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Abstract — Frequent itemset mining is a fundamental element 

with respect to many data mining problems. Recently, the 

PrePost algorithm has been proposed, a new algorithm for 

mining frequent itemsets based on the idea of N-lists. PrePost in 

most cases outperforms other current state-of-the-art algorithms. 

In this paper, we present an improved version of PrePost that 

uses a hash table to enhance the process of creating the N-lists 

associated with 1-itemsets and an improved N-list intersection 

algorithm. Furthermore, two new theorems are proposed for 

determining the “subsume index” of frequent 1-itemsets based on 

the N-list concept. The experimental results show that the 

performance of the proposed algorithm improves on that of 

PrePost. 
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I.  INTRODUCTION 

Frequent itemset mining was first introduced in 1993 [1] and 
plays an important role in the mining of associate rules [1, 2, 7, 
10]. Currently, there are a large number of algorithms which 
effectively mine frequent itemsets. They may be divided into 
three main groups: 

(1) Methods that use a candidate generate-and-test strategy of 

which Apriori [2] and BitTableFI [4] are exemplar 

algorithms.  

(2) Methods that adopt a divide-and-conquer strategy and a 

compressed data structure of which FP-Growth [6] and 

FP-Growth* [5] are exemplar algorithms. 

(3) Methods that use a hybrid approach of which Eclat [11], 

dEclat [12] and Index-BitTableFI [8] are all examples. 

Although many solutions have been proposed, the 
complexity of the frequent itemset mining problem remains a 
challenge. Therefore more computationally efficient solutions 
are desirable. Recently, Deng et al. [3] introduced the PrePost 
algorithm for mining frequent itemsets based on the idea of 
PPC-trees (Pre-order Post-order Code trees), an FP-tree like 
structure. PrePost operates as follows. First a tree construction 
algorithm is used to build a PPC-tree. Then N-lists are 
generated, each associated with a 1-itemset contained in the 
tree. A N-list of k-itemset is a list describing its features, it is 
compact form of transaction ID list (TID list). A divide-and-
conquer strategy is then used for mining frequent itemsets. 
Unlike FP-tree-based approaches, this approach does not build 

additional trees on each iteration, it mines frequent itemsets 
directly using the N-list concept. The efficiency of PrePost is 
achieved because: (i) N-lists are much more compact than 
previously proposed vertical structures, (ii) the support of a 
candidate frequent itemset can be determined through N-list 
intersection operations which are O(m+n+k), where m, n are the 
cardinalities of the two N-lists and k is the cardinalities of the 
resulting N-list. This process is more efficient than finding the 
intersection of TID lists because it avoids unnecessary 
comparisons. The experimental results in [3] shows that the 
PrePost is more efficient than FP-Growth [6], FP-Growth* [5] 
and dEclat [12].  

In this paper, we propose a hybrid algorithm based on 
PrePost, which features the following improvements:  

(1) Use of a hash table to speed up the process of creating the 

N-lists associated with frequent 1-itemsets. 

(2) Improving the N-list intersection procedure to determine 

the intersection between two N-lists. 

Song et al. [8] proposed the concept of the “subsume 
index”. Broadly the subsume index of a frequent 1-itemset is 
the list of frequent 1-itemsets that co-occur with it. This idea 
and the N-list concept have also been incorporated into the 
proposed hybrid algorithm.  

The main contributions of this paper: (i) an improved N-list 
intersection function, (ii) two new theorems associated with the 
generation of subsume indexes and (iii) the usage of the two 
theorems proposed in [8] in the proposed algorithm to reduce 
the runtime and memory usage.  

The rest of the paper is organized as follows. Section 2 
presents the basic concepts. The proposed algorithm is 
proposed in Section 3 and an example of the process of this 
algorithm is presented in Section 4. Section 5 shows the results 
of experiments. Finally, the paper is concluded in Section 6 
with a summary and some future research issues. 

