
A Hybrid Approach for Mining Frequent Itemsets

Bay Vo

Ton Duc Thang University, Ho Chi Minh City

Viet Nam
bayvodinh@gmail.com

Frans Coenen

Department of Computer Science, University of

Liverpool, UK
coenen@liverpool.ac.uk

Tuong Le

University of Food Industry, Ho Chi Minh City

Viet Nam
tuonglecung@gmail.com

Tzung-Pei Hong

Department of Computer Science and Information

Engineering, National University of Kaohsiung, Taiwan
tphong@nuk.edu.tw

Abstract — Frequent itemset mining is a fundamental element

with respect to many data mining problems. Recently, the

PrePost algorithm has been proposed, a new algorithm for

mining frequent itemsets based on the idea of N-lists. PrePost in

most cases outperforms other current state-of-the-art algorithms.

In this paper, we present an improved version of PrePost that

uses a hash table to enhance the process of creating the N-lists

associated with 1-itemsets and an improved N-list intersection

algorithm. Furthermore, two new theorems are proposed for

determining the “subsume index” of frequent 1-itemsets based on

the N-list concept. The experimental results show that the

performance of the proposed algorithm improves on that of

PrePost.

Keywords - frequent itemset, PPC-tree, N-list, data mining

I. INTRODUCTION

Frequent itemset mining was first introduced in 1993 [1] and
plays an important role in the mining of associate rules [1, 2, 7,
10]. Currently, there are a large number of algorithms which
effectively mine frequent itemsets. They may be divided into
three main groups:

(1) Methods that use a candidate generate-and-test strategy of

which Apriori [2] and BitTableFI [4] are exemplar

algorithms.

(2) Methods that adopt a divide-and-conquer strategy and a

compressed data structure of which FP-Growth [6] and

FP-Growth* [5] are exemplar algorithms.

(3) Methods that use a hybrid approach of which Eclat [11],

dEclat [12] and Index-BitTableFI [8] are all examples.

Although many solutions have been proposed, the
complexity of the frequent itemset mining problem remains a
challenge. Therefore more computationally efficient solutions
are desirable. Recently, Deng et al. [3] introduced the PrePost
algorithm for mining frequent itemsets based on the idea of
PPC-trees (Pre-order Post-order Code trees), an FP-tree like
structure. PrePost operates as follows. First a tree construction
algorithm is used to build a PPC-tree. Then N-lists are
generated, each associated with a 1-itemset contained in the
tree. A N-list of k-itemset is a list describing its features, it is
compact form of transaction ID list (TID list). A divide-and-
conquer strategy is then used for mining frequent itemsets.
Unlike FP-tree-based approaches, this approach does not build

additional trees on each iteration, it mines frequent itemsets
directly using the N-list concept. The efficiency of PrePost is
achieved because: (i) N-lists are much more compact than
previously proposed vertical structures, (ii) the support of a
candidate frequent itemset can be determined through N-list
intersection operations which are O(m+n+k), where m, n are the
cardinalities of the two N-lists and k is the cardinalities of the
resulting N-list. This process is more efficient than finding the
intersection of TID lists because it avoids unnecessary
comparisons. The experimental results in [3] shows that the
PrePost is more efficient than FP-Growth [6], FP-Growth* [5]
and dEclat [12].

In this paper, we propose a hybrid algorithm based on
PrePost, which features the following improvements:

(1) Use of a hash table to speed up the process of creating the

N-lists associated with frequent 1-itemsets.

(2) Improving the N-list intersection procedure to determine

the intersection between two N-lists.

Song et al. [8] proposed the concept of the “subsume
index”. Broadly the subsume index of a frequent 1-itemset is
the list of frequent 1-itemsets that co-occur with it. This idea
and the N-list concept have also been incorporated into the
proposed hybrid algorithm.

The main contributions of this paper: (i) an improved N-list
intersection function, (ii) two new theorems associated with the
generation of subsume indexes and (iii) the usage of the two
theorems proposed in [8] in the proposed algorithm to reduce
the runtime and memory usage.

