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Motivation
We are interested in mining patterns from data which  

demonstrate how some resource is allocated across 
different items.

A trivial example of such pattern might be: 

{ bread[0.15], egg[0.20], milk[0.10] } 
⇒ { butter[0.20], ham[0.35] } , 

which can be interpreted as: when people spend 15%, 
20% and 10% of their money to purchase bread, egg and 
milk together, it is likely that people will also spend 20% 
and 35% of their money to purchase butter and ham.

This pattern can be recognised as a quasi (weighted) 
association rule with a special weighted setting.



The original ARM problem (Cai et al 1998) treats the 
importance of all items in a uniform manner. Based on 
“real-life” marketing experience, not all goods (items) 
share the same importance in a market.

Weighted Association Rules (WARs), as a variant of ARs, 
was introduced to improve the applicability of the AR.

Weighted Association Rule Mining (WARM) aims to extract 
WARs from weighted transaction database.

There are a number of different approaches to WARM 
reported in the literature.

Weighted Association Rule Mining



The “Utility” Approach (static weighting)
       IW = {aW

1, aW
2, …, aW

n-1, aW
n} be a set of weighted items with 

a user-defined weighting score wi (0 ≤  wi ≤  1). Let Ŧ = {T1, 
T2, …, Tm-1, Tm} be a set of transactions in a weighted 
transaction database DW

T where each Tj ∈ Ŧ comprises a set 
of weighted items IW ′  ⊆  IW.

To measure the significance of a WAR some “weighted-
support-confidence” framework is introduced: 
(1) A weighted-support threshold σ W to distinguishes 
frequent weighted itemsets from the infrequent ones.
(2) A weighted-confidence threshold α W to distinguishes 
high confidence WARs from low confidence ones.

Weighted Association Rule Mining [A1]



       A WAR “XW ⇒ YW” (where XW, YW ⊂  IW and XW ∩ YW = ∅ ) is said 
to be valid when the weighted-support of XW ∪ YW exceeds σ W, and 
the weighted-confidence of this WAR exceeds α W.

The computation of weighted-support is:

weighted-support(XW ∪  YW) = 

 (∑aW
i ∈ (XW ∪  YW) wi) × count (XW ∪  YW) .

The computation of weighted-confidence is:

weighted-confidence(XW ⇒ YW) = 

weighted-support(XW ∪  YW) / weighted-support(XW)) 
.

Mining from weighted items/goods (in DW
T) enables the generation 

of rules (i.e. WARs) with have more emphasis on some particular 
items and less emphasis on other items.

Weighted Association Rule Mining [A2]



The “Variant” Approach (dynamic weighting)

      The Variant Approach (Wang et al. 2000) to mining 
WARs is directed at dynamically weighted transaction 
database DW

T*.

In a marketing context, an archetypal WAR mined from 
DW

T* can be  exemplified as:

 { bread[9, 14] } ⇒ { ham[12, 20] }

which can be interpreted as: when bread is purchased in 
the quantity between 9 and 14, it is likely that ham in 
the quantity between 12 and 20 is also purchased.
Dynamic weightings do not have to be ranges.

Weighted Association Rule Mining [B1]



Improved Approach (with downward closure 
property)

      The main challenge of mining WARs is that the 
“downward closure property” of itemsets no longer 
holds.

To solve this problem, an improved approach of mining 
WARs was introduced, which takes an alternative 
weighted transaction database DW

T
+

 as the input.

The weighting scores in DW
T

+ can be any positive real 
number.

Weighted Association Rule Mining [C1]



       The Improved WARM assigns a weighting score w_tj 
to each transaction Tj in DW

T
+, where the computation 

of w_tj is:

w_tj = (∑aW
i ∈ Tj wi) / |Tj| .

A WAR XW ⇒ YW (where XW, YW ⊂  IW and XW ∩ YW 
= ∅ ) is said to be valid when the weighted-support of 
XW ∪ YW exceeds the weighted-support threshold σ W, 
and the weighted-confidence exceeds the weighted-
confidence threshold α W.