II. BASIC CONCEPTS 

A. Frequent itemsets 

We assume a dataset DB comprised of n transactions such that 
each transaction contains a number of items belong to   where 
  is the set of all items in DB. An example transaction dataset is 
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presented in Table 1 (the meaning of the third column will 
become clear later in this paper), this dataset will be used for 
illustrative purposes throughout the remainder of this paper. 
The support of an itemset X, denoted by  (X), where X   I, is 
the number of transactions in DB which contain all the items in 
X. An itemset X is a “frequent itemset” if  (X) ≥ ⌈minSup × n⌉, 
where minSup is a given threshold. Note that a frequent itemset 
with k elements is called a frequent k-itemset and I1 is the set of 
frequent 1-itemsets sorted in frequency descending order. 

TABLE I.  AN EXAMPLE TRANSACTION DATASET 

Transaction Items Ordered frequent items 

1 a, b a, b 

2 a, b, c, d c, a, b, d 

3 a, c, e c, a, e 

4 a, b, c, e c, a, b, e 

5 c, d, e, f c, d, e 

6 c, d c, d 

B. PPC-tree 

Deng et al. [3] presented the PPC-tree (an FP-tree like 
structure) and the PPC-tree construction algorithm as follows: 

Definition 1 (The PPC-tree). A PPC-tree,  , is a tree 
where each node holds five values: Ni.name, Ni.frequency, 
Ni.childnodes, Ni.pre and Ni.post which are the frequent 1-
itemset in I1, the frequency of this node, the set of children 
node associated with this node, the order of this node when 
traversing this tree in Left-Right order and the order of this 
node when traversing this tree in Right-Left order respectively. 
Note that the root of the tree,   𝑜𝑜 , has   𝑜𝑜 .name = “null” 
and   𝑜𝑜 .frequency = 0. 

procedure Construct_PPC_tree(  ,     𝑢 ) 

1.scan    to find    and their frequency 

2.sort    in frequency descending order 
3.create   , the hash table of    
4.create the root of a PP-tree,  , and label it as 
‘null’ 

5.let threshold = ⌈    𝑢   ⌉ 

6.for each transaction      do 
7.  remove the items that their supports do not 

satisfy the threshold 

8.  sort its 1-itemsets in frequency descending 

order 

9.  Insert_Tree( ,  ) 
10.traverse PP-tree to generate pre and post values 

associate with each node 

11.return  ,   ,    and threshold 
 

procedure Insert_Tree( ,  ) 

1. while (  is not null) do  
2.  𝑡   the first item of   and     \ 𝑡 

3.  if   has a child   such that  .name = 𝑡 then  
4.    .frequency++ 
5.  else 

6.   create a new node N with N.name = 𝑡 , 

N.frequency = 1 and  .childnodes =   
7.  Insert_Tree( ,  ) 

Figure 1.  The PPC-tree construction 

The PPC-tree construction algorithm is presented in Figure 1. 
The example transaction dataset from Table 1 will be used with 
minSup = 30% to illustrate the operation of this algorithm. First 
the algorithm removes all items whose frequency does not 
satisfy the minSup threshold and sorts the remaining items in 
descending order of frequency (see column three in Table 1). 
The algorithm then inserts, in turn, the remaining items in each 
transaction into the PPC-tree as shown in Figure 2 with respect 
to our example dataset. 

 

 

 

Figure 2.  Illustration of the creation of a PPC-tree using the example 
transaction dataset with minSup = 30% 

Finally the algorithm traverses the full tree (Figure 2 (f)) to 
generate the required pre and post values associated with each 
node. The final PPC-tree is presented in Figure 3. 

 

Figure 3.  The final PPC-tree created from the example transaction dataset 

with minSup = 30% 

C. N-list  

Deng et al. [3] presented the definition of the N-list concept 
and three theorems associated with it. We summarize these as 
follows: 

Definition 2 (The PP-code). The PP-code, Ci, of each node Ni 
in a PPC-tree has a tuple as follows: 
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 Ci = Ni.pre, Ni.post, Ni.frequency (1) 

Example 1. The highlighted nodes N1 and N2 (for example) in 

Figure 3 have the PP-codes C1 = 1,7,5 and C2 = 5,4,2 
respectively. 

Theorem 1 [3]. A PP-code Ci is an ancestor of another PP-
code Cj if and only if Ci.pre   Cj.pre and Ci.post   Cj.post. 
Note that any PP-code is also considered to be its own ancestor. 

Example 2. According to Example 1, we have C1= 1,7,5 and 

C2= 5,4,2. Based on Theorem 1, C1 is an ancestor of C2 
because C1.pre = 1 < C2.pre = 5 and C1.post = 7 > C2.post = 4. 