The rest of the paper is organized as follows. Section 2
presents the basic concepts. The proposed algorithm is
proposed in Section 3 and an example of the process of this
algorithm is presented in Section 4. Section 5 shows the results
of experiments. Finally, the paper is concluded in Section 6
with a summary and some future research issues.

II. BASIC CONCEPTS

A. Frequent itemsets

We assume a dataset DB comprised of n transactions such that
each transaction contains a number of items belong to where
 is the set of all items in DB. An example transaction dataset is

978-1-4799-0652-9/13/$31.00 ©2013 IEEE.

presented in Table 1 (the meaning of the third column will
become clear later in this paper), this dataset will be used for
illustrative purposes throughout the remainder of this paper.
The support of an itemset X, denoted by (X), where X I, is
the number of transactions in DB which contain all the items in
X. An itemset X is a “frequent itemset” if (X) ≥ ⌈minSup × n⌉,
where minSup is a given threshold. Note that a frequent itemset
with k elements is called a frequent k-itemset and I1 is the set of
frequent 1-itemsets sorted in frequency descending order.

TABLE I. AN EXAMPLE TRANSACTION DATASET

Transaction Items Ordered frequent items

1 a, b a, b

2 a, b, c, d c, a, b, d

3 a, c, e c, a, e

4 a, b, c, e c, a, b, e

5 c, d, e, f c, d, e

6 c, d c, d

B. PPC-tree

Deng et al. [3] presented the PPC-tree (an FP-tree like
structure) and the PPC-tree construction algorithm as follows:

Definition 1 (The PPC-tree). A PPC-tree, , is a tree
where each node holds five values: Ni.name, Ni.frequency,
Ni.childnodes, Ni.pre and Ni.post which are the frequent 1-
itemset in I1, the frequency of this node, the set of children
node associated with this node, the order of this node when
traversing this tree in Left-Right order and the order of this
node when traversing this tree in Right-Left order respectively.
Note that the root of the tree, 𝑜𝑜 , has 𝑜𝑜 .name = “null”
and 𝑜𝑜 .frequency = 0.

procedure Construct_PPC_tree(, 𝑢)

1.scan to find and their frequency

2.sort in frequency descending order
3.create , the hash table of
4.create the root of a PP-tree, , and label it as
‘null’

5.let threshold = ⌈ 𝑢 ⌉

6.for each transaction do
7. remove the items that their supports do not

satisfy the threshold

8. sort its 1-itemsets in frequency descending

order

9. Insert_Tree(,)
10.traverse PP-tree to generate pre and post values

associate with each node

11.return , , and threshold

procedure Insert_Tree(,)

1. while (is not null) do
2. 𝑡 the first item of and \ 𝑡

3. if has a child such that .name = 𝑡 then
4. .frequency++
5. else

6. create a new node N with N.name = 𝑡 ,

N.frequency = 1 and .childnodes =
7. Insert_Tree(,)

Figure 1. The PPC-tree construction

The PPC-tree construction algorithm is presented in Figure 1.
The example transaction dataset from Table 1 will be used with
minSup = 30% to illustrate the operation of this algorithm. First
the algorithm removes all items whose frequency does not
satisfy the minSup threshold and sorts the remaining items in
descending order of frequency (see column three in Table 1).
The algorithm then inserts, in turn, the remaining items in each
transaction into the PPC-tree as shown in Figure 2 with respect
to our example dataset.

Figure 2. Illustration of the creation of a PPC-tree using the example
transaction dataset with minSup = 30%

Finally the algorithm traverses the full tree (Figure 2 (f)) to
generate the required pre and post values associated with each
node. The final PPC-tree is presented in Figure 3.

