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ABSTRACT

Age-related Macular Degeneration (AMD) is a retina disorder, which is currently on the increase. In this paper,
we investigate the use two different statistical methods for detecting AMD in Optical Coherence Tomography
(OCT) volumetric data where by a 3-D image is represented using a combination of two matrices: a Voxel
Co-occurrence Matrix (VCM) and a Voxel Run-Length Matrix (VRLM). Statistical features are extracted from
the matrices which are then used to establish feature vectors for input to a standard classification (The k-nearest
neighbor (KNN) classifier was used in this paper).
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1. OVERVIEW

Optical Coherence Tomography (OCT) is an imaging technology that is able to build a three-dimensional images
of the retina such that different retina layers can be distinguished [1]. The use of OCT enhances the support
available for the examination of different eye disorders. Age-related Macular Degeneration(AMD) is one of these
disorders. OCT images indicate clearly different signs of AMD. Figure 1 shows two sequences taken from OCT
volumes. The sequence on the left shows a normal retina, and the sequence on the right a retina effected by
AMD.

There is very little published work on the classification of 3D OCT images. Most of the research on the
classification of retinal images has been at 2D images representing the “fovea slice” of an OCT volume [2].
However, the main disadvantage of these 2D methods is that in some cases the signs of a retina disorder may
appear in some other slices and not in the fovea slice. The technique described in this paper uses the entire 3-D
OCT volume.

There are three main steps for our technique. First of all, the image features are extracted by the means of
a combination of texture methods acting as shape descriptors. Two different matrices are used for this purpose,
(i) a Voxel Co-occurrence Matrix (VCM) and (ii) a Voxel Run-Length Matrix (VRLM). Following this, various
statistical features are computed using these matrices. With respect to 2-D images, the work described in [3]
introduced 14 statistical textural features such as angular second moment, contrast, correlation, variance and
others. It is noticeable that different extracted features could be used with one matrix but it might not be suitable
with other. The extracted features are then used to populate a set of Feature Vectors (FVs), one per image. The
final step is to input the FVs into a classification system. Different classifiers could be used. K-nearest neighbor
(KNN) was selected with respect to this paper because of its wide usage.

2. FEATURE REPRESENTATION AND EXTRACTION

In order to reduce the dimensionality of the volumetric images, two matrices are used: (i) a Voxel Co-occurrence
Matrix (VCM) and (ii) a Voxel Run-Length Matrix (VRLM). These matrices consider the neighboring relation-
ships between the volume elements (voxels). The use of these kind of matrices reduce the dimensionality by
considering only the relationships between the image elements. After computing these matrices, features are
extracted from the two matrices. The VCM and VRLM matrices are considered in more detail in the following
two sub-sections.
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Figure 1. Four slices in the same locations for a normal retina and one with AMD signs. In every slice, the left hand side
shows the fundus images with an arrow indicating the position of the OCT scanning.

2.1 VCM

The idea of the VCM matrix is founded on the concept of the Grey Level Co-occurrence Matrix (GLCM) used with
2D images [3]. The basic idea of the GLCM matrix is to count the number of pairs pixel, that display the same
attributes, located within a certain distant and a direction of each other. A GLCM matrix when generated holds
the frequencies of neighboring pixel intensity values calculated by using the second-order conditional probability
functions. Many GLCMs could be computed from the same data by varying the distance and the direction.

In 2-D images we can identify four directions, in the case of 3-d images we can identify 13 vectors. The Voxel
Co-occurrence Matrices (VCM) for 3D objects [4] is defined as follows: VCM(i, j | d, Φ, θ)= #((l, m, n),(o, p,
q)) ε(Lx ×Ly ×Lz) I (l, m, n)= i, I (o, p, q) = j , where d is the displacement distance , Φ and θ are the angles
displacement angle for j, # indicates the frequency of an intensity pair, Lx =1, 2 ... Nx, Ly=1, 2 ... , Ny, Lz=1,
2 ..., Nz are the horizontal (X), vertical (Y), depth (Z) values of the image intensity and I is the volumetric
image. For simplicity, the value of d could be set to one [3]. The value of θ could be 0, 45, 90 and 135 in 2D
cases while in 3D cases 54.7 and 125.3 should be included.

All 13 vectors were used and for every vector a VCM matrix was built consequently 13 VCMs were gener-
ated(one per image). In order to illustrate how to form the matrices. Let d be the displacement vector used
in δ = (∆x,∆y,∆z), VCMs could be defined using the 13 vectors involving in table 1. This table shows the
possible displacement vectors in both ways(minus and pulse). For example, ±(d, 0, 0) vector indicates that the
selected element is increased by the value d in x direction in both way. The angle Φ represents the change in
azimuth direction and the angle θ is for zenith, which are the vertical and horizontal coordinates respectively
(See Figure 2).