Definition 3 (The N-list of a frequent 1-itemset). The N-list 
associated with an item A, denoted by NL(A), is the set of PP-
codes associated with nodes in the PPC-tree whose name is 
equal to A. Thus:  

  𝐿(𝐴)  =  ⋃ 𝐶𝑖
*𝑁𝑖     | 𝑁𝑖.𝑛𝑎𝑚𝑒=𝐴+

 (2) 

where 𝐶𝑖 is the PP-code associated with  𝑖. 

Example 3. Let A = {c} and B = {e}. According to the PPC-tree 

in Figure 3, NL(A) = {1,7,5} and NL(B) = {6,2,1,8,5,1}. 

Theorem 2 [3]. Let A be a 1-itemset with the associated N-list 
NL(A). The support for A,  (A), is calculated by: 

 
 (𝐴)  =  ∑ 𝐶𝑖. 𝑓𝑟𝑒𝑞𝑢𝑒 𝑐𝑦

𝐶    𝐿(𝐴)

 (3) 

Example 4. According to Example 3 we have NL(A) = {1,7,5} 

and NL(B) = {6,2,1, 8,5,1}. Therefore,  (𝐴) = 5 and  ( ) = 
1 + 1 = 2. 

Definition 4 (The N-list of a k-itemset). Let XA and XB be 
two (k-1)-itemsets with the same prefix X (X can be an empty 
set) such that A is before B according to the I1 ordering. NL(XA) 
and NL(XB) are two N-lists associated with XA and XB 
respectively. The N-list associated with XAB is determined as 
follows: 

(1) For each PP-code Ci   NL(XA) and Cj   NL(XB), if Ci is 

an ancestor of Cj, the algorithm will add Ci.pre, Ci.post, 

Cj.frequency to NL(XAB). 

(2) Traversing NL(XAB) to combine the PP-codes which has 

the same pre and post values. 

Example 5. According to Example 4 we have NL(A) = {1,7,5} 

and NL(B) = {6,2,1, 8,5,1}. Therefore NL(AB) = {1,7,1, 

1,7,1} = {1,7,2}. 

Theorem 3 (The support of a k-itemset) [3]. Let X be an 
itemset and NL(X) be N-list associated with X. The support of X 
denoted by  (X) is calculated as follows: 

 
 (𝑋)  =  ∑ 𝐶𝑖. 𝑓𝑟𝑒𝑞𝑢𝑒 𝑐𝑦

𝐶    𝐿(𝑋)

 (4) 

Example 6. According to Example 5 we have NL(AB) = 

{1,7,2}, therefore  (AB) = 2.  

D. The subsume index of frequent 1-itemsets 

To reduce the search space, the concept of the subsume index 
was proposed in [8] which is based on the following function: 

 g(X) = {T.ID   DB | X ⊆ T} (5) 

where T.ID is the ID of the transaction T, and g(X) is the set of 
IDs of the transactions which include all items i   X. 

Example 7. Let A={c}, we have g(A) = {2, 3, 4, 5, 6} because A 
exists in the transactions 2, 3, 4, 5, 6. 

Definition 5 [8]. The subsume index of a frequent 1-itemset, A, 
denoted by subsume(A) is defined as follows: 

 subsume(A) = {B   I1 | g(A) ⊆ g(B)} (6) 

Example 8. Let A = {e} and B = {c}, we have g(A) = {3, 4, 5} 
and g(B) = {2, 3, 4, 5, 6}. Because g(A) ⊆ g(B), thus B   
subsume(A). In other words, {c}   subsume({e}) 

In [8] the following two theorems concerning the subsume 
index idea were also presented, which in turn can be used to 
speed up the frequent itemset mining process. 

Theorem 4 [8]. Let A be a frequent 1-itemset. If the support 
associated with A is equal to ⌈minSup × n⌉, then there exists no 
item B which has  ( )   (𝐴) and B   subsume(A) such that 

AB is a frequent itemset. 

Theorem 5 [8]. Let the subsume index of an item A be {a1, 
a2,…, am}. The support of each of the 2

m
-1 nonempty subsets 

of {a1, a2,…, am} is equal to the support of A. 

