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With the rise of crimes associated with Automated Teller Machines (ATMs), security11

reinforcement by surveillance techniques has been a hot topic on the security agenda. As12

a result, cameras are frequently installed with ATMs, so as to capture the facial images13

of users. The main objective is to support follow-up criminal investigations in the event14

of an incident. However, in the case of miss-use, the user’s face is often occluded. There-15

fore, face occlusion detection has become very important to prevent crimes connected16

with ATM usage. Traditional approaches to solving the problem typically comprise a17

succession of steps: localization, segmentation, feature extraction and recognition. This18

paper proposes an end-to-end facial occlusion detection framework, which is robust and19

effective by combining region proposal algorithm and Convolutional Neural Networks20

(CNN). The framework utilizes a coarse-to-fine strategy, which consists of two CNNs.21

The first CNN detects the head element within an upper body image while the second22

distinguishes which facial part is occluded from the head image. In comparison with23

previous approaches, the usage of CNN is optimal from a system point of view as the24

design is based on the end-to-end principle and the model operates directly on image25

pixels. For evaluation purposes, a face occlusion database consisting of over fifty thou-26

sand images, with annotated facial parts, was used. Experimental results revealed that27

the proposed framework is very effective. Using the bespoke face occlusion dataset, Aleix28

and Robert (AR) face dataset and the Labeled Face in the Wild (LFW) database, we29

achieved over 85.61%, 97.58% and 100% accuracies for head detection when the Inter-30

section over Union-section (IoU) is larger than 0.5, and 94.55%, 98.58% and 95.41%31

accuracies for occlusion discrimination, respectively.32

Keywords: Automated Teller Machine (ATM); Convolutional Neural Network (CNN);33

Face occlusion detection; Multi-Task Learning (MTL)34

1. Introduction35

Automated Teller Machines (ATMs) have always been the targets of criminal ac-36

tivity since their widespread introduction in the 1970s. For example, fraudsters can37

obtain card details and PINs using a wide range of tactics. Among the possible38
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techniques to defend against ATM crime, real time automatic alarm systems seem39

to be the most straightforward technical solution to maximize protection. This is40

because the surveillance cameras are installed in nearly all ATMs. However, cur-41

rent video surveillance for ATM requires constant staff monitoring, which has the42

obvious disadvantages of human error caused by fatigue or distraction.43

Face occlusion detection has been studied for several years with a number of44

methods published [26, 31], many of which aim to reinforce ATM security. The45

published approaches can be roughly categorized into two categories: face or head46

detection approaches and occlusion classification approaches.47

In the first category, the objective is robust face detection algorithms in the p-48

resence of partial occlusions, with two common practices, namely, facial component-49

based approaches and shape-based approaches. Facial component-based approach,50

such as that presented [20], detected facial components such as eyes, nose and51

mouth, and determines a face area based on the component detection result. For52

example, the method proposed in [20] combined seven AdaBoost-based classifier-53

s for whole face with individual face-part classifiers trained on non-occluded face54

sample sets, and a decision tree and Linear Discriminant Analysis (LDA) to classify55

non-occluded faces and various types of occluded faces. Inspired by discriminative-56

ly trained part-based models, Ahmed [7] proposed a Selective Part Model (SPM)57

to detect faces under certain types of partial occlusions. Gul [15] applied what is58

known as the Viola-Jones approach [38], with free rectangular features, to detect59

left half faces, right half faces and the holistic faces. AdaBoost-based face detection60

was also improved upon in [5] in order to detect partially occluded faces, which,61

however, only worked for frontal faces with sufficient resolutions.62

Shape-based approaches [3, 4, 17, 21, 28] detect faces based on the prior knowl-63

edge of head, neck and shoulder shapes. In the scenario of ATM video surveillance,64