Figure 3. The final PPC-tree created from the example transaction dataset

with minSup = 30%

C. N-list

Deng et al. [3] presented the definition of the N-list concept
and three theorems associated with it. We summarize these as
follows:

Definition 2 (The PP-code). The PP-code, Ci, of each node Ni
in a PPC-tree has a tuple as follows:

c, 1

null

d, 1

c, 2

null

d, 2

e, 1

c, 3

null

d, 2

e, 1

a, 1

b, 1

e, 1

(a) (b) (c)

c, 4

null

d, 2

e, 1

a, 2

b, 1

e, 1

e, 1

(d)

c, 5

null

d, 2

e, 1

a, 3

b, 2

e, 1

e, 1

d, 1

c, 5

null

d, 2

e, 1

a, 3

b, 2

e, 1

e, 1

d, 1

a, 1

b, 1

d, 2

e, 1

a, 1 (9,9) (1,7) c, 5

(2,1) a, 3 (4,6)

(3,0) b, 2 (5,4) e, 1 (8,5)

e, 1 (6,2) (7,3) d, 1

null (0,10)

N1

N2

b, 1 (10,8)

(e) (f)

 Ci = Ni.pre, Ni.post, Ni.frequency (1)

Example 1. The highlighted nodes N1 and N2 (for example) in

Figure 3 have the PP-codes C1 = 1,7,5 and C2 = 5,4,2
respectively.

Theorem 1 [3]. A PP-code Ci is an ancestor of another PP-
code Cj if and only if Ci.pre Cj.pre and Ci.post Cj.post.
Note that any PP-code is also considered to be its own ancestor.

Example 2. According to Example 1, we have C1= 1,7,5 and

C2= 5,4,2. Based on Theorem 1, C1 is an ancestor of C2
because C1.pre = 1 < C2.pre = 5 and C1.post = 7 > C2.post = 4.

Definition 3 (The N-list of a frequent 1-itemset). The N-list
associated with an item A, denoted by NL(A), is the set of PP-
codes associated with nodes in the PPC-tree whose name is
equal to A. Thus:

 𝐿(𝐴) = ⋃ 𝐶𝑖
*𝑁𝑖 | 𝑁𝑖.𝑛𝑎𝑚𝑒=𝐴+

 (2)

where 𝐶𝑖 is the PP-code associated with 𝑖.

Example 3. Let A = {c} and B = {e}. According to the PPC-tree

in Figure 3, NL(A) = {1,7,5} and NL(B) = {6,2,1,8,5,1}.

Theorem 2 [3]. Let A be a 1-itemset with the associated N-list
NL(A). The support for A, (A), is calculated by:

 (𝐴) = ∑ 𝐶𝑖. 𝑓𝑟𝑒𝑞𝑢𝑒 𝑐𝑦

𝐶 𝐿(𝐴)

 (3)

Example 4. According to Example 3 we have NL(A) = {1,7,5}

and NL(B) = {6,2,1, 8,5,1}. Therefore, (𝐴) = 5 and () =
1 + 1 = 2.

Definition 4 (The N-list of a k-itemset). Let XA and XB be
two (k-1)-itemsets with the same prefix X (X can be an empty
set) such that A is before B according to the I1 ordering. NL(XA)
and NL(XB) are two N-lists associated with XA and XB
respectively. The N-list associated with XAB is determined as
follows:

(1) For each PP-code Ci NL(XA) and Cj NL(XB), if Ci is

an ancestor of Cj, the algorithm will add Ci.pre, Ci.post,

Cj.frequency to NL(XAB).

(2) Traversing NL(XAB) to combine the PP-codes which has

the same pre and post values.

Example 5. According to Example 4 we have NL(A) = {1,7,5}

and NL(B) = {6,2,1, 8,5,1}. Therefore NL(AB) = {1,7,1,

1,7,1} = {1,7,2}.

Theorem 3 (The support of a k-itemset) [3]. Let X be an
itemset and NL(X) be N-list associated with X. The support of X
denoted by (X) is calculated as follows:

 (𝑋) = ∑ 𝐶𝑖. 𝑓𝑟𝑒𝑞𝑢𝑒 𝑐𝑦

𝐶 𝐿(𝑋)

 (4)

Example 6. According to Example 5 we have NL(AB) =

{1,7,2}, therefore (AB) = 2.