Example 9. Let A = {e} and B = {c} and according to Example 
8, we have subsume(A) = {B}. Therefore 2

m
-1 nonempty 

subsets of subsume(A) is only {B}. Based on Theorem 5, the 
support of 2

m
-1 itemset which are combined 2

m
-1 nonempty 

subsets of subsume(A) with A is equal to  (A). In this case, we 
have  (AB) =  (A) = 3. Besides, the support of the frequent 
itemset XA is also equal to the support of frequent itemset XAB. 
For detail, ae is a frequent itemset with  (ae) = 2. So, aec is 
also a frequent itemset and  (aec) = 2. 

III. THE PROPOSED ALGORITHM 

A. The N-list intersection function 

Deng et al. [3] proposed a N-list intersection function for 
determining the intersection of two N-lists which was 
O(n+m+k) where n, m and k is the length of the first, the second 
and the resulting N-lists (the function traverses the resulting N-
list so as to merge the same PP-codes). In this section we 
present an improved N-list intersection function to give 
O(n+m). This improved function offers the advantage that it 
does not traverse the resulting N-list to merge the same PP-
codes. 

Furthermore, we also propose an early abandoning strategy 
comprised of three steps: (i) determine the total frequency of 

the first and the second N-list denoted by sF, (ii) for each PP-

code Ci, that does not belong to the result N-list, update sF = 

sF - Ci.frequency, and (iii) if sF falls below ⌈minSup × n⌉ stop 
(the itemset currently being considered is not frequent). 



Given the above the improved N-list intersection function is 
presented in Figure 4. 

function NL_intersection(PS1, PS2) 

1. PS3    
2.let sF be the sum of frequency of PS1 and PS2 

3.let i = 0, j = 0 and frequency = 0 

4. while i < PS1.size and j < PS2.size do 

5.  if PS1[i].pre < PS2[j].pre then 

6.   if PS1[i].post > PS2[j].post then  

7.    if PS3.size > 0 and PS3[PS3.size-1].Pre = 

PS1[i].pre then 

8.     PS3[PS3.size-1].frequency += 

PS2[j].frequency 

9.    else 

10.    add the tuple PS1[i].pre, PS1[i].post, 

PS2[j].frequency to PS3 
11.   frequency += PS2[j++].frequency 

12.  else 

13.   sF = sF - PS1[i++].frequency  

14. else 

15.  sF = sF - PS2[j++].frequency 

16 . if sF < threshold then // using early 

abandoning strategy 

17.  return null // stop the procedure 

18.return PS3 and frequency 

Figure 4.  The improved N-list intersection function 

B. The subsume index associated with each frequent 1-itemset 

Theorem 6. Let A be a frequent 1-itemset. We have:  

 subsume(A) = {B   I1 | Ci   NL(A), Cj   NL(B) 

and Cj is an ancestor of Ci} 
(7) 

Proof. This theorem can be proven as follows: all PP-codes in 
NL(A) have a PP-code ancestor in NL(B), this means that all 
transactions that contain A also contain B. This, g(A) ⊆ g(B), 
which implies that B   subsume(A). Therefore, this theorem is 
proven. 

Example. Let A = {e}, B = {c}. We have NL(B) = {1,7,5} and 

NL(A) = { 3,0,1, 6,2,1, 8,5,1}. According to Theorem 6, 

3,0,1, 6,2,1 and 8,5,1   NL(A) are descendants of 1,7,5   
NL(B). Therefore, B   subsume(A).  

Theorem 7. Let A, B, C   I1 be three frequent 1-itemsets. If A 
  subsume(B) and B   subsume(C) then A   subsume(C).  

Proof. We have A   subsume(B) and B   subsume(C) therefore 
g(B) ⊆ g(A) and g(C) ⊆ g(B). So g(C) ⊆ g(A) and thus this 
theorems is proven. 