[28] proposed to compute the lower boundary of the head by moving object edge ex-65

traction and head tracking. Motion information was also exploited in [21] to detect66

the head and shoulder shape with the aid of B-spline active contouring. Color has67

also been applied as a major clue to detect the head or face, following appropriate68

template fitting strategies [3, 4, 17]. These approaches, however, are limited to con-69

strained poses and well-controlled illumination conditions. In [3, 4, 17] the head or70

shoulder were detected by using ellipse or what are known as “omega templates“,71

which, however, will fail when a face is severely occluded and/or the shapes are72

severely changed with different face poses.73

Some of the previous published researches have tried to solve the face occlusion74

detection problem by straightforward classification [22]. For example, by separating75

a face area into upper and lower parts, Principal Component Analysis (PCA) and76

Support Vector Machine (SVM) were combined to distinguish between normal faces77

and partially occluded faces in [22].78

Until recently, the most successful approaches to object detection utilized the79

well-known sliding window paradigm [10], in which a computationally efficient clas-80

sifier tests for object presence in every candidate image window. The steady increase81
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in complexity of the core classifiers has led to improved detection quality, but at the82

cost of significantly increased computation time per window [6, 11, 16, 35, 40]. One83

approach for overcoming the tension between computational tractability and high84

detection quality is through the use of ”detection proposals” [8, 37]. If high object85

recall can be reached with considerably fewer windows than used by sliding win-86

dow detectors, significant performance improvement can be achieved. Current top87

performing object detectors, when applied to PASCAL benchmark image datasets88

[9] and ImageNet [30], all used detection proposals [6, 11, 13, 16, 35, 40]. According89

to [18], approaches for generating object proposals can be divided into four type-90

s: grouping methods, window scoring methods, alternative methods and baseline91

methods. Grouping methods attempt to generate multiple (possibly overlapping)92

segments that are likely to correspond to objects. Window scoring methods are used93

to score each candidate window according to how likely it is to contain an object.94

Inspired by the success of applying object proposal approaches in different object95

detections, this paper proposes a face occlusion detection system using the highly96

ranked object proposal technique, EdgeBoxes [47].97

Over the last several years, there has been increasing interests in deep neural98

network models for solving various vision problems. One of the most successful99

deep learning frameworks is the CNN architecture [24], which is a bio-inspired hier-100

archical multilayered neural network that can learn visual representations directly101

from raw images. CNN possesses some key properties, namely translation invariance102

and spatially local connections (receptive fields). Pre-trained CNN models can be103

exploited as generic feature extractors for different vision tasks [24]. Among the var-104

ious advantages of deep neural networks over classical machine learning techniques,105

the most frequently cited examples include the conveniences for the implementation106

of knowledge transfer, Multi-Task Learning (MTL), attribute learning, multi label107

classification, and weakly supervised learning.108

In this paper, a novel CNN based approach to face occlusion detection is pro-109

posed. A CNN cascade paradigm is adopted, which tackles the occlusion detection110

problem in a coarse-to-fine manner. The first CNN implements head/shoulder de-111

tection by taking a person’s upper body image as input. The second CNN takes the112

output of the previous CNN as input and locates and classifies different facial parts.113

To facilitate the study of various face occlusion problems, a database directed at114

different kind of facial occlusions was created. The database consists of over fifty115

thousand images which are demarcated with four facial parts: two eyes, nose and116

mouth.117

To the best of our knowledge, this is the first work directed at analyzing how118

face occlusion can be detected using multi-task CNN. The approach was verified119

on our face occlusion dataset, AR dataset [29] and LFW dataset [19], obtaining120

94.55%, 95.58% and 95.41% accuracies, respectively.121

The rest of the paper is organized as follows. Section 2 provides the problem122

descriptions with the introduction of our face occlusion dataset. Section 3 overviews123

the proposed method and elaborates on the details of the coarse-to-fine framework.124
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(a) (b) (c)

Fig. 1. Face occlusions examples for the withdrawing cash from an ATM scenario.

