
its “parents”, where the hybrid ACS/WRA is 72.07% whereas ACS is 59.10% 
and WRA is 70.18%; 

• The accuracy of the hybrid ACS/Laplace is significantly higher than its 
“parents”, where the hybrid ACS/Laplace is 73.58% whereas ACS is 59.10% and 
Laplace is 66.28%; and 

• The accuracy of the hybrid ACS/χ2 is significantly higher than its “parents”, 
where the hybrid ACS/χ2 is 72.47% whereas ACS is 59.10% and χ2 is 65.34%. 

6   Conclusion 

This paper is concerned with an investigation of CARM. An overview of alternative 
CARM algorithms was provided in Section 2.1, and three current case satisfaction 
strategies were reviewed in Section 2.2. In Section 3 with regards to both stages of 
rule weighting and rule re-ordering, we described the existing rule ordering 
mechanisms in groups (the “support-confidence” framework like vs. the additive 
score assigning like). A hybrid rule ordering approach was proposed in Section 4, 
which combines an approach taken from the “support-confidence” framework like, 
and another approach taken from the additive score assigning like. Subsequently six 
hybrid rule ordering schemes were introduced. From the experimental results (see 
Section 5), all six hybrid schemes presented good classification accuracy – the 
accuracy is significantly higher than the accuracies obtained by their “parent” rule 
ordering approaches. Further research is suggested to identify the improved rule 
ordering approach to give a better performance. 
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