To find all frequent 1-itemset associated with the subsume 
index of each A   I1, I1 should be sorted in ascending order of 
frequency. However, I1 has already been sorted in descending 
order of frequency with respect to the PPC-tree constructed 
previously. Therefore, with respect to the generate subsume 
index procedure, we propose a different traverse (see Figure 5) 
to avoid the cost of this reordering process and also facilitate 
the use of Theorem 7. 

procedure Find_Subsume(  ) 

1. for i   1 to   .size - 1 do 
2.  for j   i - 1 to   do 

3.   if j     [i].Subsumes then continue 
4.   if checkSubsume(  [i].N-list,   [j].N-list) = 
true then // using Theorem 6 

5.    add   [j].name and its index, j, to 

  [i].Subsumes 
6.    add all elements in   [j].Subsumes to 
  [i].Subsumes // using Theorem 7 
 

function checkSubsume(N-list a, N-list b) 

1. let i=0 and j=0 

2.while j < a.size and i < b.size do 

3.  if b[i].pre < a[j].pre and b[i].post > 

a[j].post then 

4.   j++ 

5.  else 

6.   i++ 

7.if j = a.size then 

8.  return true 

9. return false 

Figure 5.  The generating subsume index proceduce 

C. Algorithm 

The two theorems proposed in [8] and re-presented in section 
2.4 were also adopted in the proposed algorithm to speed up the 
runtime (Figure 6). Besides, these theorems also helped reduce 
the memory usage because it is not necessary to determine and 
store the N-lists associated with a number of frequent itemsets 
to determine their supports. 

Input: A dataset    and     𝑢  
Output:   𝑠, the set of all frequent itemsets 

1.Construct_PPC_tree(  ,     𝑢 ) to generate  ,   , 
H1 and threshold 

2.Generate_NList( ,   ) 
3.Find_Subsume(  ) 

4.  𝑠     

5.Subsume   {} 
6.Find_FIs(  , Subsumes) 

7.return   𝑠 
procedure Generate_NList( ,   ) 

1. 𝐶    .pre, .post,  .frequency 
2. H1[ .name].N-list.add(𝐶) 

3. H1[ .name].frequency += 𝐶.frequency 

4. for each child in  .children 
5.  Generate_NList(child) 

 

procedure Find_FIs( 𝑠,  ) 

1.for i    𝑠.size - 1 to   do  

2.    𝑠        
3.  if  𝑠[i].Subsumes.size > 0 then 

4.   let   be the set of subset generated from all 
elements of  𝑠[i].Subsumes 
5.   for each subset in   

6.    add subset,  𝑠[i].frequency to   𝑠 // using 
theorem 5 

7.  else if  𝑠[i].size = 1 then 

8.   S   {} 
9.  if  𝑠[i].size = 1 and  𝑠[i].frequency = threshold 
then // using Theorem 4 

10.  continue  

11. indexS =  𝑠[i].Subsumes.size - 1 

12. for j     - 1 to 0 do  
13.  if indexS >= 0 and the index of 

 𝑠[i].Subsumes[indexS] equals than j then 
14.   indexS = indexS - 1 

15.   continue 

16.  let efirst be the first item of  𝑠, - 
17.  FI   {efirst} +  𝑠[i] 

18.  (FI.N-list and frequency)   
NL_intersection( 𝑠[j].N-list,  𝑠[i].N-list)  



19.  if FI.N-list = null then 

20.   continue // using early abandoning strategy 

21.  FI.frequency = frequency 

22.  if(FI.frequency   threshold) then 
23.   add FI to   𝑠 

24.   insert FI at position 0 in   𝑠     
25.   for each subsume in   do 
26.     let f = FI + subsume 

27.     f.frequency = FI.frequency 

28.     add f to   𝑠 // using theorem 5 
29. Find_FIs(  𝑠    ,  ) 

Figure 6.  The proposed algorithm 

IV. THE ILLUSTRATION 

An illustrative example is presented in this section using our 
example dataset. First the proposed algorithm scans the dataset 
to create the PPC-tree (Figure 3). Then, this algorithm traverses 
the PPC-tree to generate the N-lists associated with the 
frequent 1-itemsets in I1 (Figure 7). 