Section 4 reports the experiment results, followed by conclusion in Section 5.125

2. Face Occlusion Dataset126

A normal face image consists of two eyes, a nose and a mouth. The geometrical127

and textual information from these components is critical to the recognition or128

identification of a person. If any of these components is blocked or covered, the face129

image is considered to be occluded. Commonly found face occlusions include the130

faces being partially covered by a hat, sunglasses, mask or muffler. Some examples131

are given in Fig. 1.132

To facilitate research on face occlusion detection, a database of face images133

which has different facial regions intentionally covered or occluded was created.134

The images were taken using the Microsoft webcam studio camera and AMCap135

9.20 edition. Some example images are illustrated in Figs. 2 and Fig. 3. The video136

was filmed with a white background. There were 220 people involved, including 140137

males and 80 females.138

During the photography, a subject was asked to stand in front of the camera139

with a set of different specified poses, including looking right ahead, up and down140

roughly 45 degree, and right and left roughly 45 degree. In addition to taking face141

images without any occlusions, a subject was also asked to wear sunglasses, hat (in142

yellow and black), white mask and black helmet, again in five different poses. Each143

subject has 6 video clips recorded, with 30 seconds for each clip and 25 frames per144

second. The illumination was normal office lighting condition. Other conditions,145

for example, clothing, make-up, hair style and expression, have not been strictly146

controlled.147

Although the created dataset is comprehensive, it cannot become public cur-148

rently due to legal considerations. To alleviate the problem, we also utilized the AR149

face database [29], which is one of the earliest and most popular benchmark face150

databases. AR faces have been often used for robust face recognition. It includes a151

number of different types occlusions: faces with sunglasses and face partially cov-152
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Fig. 2. Upper body of our created dataset

Fig. 3. Head of our created dataset

ered by a scarf. The AR faces dataset consists of over 3200 frontal face images taken153

from 126 subjects, with some examples given in Fig. 4.154

The LFW dataset [19] was also employed to further evaluate our approach.155

There are 13000 images and 1680 people in the LFW dataset collected from the156

Internet. The faces were detected by the OpenCV implementation of the Viola-157

Jones [38] face detector. The cropped region returned by the detector was then158

automatically enlarged by a factor of 2.2 in each dimension to capture more of the159

head and then scaled to a uniform size, 250*250. For the evaluation presented in this160

paper, 1000 images were selected and the heads manually cropped. Occlusions were161

created using black rectangles and facial landmark localization [45]. Some examples162

are given in Fig. 5.163
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(a) (b)

Fig. 4. Examples of face from the AR face Database. (a) head and shoulder, (b) head.

Fig. 5. Examples of images from the LFW database with occlusions superimposed

3. System Overview164

Though deep neural networks have achieved remarkable performance, it is still165

difficult to solve many real-world problems by a single CNN model. With the current166

technology, the resolution of an input to CNN must be relatively small. This will167

cause some details of an image lost. To get better performance, a common practice168

of coarse-to-fine paradigm has been applied with CNN design [34, 48]. Following169

the same line of thought, we proposed a two-stage convolutional neural network for170

face occlusion detection, as illustrated in Fig. 6. The first CNN detects the head171

from a person’s upper body image while the second CNN distinguishes which facial172

part is occluded from the head image.173

3.1. Head Detection174

To identify the locations of the head in an image, advantages were taken of Region175

with Convolutional Neural Networks (R-CNN) [12], which is the state-of-the-art176
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Fig. 6. The flow diagram of whole system

object detector that classifies candidate object hypothesis generated by appropriate177

region proposal algorithms. The R-CNN leverages several advantages of computer178

vision development and CNN, including the superb feature expression capability179

from a pre-trained CNN, fine-tuning flexibility for specific objects to be detected180

and the ever-increasing efficiency of object proposal generation schemes.181

Among the off-the-shelf object proposal generation algorithms, the EdgeBoxes182

technique [47] was chose which has attracted much interest in recent years. Edge-183