D. The subsume index of frequent 1-itemsets

To reduce the search space, the concept of the subsume index
was proposed in [8] which is based on the following function:

 g(X) = {T.ID DB | X ⊆ T} (5)

where T.ID is the ID of the transaction T, and g(X) is the set of
IDs of the transactions which include all items i X.

Example 7. Let A={c}, we have g(A) = {2, 3, 4, 5, 6} because A
exists in the transactions 2, 3, 4, 5, 6.

Definition 5 [8]. The subsume index of a frequent 1-itemset, A,
denoted by subsume(A) is defined as follows:

 subsume(A) = {B I1 | g(A) ⊆ g(B)} (6)

Example 8. Let A = {e} and B = {c}, we have g(A) = {3, 4, 5}
and g(B) = {2, 3, 4, 5, 6}. Because g(A) ⊆ g(B), thus B
subsume(A). In other words, {c} subsume({e})

In [8] the following two theorems concerning the subsume
index idea were also presented, which in turn can be used to
speed up the frequent itemset mining process.

Theorem 4 [8]. Let A be a frequent 1-itemset. If the support
associated with A is equal to ⌈minSup × n⌉, then there exists no
item B which has () (𝐴) and B subsume(A) such that

AB is a frequent itemset.

Theorem 5 [8]. Let the subsume index of an item A be {a1,
a2,…, am}. The support of each of the 2

m
-1 nonempty subsets

of {a1, a2,…, am} is equal to the support of A.

Example 9. Let A = {e} and B = {c} and according to Example
8, we have subsume(A) = {B}. Therefore 2

m
-1 nonempty

subsets of subsume(A) is only {B}. Based on Theorem 5, the
support of 2

m
-1 itemset which are combined 2

m
-1 nonempty

subsets of subsume(A) with A is equal to (A). In this case, we
have (AB) = (A) = 3. Besides, the support of the frequent
itemset XA is also equal to the support of frequent itemset XAB.
For detail, ae is a frequent itemset with (ae) = 2. So, aec is
also a frequent itemset and (aec) = 2.

III. THE PROPOSED ALGORITHM

A. The N-list intersection function

Deng et al. [3] proposed a N-list intersection function for
determining the intersection of two N-lists which was
O(n+m+k) where n, m and k is the length of the first, the second
and the resulting N-lists (the function traverses the resulting N-
list so as to merge the same PP-codes). In this section we
present an improved N-list intersection function to give
O(n+m). This improved function offers the advantage that it
does not traverse the resulting N-list to merge the same PP-
codes.

Furthermore, we also propose an early abandoning strategy
comprised of three steps: (i) determine the total frequency of

the first and the second N-list denoted by sF, (ii) for each PP-

code Ci, that does not belong to the result N-list, update sF =

sF - Ci.frequency, and (iii) if sF falls below ⌈minSup × n⌉ stop
(the itemset currently being considered is not frequent).

Given the above the improved N-list intersection function is
presented in Figure 4.

function NL_intersection(PS1, PS2)

1. PS3
2.let sF be the sum of frequency of PS1 and PS2

3.let i = 0, j = 0 and frequency = 0

4. while i < PS1.size and j < PS2.size do

5. if PS1[i].pre < PS2[j].pre then

6. if PS1[i].post > PS2[j].post then

7. if PS3.size > 0 and PS3[PS3.size-1].Pre =

PS1[i].pre then

8. PS3[PS3.size-1].frequency +=

PS2[j].frequency

9. else

10. add the tuple PS1[i].pre, PS1[i].post,

PS2[j].frequency to PS3
11. frequency += PS2[j++].frequency

12. else

13. sF = sF - PS1[i++].frequency

14. else

15. sF = sF - PS2[j++].frequency

16 . if sF < threshold then // using early

abandoning strategy

17. return null // stop the procedure

18.return PS3 and frequency

Figure 4. The improved N-list intersection function

B. The subsume index associated with each frequent 1-itemset

Theorem 6. Let A be a frequent 1-itemset. We have:

 subsume(A) = {B I1 | Ci NL(A), Cj NL(B)

and Cj is an ancestor of Ci}
(7)

Proof. This theorem can be proven as follows: all PP-codes in
NL(A) have a PP-code ancestor in NL(B), this means that all
transactions that contain A also contain B. This, g(A) ⊆ g(B),
which implies that B subsume(A). Therefore, this theorem is
proven.