 

Figure 7.  The I1 and its N-lists on example dataset (minSup=30%) 

Next the algorithm combines, in turn, the frequent (k-1)-
itemsets in I1 in reverse order using a divide-and-conquer 
strategy to create the k-itemset candidates. For detail, e, the last 
frequent 1-itemset, is used to: (i) find the 2

m
-1 subsets from the 

m frequent 1-itemsets in subsume({e}) and combine them with 
{e} to generate the 2

m
-1 frequent itemsets S. In this case, 

subsume({e}) = {c}, so S = {ec}; (ii) combine, in turn, with 
remaining frequent 1-itemsets {d, b, a} (not combined with c 
because c   subsume({e})) to create candidate 2-itemsets {de, 
be, ae}. However, only {ae} is frequent, thus   𝑠𝑛𝑒   = {ae}. 
Next the algorithm combines the elements in   𝑠𝑛𝑒   with the 
elements in S to create further frequent itemsets without 
calculating their support. In this case, only {aec} is created; 
and (iii) use the elements in   𝑠𝑛𝑒   to combine together to 
create the candidate 2-itemsets. In this case, this algorithm will 
stop here because   𝑠     has only one element (see Figure 8). 

 

 

Figure 8.  The frequent itemsets generated from e on example dataset 
(minSup=30%) 

Then, using the above strategy, the other frequent 1-itemsets in 
turn continue to create the tree which contains all frequent 
itemsets as Figure 9.  

In Figure 9, the proposed algorithm does not compute and 
store the N-lists of the nodes {ba, cba, dc, ae, ec, aec}. 

Therefore, using the subsume index concept it not only reduces 
the runtime but also reduce the memory usage. 

 

Figure 9.  All frequent itemsets on example dataset (minSup=30%) 

V. EXPERIMENTAL RESULTS  

All experiments presented in this section were performed on an 
ASUS laptop with Intel core i3-3110M 2.4GHz and 4GBs of 
RAM. The operating system was Microsoft Windows 8. All the 
programs were coded in C# on MS/Visual studio 2012 and run 
on Microsoft .Net Framework Version 4.5.50709. The 
experiments were conducted using the following UCL datasets: 
Accidents, Chess, Mushroom, Pumsb_star and Retail

1
. Some 

statistics concerning these datasets are shown in Table 2. We 
report the runtime (total execution time) of the proposed 
algorithm and compare it to the runtime of PrePost. 

TABLE II.  STATISTICAL SUMMARY OF THE EXPERIMENTAL DATASETS 

Dataset #Trans #Items 

Accidents 340,183 468 

Chess 3,196 76 

Mushroom 8,124 120 

Pumsb_star 49,046 7,117 

Retail 88,162 16,470 

 

The experimental results are presented in Figure 10. From the 
figure it can be observed that given a sparse datasets such as 
Retail, the proposed algorithm is a little slower than PrePost. 
This is explained as follows. Generating the subsume index 
involves a cost. However, the subsume index associated with 
each of the frequent 1-itemsets in a sparse datasets usually have 
few elements. Therefore, using the subsume index concept is 
not effective in this case. Fortunately, this cost is usually 
relatively low, about 4 seconds for the Retail dataset with 
minSup = 0.1 (0.072% of the runtime) (see Figure 10(e)). 
However, given a dense datasets, the performance of the 
proposed algorithm is better than PrePost (see Figure 
10(a)(b)(c) and (d)), especially with low thresholds. The 
proposed algorithm thus generally outperforms than the 
PrePost. 

 

                                                           
1 Downloaded from http://fimi.cs.helsinki.fi/data/ 
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Figure 10.  The runtime of the proposed and PrePost algorithms using UCL 

datasets: (a) Accidents, (b) Chess, (c) Mushroom, (d) Pumsb_star and (e) 
Retail datasets 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed a hybrid algorithm for mining 
frequent itemsets. First, we proposed several improvements on 
the previously published PrePost: (i) use of a hash table to 
enhance the process of creating the N-lists associated with the 
frequent 1-itemsets and (ii) an improved intersection function 
to find the intersection between two N-lists. Then, two 
theorems were proposed for application with respect to the 
determination of the subsume index of frequent 1-itemsets 
which were used in the proposed algorithm for improving the 
runtime. The proposed algorithm does not improve over the 
PrePost with respect to sparse datasets but the time gap is not 
significant. With respect to dense datasets the proposed 
algorithm is faster than PrePost. We therefore conclude that the 
proposed algorithm generally outperforms the PrePost.  

For future work we will initially focus on applying the N-
list concept and the hybrid approach for mining frequent 
closed/maximal itemsets. 
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