Boxes is built on the Structural Edge Map to locate object boundaries and find184

object proposals. The number of enclosed edges inside a bounding box is used to185

rank the likelihood of the box containing an object.186

The overall convolutional net architecture is shown in Fig. 7. The network187

consists of three convolution stages followed by three fully connected layers. A188

convolution stage includes a convolution layer, a non-linear activation layer, a lo-189

cal response normalization layer and a max pooling layer. The non-linear activa-190

tion layer and local response normalization layers are not included in Fig. 7 and191

Fig. 8 as data size was not changed. Using shorthand notation, the full architec-192

ture is C(8,5,1)-Ã-N-P-C(16,5,1)-Ã-N-P-C(32,5,1)-Ã-N-P-FC(1024)-Ã-FC(128)-Ã-193

FC(4)-Ã, where C(d,f,s) indicates a convolutional layer with d filters of spatial size194
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f×f, applied to the input with stride s. A is the non-linear activation function,195

which uses the ReLU activation function[14]. FC(n) is a fully connected layer with196

n output nodes. All pooling layers P use max-pooling in non-overlapping 2×2 re-197

gions and all normalization layers N are defined as described in Krizhevsky et al.198

[24]. The final layer is connected to a soft-max layer with dense connections. The199

structure of the networks and the hyper-parameters were empirically initialized200

based on previous works using CNNs.201

The well-known overfitting problem has been taken into account in our design202

with the following considerations. Firstly, we empirically compared a set of different203

CNN architectures with varying number of kernels and selected the one which is204

deemed as the most effective with regard to the trade-off between network complex-205

ity and performance. Secondly, the overfitting has been avoided to a large extent as206

the CNN size is very moderate, which compares sharply with some published CNN207

models for large-scale image classifications [24].208

Fig. 7. Architecture of head detector CNN

The adopted CNN used the shared weight neural network architecture [25], in209

which the local receptive field (kernel or filter) is replicated across the entire visual210

field to form a feature map, which is known as convolution operation. The sharing211

of weights reduces the number of free variables, and increases the generalization212

performance of the network. Weights (kernels or filters) are initialized at random213

and will learn to be edge, color or specific pattern detectors.214

In deep CNN, the classical sigmoidal function has been replaced by a Rectifier215

Linear Unit(ReLu) to accelerate training speed. Recent CNN-based approaches216

[23, 24, 33, 36, 41, 43] applied the ReLU as the nonlinear activation function for217

both the convolution layer and the full connection layer, often with faster training218

speed as reported in [24].219

Typical pooling functions include average-pooling and max-pooling layers. Av-220

erage pooling takes the arithmetic mean of the elements in each pooling region221

while max-pooling selects the largest element from the input.222

The four layers of convolution, nonlinear activation, pooling and normalization,223

are combined hierarchically to form a convolution stage (block). Generally, an input224

image will be passed through several convolution stages for extracting complex225
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descriptive features. In the output of the topmost convolution stage, all small-sized226

feature maps are concatenated into a long vector. Such a vector plays the same227

role as hand-coded features and it is fed to a full connection layer. A standard full228

connection operation can be either the conventional Multi-Layer Perceptron (MLP)229

or SVM.230

As the fully connected layers receive feature vector from the topmost convolution231

stage, the output layer can generate a probability distribution over the output232

classes. Toward this purpose, the output of the last fully-connected layer is fed to233

a K-way softmax (where K is the number of classes) layer, which is the same as a234

multi-class logistic regression.235

3.2. Face Occlusion Classification236

The second stage CNN takes the output from head detector as input and implements237

the face occlusion classification. The CNN trains the classifier with the implicit,238

highly discriminative features to differentiate facial parts and distinguish whether239

a facial part is occluded or not at the same time. This is aided by a multi-task240

learning paradigm described in more detail below.241

The intuition of multi-task learning is to jointly learn multiple tasks by exploit-242

ing a shared structural representation and improving the generalization by using243

related tasks. Deep neural networks such as CNN have been proven advantageous244

in multi-task learning due to their powerful representation learning capability and245