Example. Let A = {e}, B = {c}. We have NL(B) = {1,7,5} and

NL(A) = { 3,0,1, 6,2,1, 8,5,1}. According to Theorem 6,

3,0,1, 6,2,1 and 8,5,1 NL(A) are descendants of 1,7,5
NL(B). Therefore, B subsume(A).

Theorem 7. Let A, B, C I1 be three frequent 1-itemsets. If A
 subsume(B) and B subsume(C) then A subsume(C).

Proof. We have A subsume(B) and B subsume(C) therefore
g(B) ⊆ g(A) and g(C) ⊆ g(B). So g(C) ⊆ g(A) and thus this
theorems is proven.

To find all frequent 1-itemset associated with the subsume
index of each A I1, I1 should be sorted in ascending order of
frequency. However, I1 has already been sorted in descending
order of frequency with respect to the PPC-tree constructed
previously. Therefore, with respect to the generate subsume
index procedure, we propose a different traverse (see Figure 5)
to avoid the cost of this reordering process and also facilitate
the use of Theorem 7.

procedure Find_Subsume()

1. for i 1 to .size - 1 do
2. for j i - 1 to do

3. if j [i].Subsumes then continue
4. if checkSubsume([i].N-list, [j].N-list) =
true then // using Theorem 6

5. add [j].name and its index, j, to

 [i].Subsumes
6. add all elements in [j].Subsumes to
 [i].Subsumes // using Theorem 7

function checkSubsume(N-list a, N-list b)

1. let i=0 and j=0

2.while j < a.size and i < b.size do

3. if b[i].pre < a[j].pre and b[i].post >

a[j].post then

4. j++

5. else

6. i++

7.if j = a.size then

8. return true

9. return false

Figure 5. The generating subsume index proceduce

C. Algorithm

The two theorems proposed in [8] and re-presented in section
2.4 were also adopted in the proposed algorithm to speed up the
runtime (Figure 6). Besides, these theorems also helped reduce
the memory usage because it is not necessary to determine and
store the N-lists associated with a number of frequent itemsets
to determine their supports.

Input: A dataset and 𝑢
Output: 𝑠, the set of all frequent itemsets

1.Construct_PPC_tree(, 𝑢) to generate , ,
H1 and threshold

2.Generate_NList(,)
3.Find_Subsume()

4. 𝑠

5.Subsume {}
6.Find_FIs(, Subsumes)

7.return 𝑠
procedure Generate_NList(,)

1. 𝐶  .pre, .post, .frequency
2. H1[.name].N-list.add(𝐶)

3. H1[.name].frequency += 𝐶.frequency

4. for each child in .children
5. Generate_NList(child)

procedure Find_FIs(𝑠,)

1.for i 𝑠.size - 1 to do

2. 𝑠
3. if 𝑠[i].Subsumes.size > 0 then

4. let be the set of subset generated from all
elements of 𝑠[i].Subsumes
5. for each subset in

6. add subset, 𝑠[i].frequency to 𝑠 // using
theorem 5

7. else if 𝑠[i].size = 1 then

8. S {}
9. if 𝑠[i].size = 1 and 𝑠[i].frequency = threshold
then // using Theorem 4

10. continue

11. indexS = 𝑠[i].Subsumes.size - 1

12. for j - 1 to 0 do
13. if indexS >= 0 and the index of

 𝑠[i].Subsumes[indexS] equals than j then
14. indexS = indexS - 1

15. continue

16. let efirst be the first item of 𝑠, -
17. FI {efirst} + 𝑠[i]

18. (FI.N-list and frequency)
NL_intersection(𝑠[j].N-list, 𝑠[i].N-list)