Weighted Association Rule Mining [C2]



       

The computation of weighted-support herein is:

weighted-support+(XW ∪  YW) = 
 (∑j = 1…|Ŧ| & (XW ∪  YW) ⊆  Tj w_tj) / (∑j = 1…|Ŧ| 

w_tj)

The computation of weighted-confidence herein is:

weighted-confidence+(XW ⇒ YW) = weighted-support+

(XW ∪  YW)
 / weighted-support+(XW)

For the generation of frequent weighted itemsets, the 
“downward closure property” holds.

Weighted Association Rule Mining [C3]



In our study, we present a different type of WAR, where each rule 
item is associated with a weighting score between 0 and 1, 
and the sum of all rule item scores is 1. 

This patterns produced indicate both the implicative co-occurring 
relationship between two (disjoint) sets of items in a 
weighted setting, and the “allocating” relationship among 
rule items (i.e. how a resource is allocated across items).  

We name this new pattern to be an ALALlocating locating PPatternattern (or ALP).

The approach of mining ALPs requires a special weighted 
transaction database, “One-sum” Weighted Transaction 
Database (DW

T-OS), as the input.

Allocating Pattern Mining 1



Let IOSW = {aOSW
1, aOSW

2, …, aOSW
n-1, aOSW

n} be a set of “one-sum” 
weighted items, and Ŧ = {T1, T2, …, Tm-1, Tm} be a set of 
transactions.

Each aOSW
i ∈ IOSW represents an item ai ∈ I  that is assigned a set of 

weighting scores θ i = {wi1, wi2, …, wim-1, wim}, where 0 ≤  wij 
≤  1 and |θ i| = |Ŧ| which means: for each transactions Tj ∈ Ŧ, 
different scores wij ∈ θ i can be assigned to a particular item 
aOSW

i ∈ IOSW.

The resulting one-sum weighted transaction databaseone-sum weighted transaction database DW
T-OS is 

described by Ŧ, where each Tj ∈ Ŧ comprises a set of one-
sum weighted items IOSW′  ⊆  IOSW, and ∑i = 1…|Tj| wij = 1 (the 
sum of all item scores in each transaction is 1).

The “one-sum” property serves to distinguishes DW
T-OS from other 

weighted transaction databases.

Allocating Pattern Mining 2



Mining Frequent One-sum Weighted Itemsets

A one-sum weighted itemset can be treated as an itemset that 
is presented in a particular weighting frameweighting frame, where the item 
scores are assigned in a one-sum “percentage” manner. 

For example, {I1[0.1], I2[0.3], I3[0.3], I4[0.3]} and {I1[0.1], 
I2[0.3], I3[0.5], I4[0.1]} are two different weighting frames 
for the itemset {I1, I2, I3, I4}.

If an Itemset Weighting FrameItemset Weighting Frame (IWF) appears as a subset of 
more than (σ W

OS ×  |Ŧ|) transactions in DW
T-OS, where σ W

OS 
is a user-supplied one-sum weighted-support threshold, this 
IWF can be identified as a frequent one-sum weighted 
itemset.

Allocating Pattern Mining (Weighting 
Frames) 3



To determine whether an Item Weighting Frame (IWF) is a subset 
of a particular Tj in DW

T-OS or not, a Score Transformation 
Procedure is applied to transfer the actual weighting score wij 
for each item aOSW

i ∈ Tj where aOSW
i ∈ IWF to a new score. The 

computation of new weighting score is:

new_scoreij = (wij) / (∑q = 1…|Tj| & aOSW
q ∈ IWF 

wqj ∈ Tj) .

An IWF is defined as a subset of Tj if the score of each item 
involved in IWF matches the relative item (new) score 
transformed in Tj.

Best illustrated using an example.

Allocating Pattern Mining 4



Example:

• IWF = {I1[0.4], I2[0.2], I3[0.4]}

• Tj = {I1[0.2], I2[0.1], I3[0.2], I4[0.25], I5[0.25]}

• The weighting scores for items I1, I2 and I3 are grouped since 
the item intersection IWF ∩ Tj = {I1, I2, I3}.

• Actual scores of I1, I2 and I3 are presented differently in IWF 
(as “0.4”, “0.2” and “0.4”) and Tj (as “0.2”, “0.1” and “0.2”).