After computing the VCM matrix, the followings are features that are used [3, 6]:

• Angular Second moment: f1 =
∑
i

∑
j V CM(i, j)

2

• Contrast: f2 =
∑Ng

n=0 n
2
{∑Ng

i=1

∑Ng

j=1 V CM(i, j)
}

, where |i− j|= n

• Correlation: f3 =
∑

i

∑
j(ij)V CM(i,j)−υxυy

σxσy
, where υx, υy, σx and σy are the means, standard deviations of

the matrix elements respectively.

• Sum of squares (Variance): f4 =
∑
i

∑
j(i− υ)2V CM(i, j)



Figure 2. Illustration of the relationships between the angles within the 3D images. (a) illustrates the angle Φ and θ while
(b) shows a single voxel and its possible 26 neighbors [5].

Table 1. The possible 13 displacement vectors [5].

Displacement value (D) Direction (Φ, θ)

±(d, 0, 0) (0, 90)

±(0, d, 0) (90, 90)

±(0, 0, d) (0, 90)

±(d, d, 0) (45, 90)

±(−d, d, 0) (135, 90)

±(0, d, d) (90, 45)

±(0, d,−d) (90, 135)

±(d, 0, d) (0, 45)

±(d, 0,−d) (0, 135)

±(d, d, d) (45, 54.7)

±(−d, d, d) (135, 54.7)

±(d, d,−d) (54, 125.3)

±(−d, d,−d) (135, 125.3)

• Inverse Difference Moment: f5 =
∑
i

∑
j

1
1+(i−j)2V CM(i, j)

• Sum Average: f6 =
∑2Ng

i=2 iV CMx+y(i)

• Sum Variance: f7 =
∑2Ng

i=2 (i− f8)2V CMx+y(i)

• Sum Entropy: f8 =
∑2Ng

i=2 V CMx+y(i) log V CMx+y(i)

• Entropy: f9 = −
∑
i

∑
j V CM(i, j) log(V CM(i, j))

• Difference Entropy: f10 =
∑Ng−1

i=0 V CMx−y log V CMx−y(i)

• Different Variance: f11 =variance of V CMx−y

• Maximal Correlation Coefficient: f12=(second eigenvalue of Q)1/2, where Q(i, j)=
∑
k
V CM(i,k)V CM(j,k)
V CMx(i)V CMy(k)



• Information Measures of Correlation: f13 = f9−XY 1
max(HX,HY ) , f14 = (1 − exp[−2.0(XY 2 − f9)1/2]) where HX

and HY are the entropies of px and V CMy and XY 1 = −
∑
i

∑
j V CM(i, j) log) {V CMx(i)V CMy(j)}

and XY 2 = −
∑
i

∑
j V CMx(i)V CMy(j) log) {V CMx(i)V CMy(j)}

where P is the probability matrix, Ng is the maximum value included in intensity values of the image.

More features could be included. The following lists some more statistical methods [7]:

• Dissimilarity: f15 =
∑
i

∑
j |(i− j)|V CM(i, j)

• Inverse difference: f16 =
∑
i

∑
j

1
1+(i−j)V CM(i, j)

• Maximum probability: f17 = max (VCM(i, j)) ∀ i, j

• Inverse difference normalized: f18 =
∑
i

∑
j

V CM(i,j)
1+|i−j|2/N2

g

• Inverse difference moment normalized: f19 =
∑
i

∑
j

V CM(i,j)
1+(i−j)2/N2

g

In addition, autocorrelation and cluster features are used for VCM and the following is the method of
computing them [8]:

• Autocorrelation: f20 =
∑
i

∑
j (ij)V CM(i, j)

• Cluster Shade: f21 =
∑
i

∑
j (i+ j − µx − µy)3V CM(i, j)

• Cluster Prominence: f22 =
∑
i

∑
j (i+ j − µx − µy)4V CM(i, j)

The previous 22 feature functions are applied for every VCM. 286 features are extracted by using VCMs for
one image.

2.2 VRLM

The concept of the VRML matrix is founded on the Grey Level Run-Length Matrix (GLRLM) which is used to
hold a gray level run elements in different lengths. A run is a set of consecutive, collinear image intensity pixels
that have the same values. The length of the run is the number of intensity values in the run. The GLRLM(i,
j) should include a run of length j in a certain direction involving a gray intensity level i [9, 10]. The Voxel
Run-Length Matrix (VRLM) is a volumetric extension to the GLRLM.

The following function illustrates how to create a VRLM. V RLM(θ,Φ) = [g(i, j|θ,Φ)] , 0 ≤ i ≤ Ng, 0 ≤ j ≤
Nr where θ,Φ are the angles as in the previous section, g(i, j|θ,Φ) is the function for computing the run intensity
of i with a length j in the two angles, Ng is the number of voxels intensity levels in the image and Nr is the
maximum run length. Table 1 summaries the 13 possible vectors and the angles.