19. if FI.N-list = null then

20. continue // using early abandoning strategy

21. FI.frequency = frequency

22. if(FI.frequency threshold) then
23. add FI to 𝑠

24. insert FI at position 0 in 𝑠
25. for each subsume in do
26. let f = FI + subsume

27. f.frequency = FI.frequency

28. add f to 𝑠 // using theorem 5
29. Find_FIs(𝑠 ,)

Figure 6. The proposed algorithm

IV. THE ILLUSTRATION

An illustrative example is presented in this section using our
example dataset. First the proposed algorithm scans the dataset
to create the PPC-tree (Figure 3). Then, this algorithm traverses
the PPC-tree to generate the N-lists associated with the
frequent 1-itemsets in I1 (Figure 7).

Figure 7. The I1 and its N-lists on example dataset (minSup=30%)

Next the algorithm combines, in turn, the frequent (k-1)-
itemsets in I1 in reverse order using a divide-and-conquer
strategy to create the k-itemset candidates. For detail, e, the last
frequent 1-itemset, is used to: (i) find the 2

m
-1 subsets from the

m frequent 1-itemsets in subsume({e}) and combine them with
{e} to generate the 2

m
-1 frequent itemsets S. In this case,

subsume({e}) = {c}, so S = {ec}; (ii) combine, in turn, with
remaining frequent 1-itemsets {d, b, a} (not combined with c
because c subsume({e})) to create candidate 2-itemsets {de,
be, ae}. However, only {ae} is frequent, thus 𝑠𝑛𝑒 = {ae}.
Next the algorithm combines the elements in 𝑠𝑛𝑒 with the
elements in S to create further frequent itemsets without
calculating their support. In this case, only {aec} is created;
and (iii) use the elements in 𝑠𝑛𝑒 to combine together to
create the candidate 2-itemsets. In this case, this algorithm will
stop here because 𝑠 has only one element (see Figure 8).

Figure 8. The frequent itemsets generated from e on example dataset
(minSup=30%)

Then, using the above strategy, the other frequent 1-itemsets in
turn continue to create the tree which contains all frequent
itemsets as Figure 9.

In Figure 9, the proposed algorithm does not compute and
store the N-lists of the nodes {ba, cba, dc, ae, ec, aec}.

Therefore, using the subsume index concept it not only reduces
the runtime but also reduce the memory usage.

Figure 9. All frequent itemsets on example dataset (minSup=30%)

V. EXPERIMENTAL RESULTS

All experiments presented in this section were performed on an
ASUS laptop with Intel core i3-3110M 2.4GHz and 4GBs of
RAM. The operating system was Microsoft Windows 8. All the
programs were coded in C# on MS/Visual studio 2012 and run
on Microsoft .Net Framework Version 4.5.50709. The
experiments were conducted using the following UCL datasets:
Accidents, Chess, Mushroom, Pumsb_star and Retail

1
. Some

statistics concerning these datasets are shown in Table 2. We
report the runtime (total execution time) of the proposed
algorithm and compare it to the runtime of PrePost.

TABLE II. STATISTICAL SUMMARY OF THE EXPERIMENTAL DATASETS

Dataset #Trans #Items

Accidents 340,183 468

Chess 3,196 76

Mushroom 8,124 120

Pumsb_star 49,046 7,117

Retail 88,162 16,470

The experimental results are presented in Figure 10. From the
figure it can be observed that given a sparse datasets such as
Retail, the proposed algorithm is a little slower than PrePost.
This is explained as follows. Generating the subsume index
involves a cost. However, the subsume index associated with
each of the frequent 1-itemsets in a sparse datasets usually have
few elements. Therefore, using the subsume index concept is
not effective in this case. Fortunately, this cost is usually
relatively low, about 4 seconds for the Retail dataset with
minSup = 0.1 (0.072% of the runtime) (see Figure 10(e)).
However, given a dense datasets, the performance of the
proposed algorithm is better than PrePost (see Figure
10(a)(b)(c) and (d)), especially with low thresholds. The
proposed algorithm thus generally outperforms than the
PrePost.