the knowledge transferability across similar tasks [32, 42, 44].246

Inspired by the successes of CNN multi-task learning, we configured the second247

stage CNN to enable its shared representation learned in the feature layers for two248

independent MLP classifiers in the final layer. Specifically, we jointly trained the249

facial parts (left eye, right eye, nose and mouth) classification and occlusion/non-250

occlusion decision simultaneously.251

Fig. 8. Architecture of face occlusion classifier CNN

In our experiments, we adopt a multi-task CNN as shown in Fig. 8. The ar-252

chitecture is same as for the CNN for head detector. When multi-task learning is253

performed, we minimize the linear combination of individual task loss [42] as:254
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Ljoint =

N∑
i=1

αiLi (1)

where N is the total number of tasks, αi is weighting factor for the i-th task and Li255

is the i-th task loss. When one of αis takes 1, it will degenerate to classical single256

task learning.257

3.3. Bounding Box Regression258

A bounding box regression module is employed to improve the detection accuracy.259

Many bounding boxes generated from the EdgeBoxes algorithm are not close to260

the object ground truth, but might be judged as positive samples. We can regard261

detection as a regression problem to find the location of an object. This formulation262

can work well for localizing a single object. Based on the error analysis, we imple-263

mented a simple method to reduce localization errors. Inspired by the bounding-box264

regression employed in the Deformable Parts Model (DPM) [10], we trained a lin-265

ear regression model to predict a new detection window given by the last pooled266

features for the region proposals produced by the EdgeBoxes. This simple approach267

can fix a large number of mislocalized detections, thus substantially boosting the268

accuracy.269

3.4. Pre-train270

By supervised learning with sufficient annotated training data, CNNs that con-271

tain millions of parameters have demonstrated competitive performance for visual272

recognition tasks [23, 24, 33, 36, 41, 43] when starting from a random initializa-273

tion. However, CNN architecture has a property that is strongly dependent on large274

amounts of training data for good generalization. When the amount of labeled data275

is limited, directly training a high capacitor CNN may become problematic. Re-276

searches [39] have shown an alternative solution to compensate the problem by277

choosing an optimised starting point which can be pre-trained by transferring pa-278

rameters from either supervised learning or unsupervised learning, as opposite to a279

random initialized start. We first trained the CNN model in the supervised mod-280

e using the ImageNet data and then fine-tuned it on the domain-specific labeled281

images as the head detector. To be specific, the pre-trained model is designed to282

recognize objects in natural images. The leveraged knowledge from the source task283

could reflect some common characteristics shared in these two types of images such284

as corners or edges.285

4. Experiment Results286

The proposed approach was analyzed using our face occlusion dataset, the AR face287

dataset and the LFW dataset with pre-training and fine-tuning. For head detector,288
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the pre-training stage employed 10% of images from the ILSVRC2012 [30] for the289

classification task. For the occlusion classification, the pre-training was implemented290

by the face recognition.291

4.1. Implementation Details292

The experiments were conducted on a computer Dell Tower 5810 with Intel Xeon293

E5-1650 v3 and 64G of memory. In order to speed up CNN training, a GPU,294

NVIDIA GeForce GTX TITAN, is plugged on the board. The program operated295

under 64-bit windows 7 Ultimate with Matlab 2013b, Microsoft visual studio 2012296

and CUDA7.0[46].297

We trained our models using stochastic gradient decent with a batch size of298

128 examples and momentum of 0.01. The learning rate was initialized as 0.01 and299

adapted during training. More specifically, we monitored the overall loss function.300

If the loss was not reduced for 5 epochs continually, the learning rate was dropped301

by 50%. We deem the network converged if the loss is stabilized.302

In the training procedure, firstly, 10% of images from the ILSVRC2012 are303

used to train Net1 from random initialization. Then, the fine tuning on Net1 is304

implemented by head detection dataset in the AR face dataset, our dataset and the305