Five features were extracted from each matrix [9].

• Short Runs Emphasis: f1 =
∑Ng

i=1

∑Nr

j=1
V RLM(i,j)

j2 /
∑Ng

i=1

∑Nr

j=1 V RLM(i, j)

• Long Runs Emphasis: f2 =
∑Ng

i=1

∑Nr

j=1 j
2V RLM(i, j)/

∑Ng

i=1

∑Nr

j=1 V RLM(i, j)

• Gray Level Nonuniformity: f3 =
∑Ng

i=1(
∑Nr

j=1 V RLM(i, j))2/
∑Ng

i=1

∑Nr

j=1 V RLM(i, j)

• Run Length Nonuniformity: f4 =
∑Ng

j=1(
∑Nr

i=1 V RLM(i, j))2/
∑Ng

i=1

∑Nr

j=1 V RLM(i, j)

• Run Percentage: f5 =
∑Ng

i=1

∑Nr

j=1 V RLM(i, j)/V RLM

In addition, emphasis features are used [11]. The following mentions the feature functions:



Actual
Total

AMD Not AMD

Predicted
AMD 15 3 18
Not AMD 0 7 7

Total 15 10 25

Table 2. The truth table showing the result.

• Low Gray-Level Run Emphasis: f6 = 1
Nr

∑Ng

i=1

∑Nr

j=1
V RLM(i,j)

i2

• High Gray-Level Run Emphasis: f7 = 1
Nr

∑Ng

i=1

∑Nr

j=1 V RLM(i, j) · i2

More features are extracted using the emphasis [12]. The following functions explain how the feature elements
are extracted:

• Short Run Low Gray-Level Emphasis: f8 = 1
Nr

∑Ng

i=1

∑Nr

j=1
V RLM(i,j)

i2·j2

• Short Run High Gray-Level Emphasis: f9 = 1
Nr

∑Ng

i=1

∑Nr

j=1
V RLM(i,j)·i2

j2

• Long Run Low Gray-Level Emphasis: f10 = 1
Nr

∑Ng

i=1

∑Nr

j=1
V RLM(i,j)·j2

i2

• Long Run High Gray-Level Emphasis: f11 = 1
Nr

∑Ng

i=1

∑Nr

j=1 V RLM(i, j) · i2 · j2

The identified features were used to describe a feature vector.

3. CLASSIFICATION

The feature vectors, derived as described above, and coupled with an appropriate class label are used as input
to a classifier generator. The k-Nearest Neighbor (KNN) classifier was used [13]. Two classes were used for the
training: normal retina and AMD retina. For the VCM, 22 features were computed for each of the 13 matrices
giving feature vectors comprising 286 features (one per image). For the case of the VRLM, 11 features were
calculated giving 143 features.

4. DISCUSSION

The first advantage offered by the matrix method described is that it does not required any segmentation of
the retina before computing the features. 3-D segmentation remains a subject of much research, and remains a
challenge because of the computational complexity that 3-D segmentation entails.

To evaluate the effectiveness of the proposed approach we have run experiments using 25 3D OCT volumes,
ten “normal” and the remainder AMD. Each volume has different sizes according to the size of the retina. In
most cases, the size is about (596 × 465 pixels) × 18 slices. Some image enhancement was firs applied using
a global threshold and morphological operations. Then the FVs were extracted and input to a KNN classifier.
The entire data set was used to build the classifier which was then tested on the same data (alternatives might
have been to use ten cross validation or a “leave one out” approach). The resulting truth table is presented in
Table 2. From the truth table we get the following results: sensitivity = 100%, specificity = 70% and accuracy
= 88%. These are good results although an argument can be made that the classifiers is over-fitted to the data.
However, we can conclude that the second advantage offered by the matrix method is that it maintains the
spatial relationships between the features even when the shape is rotated and transformed thus obviating the
need for the implementation of some flatten process as suggested in [2].



5. CONCLUSION AND FUTURE WORK

We have given a brief overview of the Voxel Co-occurrence Matrix (VCM) and Voxel Run-Length Matrix (VRLM)
methods for building shape descriptors for image classification purposes. Although this is work in progress,
preliminary experiments have demonstrated that the feature extracted should allow a classifier to distinguish
between normal and AMD 3-D retinal images. It is conjectured that the combination of the features will heighten
accuracy. For future work we intend improve the manner in which the matrices are constructed. The intention
is also to add more features so as to enhance accuracy. Furthermore, the total number of features could be
normalized in a way that takes 13 vectors in consideration and in the same time one value is used instead of
13. Alternatively dimensionality reduction method such as Principal Component Analysis (PCA) may be used
instead.
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