• IWF is still a subset of Tj because the transformed (new) scores 
of I1, I2 and I3 ∈ Tj are computed as “0.2 / (0.2 + 0.1 + 0.2) = 
0.4”, “0.1 / (0.2 + 0.1 + 0.2) = 0.2” and “0.2 / (0.2 + 0.1 + 0.2) 
= 0.4”, and these match the scores given in IWF.

• (Same distribution).



Allocating Pattern Mining 5The algorithm to generate one-Sum Frequent weighted Itemsets 
(SFIs)

Input: (a) A one-sum weighted transaction database DW
T-OS; 

(b) A one-sum weighted-support threshold σ W
OS;

Output: A set of frequent one-sum weighted itemsets SFIWOS;

k  1; 
SFIWOS  an empty set for holding the identified frequent one-sum weighted itemsets;
Ck  generate the set of candidate k-itemsets from DW

T-OS;
while (Ck ≠  ∅) do
     for each element ei ∈ Ck do
          generate all itemset weighting frames (IWFs) for ei through scanning all transactions in DW

T-

OS;
         initialize a Boolean variable frequentFlag as false;
          for each IWF fj ∈ ei do
               support  count(fj ⊆ transactions in DW

T-OS); // the Score Transformation Procedure 
is employed to verify the “⊆” relationship

               if ((support / |DW
T-OS|) ≥  σ W

OS) then
                    add fj into SFIWOS; // fj is stored with its actual support value
                    set frequentFlag to be true;
          end for
          if (¬frequentFlag) then
              remove ei from Ck;
     end for
     k  k + 1;
     Ck  generate the set of candidate k-itemsets from frequent (k–1)-itemsets using “closure 
property”;
end while
return (SFIWOS);



Mining Allocating Patterns

An allocating pattern (ALP) “XOSW ⇒ YOSW” (where XOSW, 
YOSW ⊂  IOSW and XOSW ∩ YOSW = ∅) is said to be valid when 
XOSW ∪ YOSW is found in SFIW

OS, and the one-sum weighted-
confidence of this ALP exceeds a user-defined one-sum 
weighted-confidence threshold α W

OS.

The computation of one-sum weighted-confidence is:

weighted-confidenceone-sum(XOSW ⇒ YOSW) = 
count((XOSW ∪ YOSW) ⊆  (Tj ∈ Ŧ)) / count(XOSW ⊆  (Tj 
∈ Ŧ)) ,

where count( ) is the count function that returns the number 
of occurrences of an object. The Score Transformation 
Procedure is employed to verify the “⊆” relationship herein.

Allocating Pattern Mining 6



Allocating Pattern Mining 7
The algorithm to generate allocating patterns

Input: (a) A set of frequent one-sum weighted itemsets SFIWOS;
(b) A one-sum weighted-confidence threshold α W

OS;
Output:A set of allocating patterns SALP;

SALP  an empty set for holding the identified allocating patterns;
for each frequent one-sum weighted itemset fi ∈ SFIWOS do
     for each frequent one-sum weighted itemset fj ∈ SFIWOS do
           if (fj ⊂ fi) then // the Score Transformation Procedure is employed to verify the “⊂” 

relationship

                confidence  fi.support / fj.support;
               if (confidence ≥  α W

OS) then
                     allocating pattern p  “{ fj [with score in fi] } ⇒ { (fi – fj) [with score in 

fi] }”;
                     add p into SALP;
     end for
end for
return (SALP);



A one-sum weighted “shopping-basket” (transaction) database is 
simulated in a two–stage process.

In Stage 1, a traditional transaction database DT is generated using the 
QUEST generator. This defines four parameters:

N  the number of attributes (items) in DT;
D  the number of records (transactions) in DT;
T  the average number of items in a transaction; and
I  the largest number of items expected to be found in a frequent 
itemset.

In a marketing context, it can be assumed that a small-sized 
supermarket (or convenience store) contains about 100 distinct 
categories of goods (i.e. N = 100); and that there are 300 ~ 350 
customers (transactions) per day, so that in 1-month period there 
are around 10,000 transactions (i.e. D = 10,000); in average each 
transaction involves 10 goods (i.e. T = 10); and we expect that     I 
= 5. As a result of this stage, a transaction database 
T10.I5.N100.D10000 is produced.