LFW dataset. Thirdly, Net2 is initialized from the Net1 after fine turning. Finally,306

the fine tuning on Net2 is trained by face occlusion classification dataset in the AR307

face dataset, our dataset and the LFW dataset. And the test procedure is described308

in Fig. 6.309

4.2. Head Detector310

As the state-of-the-art object proposal method with regard to the trade-off between311

the speed and recall, EdgeBoxes method needs to tune the parameters at each312

desired overlap threshold [47]. We estimated three pairs of α and β parameters to313

evaluate the object proposal corresponding to the head hypothesis, following the314

standard object proposal evaluation framework. The detection recall is calculated315

as the ratio of ground truth bounding boxes that have been predicted among the316

EdgeBoxes proposals with an Intersection Over Union (IoU) larger than a given317

threshold.318

Three useful pairs of α and β values in EdgeBoxes [47] were estimated to provide319

the head candidates from our dataset, the AR face dataset and the LFW dataset,320

as shown in Fig. 9. The parameters α and β control the step size of the sliding321

window search and the NMS threshold, respectively. The two figures in Fig. 9322

illustrate the algorithm’s behavior with varying α and β when the same number323

of object proposals are generated. More specifically, three pairs of α and β are324

0.65/0.55, 0.65/0.75, and 0.85/0.95 respectively. They were tested when the max325

region proposal was fixed at 500 with respect to our database and the AR database326

and 700 on the LFW database. It is obvious that the biggest value obtain the best327

recall, such that we were able to achieve 97.53% on our face occlusion database,328
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(a) (b) (c)

Fig. 9. The three useful variants of EdgeBoxes when the max number of region proposal is same.

99.35% on the AR face database and 100% on the LFW database when IoU is329

larger than 0.5. In conclusion, when the density of the sampling rate increases, we330

will get higher recall, but the run time becomes longer.331

The second experiment compared the different number of bounding boxes pro-332

duced by EdgeBoxes according to ranking score. A suite of maximal number of333

boxes, 100, 300, 500, 700, 900, was evaluated when the density of the sampling rate334

and NMS threshold are fixed to 0.85 and 0.95 respectively, as shown in Fig. 10. In335

order to make sure the face occlusion classification is valid, the IoU between region336

and ground truth is larger than 0.5. The recall is approximately 100% on our face337

occlusion database, the AR face database and the LFW database (Fig. 10). The re-338

call does not increase when the maximum number of region proposal is larger than339

500 on our dataset and the AR dataset and 700 on the LFW dataset. In consider-340

ation of the tolerance of Net1, the α, β and max number of region proposal were341

set to 0.85, 0.95 and 500 on our dataset and AR dataset respectively. By taking342

account of the complex background of LFW dataset, the maximal number of boxes343

was selected as 700 and the others parameters were the same for our dataset and344

AR dataset. The same parameters were selected for our face occlusion database and345

the AR face database. However, the recall obatined with repcet to the AR dataset346

is lower due to the greater variability of our database. The recall curves (Fig. 9 and347

Fig. 10) demonstrate that almost all of the head has been selected as proposals by348

the EdgeBoxes.349

After obtaining the candidate regions from EdgeBoxes, the regions are classified350

into head and non-head by the trained CNN module. Before applying the CNN for351

the classification, a hypothesis object proposal will be discarded if the proposal can352

be simply judged as head or useless patch based on the following reasoning: a region353

is head if the overlap with the whole image is less than 5% on AR face database,354

a region is head or useless patch if the overlapping with the full image is between355

2% and 30% on our face occlusion database. Then, the features are extracted via356

Net1 from normalized regions, 100×100 gray images. Next, the subsequent MLP357

predicts whether the region is a head region or not. After MLP, several positive358

regions are merged into a box by the non-max suppression with 0.3 overlap threshold359
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(a) (b) (c)

Fig. 10. The difference maximal number of region proposal when the α is 0.85 and β is 0.95.