1 Downloaded from http://fimi.cs.helsinki.fi/data/

null

c:5
{1,7,5}

a:4
{4,6,3, 9,9,1}

b:3
{5,4,2, 10,8,1}

d:3
{2,1,2, 7,3,1}

e:3
{3,0,1, 6,2,1, 8,5,1}

e:3
{3,0,1, 6,2,1, 8,5,1}

ec:3 ae:2
{4,6,2}

aec:2

null

c:5
{1,7,5}

a:4
{4,6,3, 9,9,1}

b:3
{5,4,2, 10,8,1}

d:3
{2,1,2, 7,3,1}

e:3
{3,0,1, 6,2,1, 8,5,1}

ec:3 ae:2
{4,6,2}

aec:2

dc:3 ba:3 cb:2
{1,7,2}

cba:2

ca:3
{1,7,3}

Figure 10. The runtime of the proposed and PrePost algorithms using UCL

datasets: (a) Accidents, (b) Chess, (c) Mushroom, (d) Pumsb_star and (e)
Retail datasets

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a hybrid algorithm for mining
frequent itemsets. First, we proposed several improvements on
the previously published PrePost: (i) use of a hash table to
enhance the process of creating the N-lists associated with the
frequent 1-itemsets and (ii) an improved intersection function
to find the intersection between two N-lists. Then, two
theorems were proposed for application with respect to the
determination of the subsume index of frequent 1-itemsets
which were used in the proposed algorithm for improving the
runtime. The proposed algorithm does not improve over the
PrePost with respect to sparse datasets but the time gap is not
significant. With respect to dense datasets the proposed
algorithm is faster than PrePost. We therefore conclude that the
proposed algorithm generally outperforms the PrePost.

For future work we will initially focus on applying the N-
list concept and the hybrid approach for mining frequent
closed/maximal itemsets.

REFERENCES

[1] Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules
between sets of items in large databases. SIGMOD’93, 207-216, 1993.

[2] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules.
VLDB'94, 487-499, 1994.

[3] Deng Z., Wang Z., Jiang J.J.: A new algorithm for fast mining frequent
itemsets using N-lists. SCIENCE CHINA Information Sciences, 55(9),
2008-2030, 2012.

[4] Dong, J., Han, M.: BitTableFI: An efficientmining frequent itemsets
algorithm. Knowledge-Based Systems, 20, 329–335, 2007.

[5] Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using
FP-trees. IEEE Transactions on Knowledge and Data Engineering, 17,
1347–1362, 2005.

[6] Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. SIGMODKDD’00, 1–12, 2000.

[7] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of
Association Rules using Closed Itemset Lattices. In: Information
Systems 24 (1), 25-46, 1999.

[8] Song, W., Yang, B., Xu, Z.: Index-BitTableFI: An improved algorithm
for mining frequent itemsets. Knowledge-Based Systems, 21, 507-13,
2008.

[9] Vo, B., Hong, T.P., Le, B.: Dynamic bit vectors: An efficient approach
for mining frequent itemsets. Scientific Research and Essays, 6(25),
5358-5368, 2011.

[10] Vo B., Hong T.P., Le B.: A Lattice-based Approach for Mining Most
Generalization Association Rules. Knowledge-Based Systems, 45, 20-
30, 2013.

[11] Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for
fast discovery of association rules. KDD’97, 283-286, 1997.

[12] Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets
and their lattice structure. IEEE Transactions on Knowledge and Data
Engineering, 17(4), 462-478, 2005.

0

20

40

60

80

100

120

80 60 40

PrePost

Proposed algorithm

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(a)

0

5

10

15

20

60 50 40

PrePost

Proposed algorithm

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(b)

0

2

4

6

8

10

15 10 5

PrePost

Proposed algorithm

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(c)

0

2

4

6

8

10

12

45 40 35

PrePost

Proposed algorithm

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(d)

0

10

20

30

40

50

60

0.3 0.2 0.1

PrePost

Proposed algorithm

R
u

n
ti

m
e

(s
ec

o
n

d
s)

minSup(%)

(e)