Evaluation (Experimental Setup)1



In Stage 2, the one-sum weighting score is assigned to each 
transaction item, which simulates the customer habits of 
allocating their money to different goods. Firstly, an integer 
ω i was given to each item ai in a transaction Tj (in 
T10.I5.N100.D10000), where ω i is randomly chosen from 
{1, 2, 3}. Secondly, the one-sum weighting score wi for ai 
was then calculated as: ω i / (∑k = 1…|Tj| ω k). As a 
consequence, the simulated one-sum weighted “shopping-
basket” database, namely T10.I5.N100.D10000.W3, is 
generated, where W denotes the size of the random integer 
set in item (one-sum) weighting.

A set of ALPs was mined from T10.I5.N100. D10000.W3, using 
our proposed allocating pattern mining method 
(implemented as a standard Java program). The experiments 
were run on a 1.87 GHz Intel(R) Core(TM)2 CPU with 2.00 
GB of RAM running under Unix operating system.

Evaluation 2



With regard to a one-sum weighted-support threshold value of 1% 
and a one-sum weighted-confidence threshold value of 20%, 
78 ALPs are extracted. We order these ALPs based on their 
confidence value (in a descending manner), and present the 
top 10 and the bottom 10 ALPs. 

Evaluation 3

0.3{ 39[0.4], 46[0.4] } ⇒ { 74[0.199998] }10

0.301724{ 26[0.500002], 74[0.249998] } ⇒ { 22[0.249998] }9

0.304216{ 9[0.5], 13[0.25] } ⇒ { 22[0.25] }8

0.305389{ 39[0.4], 74[0.199998] } ⇒ { 46[0.4] }7

0.306701{ 13[0.249999], 74[0.249999] } ⇒ { 22[0.500001] }6

0.310240{ 22[0.25], 70[0.5] } ⇒ { 9[0.25] }5

0.310769{ 9[0.4], 70[0.4] } ⇒ { 74[0.2] }4

0.313351{ 74[0.25], 94[0.5] } ⇒ { 22[0.25] }3

0.314868{ 9[0.2], 56[0.4] } ⇒ { 74[0.4] }2

0.322493{ 13[0.25], 72[0.25] } ⇒ { 22[0.5] }1

Conf.ALPs mined from T10.I5.N100.D10000.W3No.

0.200929{ 90[0.5] } ⇒ { 22[0.5] }78

0.207897{ 90[0.333331] } ⇒ { 74[0.666668] }77

0.207900{ 22[0.4], 74[0.4] } ⇒ { 71[0.199998] }76

0.207900{ 22[0.400001], 74[0.400001] } ⇒ { 98[0.199997] }75

0.218295{ 22[0.249998], 74[0.249998] } ⇒ { 26[0.500002] }74

0.221757{ 22[0.4], 74[0.199998] } ⇒ { 9[0.4] }73

0.226215{ 22[0.199998], 46[0.4] } ⇒ { 13[0.4] }72

0.226611{ 22[0.249998], 74[0.249998] } ⇒ { 71[0.500002] }71

0.228310{ 46[0.4], 74[0.199998] } ⇒ { 9[0.4] }70

0.229729{ 22[0.249998], 46[0.249998] } ⇒ { 9[0.500002] }69

………

(Integers shown before the square brackets are the item ID-numbers, and the 
real (decimal) numbers shown in the square brackets represent the item 

one-sum weights.)



In this study, we introduce the concept of ALlocating 
Patterns (ALPs). This is seen as an extension of the 
well-established Association Rule (AR) in a special 
(one-sum) weighted setting.

In a marketing application, ALPs can be used to show 
individual customer habits of allocating an amount of 
money to a variety of goods. This can be further used 
in sales and goods promotion, customer segmentation, 
transaction classification, etc.

Further research is suggested to develop improved ALPM 
approaches with respect to the efficiency. Another 
direction of the future work is to explore the wide 
applicability of this new knowledge pattern.

Conclusions



The End 
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