(a) (b) (c)

Fig. 11. The recall of head detection, the red line is the performance of head detector without

regression and the blue line indicate the performance of head detector with regression.

sorted by the reliability of the MLP, which indicated the accuracy of detection.360

The performance of the approach was tested on the AR face database and our face361

occlusion database. The accuracies using our face occlusion database, the AR face362

database and the LFW database were 56.83%, 73.79% and 88.52% with 0.5 IoU,363

respectively (Fig. 10). The performance can be further improved by bounding box364

regression, as expounded in the following.365

We use a simple bounding-box regression stage to improve the localization per-366

formance. After scoring each object proposal by MLP, we predict a new bounding367

box for detection using a class-specific bounding-box regressor. This is similar in368

spirit to the approach used in deformable part models [12]. The better location of369

head is regressed from features computed by the CNN (Fig. 11). After regressing370

the positive features from CNN, the performance is improved, with increases of371

28.78%, 23.79% and 11.48% on our face occlusion database, AR face database and372

LFW database respectively with IoU 0.5. The reason why the regressor improves373

the performance is that the head is centered in the images. However, the regres-374

sor only improves when the classification result from CNN is correct. Examples of375

the head detection from our face occlusion database, AR face database and LFW376

database are shown in the Fig. 12, Fig. 13 and Fig. 14, respectively.377

We created a head detector based on HoG feature extraction [1] and SVM378

classification [2] as a baseline approach. The parameters for the HOG was set as379
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orientations in the range [0, 360], 40 orientations bins and 3 spatial levels, which380

means that the inputs for SVM have a dimension of 840, (1 + 4 + 16) × 40. For381

the SVM, we employed C-SVC and radial basis kernel function [2]. The comparison382

performance is illustrated in Table 1, which demonstrates that our approach is383

robust and effective in complex scenes. The computational complexity is showed384

Table 2. The major part of the computation of our approach is from the region385

proposal algorithm, EdgeBoxes.386

Table 1. Accuracy of head detection when IoU is larger than 0.5

LFW AR Our dataset

HOG+SVM 91.87% 97.44% 72.41%

Our method 100% 97.58% 85.61%

Table 2. Computational complexity on head detection(fps)

LFW AR Our created dataset

HOG+SVM 32.48 24.06 419.68

Our method 0.94 2.02 1.76

Fig. 12. Examples of head detection results from our face occlusion database, red rectangle is

ground truth and the green rectangle is detection location.

4.3. Face Occlusion Classification387

After obtaining the head position by the head detector, the face occlusion classifier388

was used to classify the type of face occlusion.389
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Fig. 13. Examples of head detection results from the AR face database, the red rectangle is the

ground truth and the green rectangle is the detection location.

Fig. 14. Examples of head detection results from the LFW database, the red rectangle is the

ground truth and the green rectangle is the detection location.

The AR face dataset [29] is a popular dataset for face recognition. It contains390

over 4,000 color images from 126 people’s faces (70 males and 56 females). Images391

cover the frontal view faces with occlusions (sun glasses and scarf), different facial392

expressions and illumination conditions (Fig. 1). For the face occlusion classifier,393

the dataset is categorized into two occlusion conditions: face with eyes occluded by394

sunglasses and face with mouth occluded by scarf.Half of the un-occluded faces were395

use to pre-train the CNN model, following a general face recognition methodology.396

More specifically, the pre-train dataset consisted of 31 male and 25 female faces397

(frontal view face with different expressions and illumination).398

After pre-training, the fully connected layers were replaced by a new MLP,399

initialized from random connection values for the fine-tuning, by applying the face400
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(a) (b) (c)

Fig. 15. Comparison of loss function values during training

(a) (b) (c)

Fig. 16. Comparison of accuracy values during training and validation

occlusion dataset. The CNN with multi-tasks learning was designed to predict the401

presence or absence of different facial parts, thus indicating occlusion or not. The402

structure of CNN is illustrated in Fig. 8.403

The loss function values during training is illustrated in Fig. 15. After the loss404

becomes stabilized, the converged model is applied to test a testing sample with405

accuracy as shown in Table 3.406

The accuracy values during training and validation are given in Fig. 16. Cross407

validation and early stopping are employed to avoid overfitting. Fig. 16 illustrates408

that the accuracies during training and validation continually rise. Early stopping is409

used to select the appropriate trained model during training and avoid overfitting.410

Table 3. Face occlusion classification on AR dataset

eyes Mouth Total

Accuracy 98.58% 100% 98.58%

The system performance for face occlusion classification was also evaluated using411

our face occlusion dataset and the LFW dataset. The experiment procedures are412

similar to the AR face dataset. The difference is that there is a variety of occlusions413

from different facial parts, namely, left eye, right eye, nose and mouth. Accordingly,414
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there are four MLPs following the shared layer to verify whether each facial part is415

occluded or not, as explained in Fig. 8.416

The training loss is shown in Fig. 15, and the occlusion accuracies on our dataset417

and LFW are 94.55% and 95.41% respectively, with further details provided in418

Table 4. Our model is a multi-task framework that shares the front layers. The419

summed loss changes with the updating of CNN parameters. And it can be seen420

that the loss fluctuates more obviously on our face dateset because it is much more421

complex compared with AR dataset and LFW dataset.422

The face detector combined with Haar feature [27] extractor and Viola-Jones423

[38] classifier is used as the base line of face occlusion classification. The experiments424

result is summarized in Table 5, which indicates that our method outperforms Haar-425

based face detection. And the corresponding computational complexity is reported426

in Table 6 showing that our method is faster than the classical approach.427

Table 4. The Accuracy on LFW and our face occlusion dataset

The Accuracy on our face occlusion dataset

Left eye Right eye Nose Mouth Total

Our dataset 98.15% 99.07% 98.15% 99.07% 94.55%

LFW 97.79% 98.91% 99.63% 99.02% 95.41%

Table 5. Accuracy on face occlusion classification

LFW AR Our dataset

Haar+VJ 45.22% 47.98% 21.20%

Our method 95.41% 98.58% 94.55%

Table 6. Computational complexity on face occlusion classification(ms)

LFW AR Our created dataset

Haar+VJ 16.29 58.23 22.35

Our method 13.10 20.67 17.31

4.4. Error Analysis428

There are two factors that may impact the effectiveness of the proposed approach.429

Firstly, the region proposal algorithm should be robust with regard to the gener-430

ated candidate bounding boxes. However, as the EdgeBoxes produce the candidate431
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(a) (b) (c)

Fig. 17. Examples of wrong region proposal

(a) (b) (c)

Fig. 18. Error prediction image sample

regions by the edge, it has several potential problems: (a) negative data will be432

generated when a person wears clothing with complex texture (Fig. 17(a)); (b) a433

head will appear larger with certain hairstyles (Fig. 17(b)); (c) the head will not be434

segmented when a person has long hair and wears a black dust coat (Fig. 17(c)).435

Secondly, there are three factors that may influence the performance of face oc-436

clusion classifier, including the illumination variations, occlusions and the partial437

occlusions. Fig. 18 further explains the difficult situations.438

5. Conclusion439

This paper proposed an approach for face occlusion detection to enhance the surveil-440

lance security for ATM. The coarse-to-fine approach consists of a head detector and441

a face occlusion classifier. The head detector is implemented with EdgeBoxes — re-442

gion proposal, CNN and MLP. The method achieved detection accuracies of 97.58%,443

85.61% and 100% on the AR face database, our face occlusion database and LFW444

dataset. For face occlusion classification, CNN is applied with a pre-training strat-445
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egy via usual face recognition task, followed by fine-tuning with the face occlusion446

classification based on MTL to verify whether a facial part is occluded or not.447

Our approach is evaluated on the AR face dataset, our dataset and LFW dataset,448

achieving 98.58%, 94.55% and 95.41% accuracies, respectively. Further work is be-449

ing made toward the improvement of the model by more robust and accurate region450

proposal, which will render it more realistic for real-world applications.451
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