Example: Minimum Cost Flow Problem

Given: directed graph \(D = (V, A) \), with arc capacities \(u : A \to \mathbb{R}_{\geq 0} \), arc costs \(c : A \to \mathbb{R} \), and node balances \(b : V \to \mathbb{R} \).

Interpretation:

- nodes \(v \in V \) with \(b(v) > 0 \) (\(b(v) < 0 \)) have supply (demand) and are called sources (sinks)
- the capacity \(u(a) \) of arc \(a \in A \) limits the amount of flow that can be sent through arc \(a \).

Task: find a flow \(x : A \to \mathbb{R}_{\geq 0} \) obeying capacities and satisfying all supplies and demands, that is,

\[
0 \leq x(a) \leq u(a) \\
\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v)
\]

for all \(a \in A \), for all \(v \in V \),

such that \(x \) has minimum cost \(c(x) := \sum_{a \in A} c(a) \cdot x(a) \).
Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize \[\sum_{a \in A} c(a) \cdot x(a) \] (1.1)

subject to \[\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \] for all \(v \in V \), (1.2)

\[x(a) \leq u(a) \] for all \(a \in A \), (1.3)

\[x(a) \geq 0 \] for all \(a \in A \). (1.4)

Objective function given by (1.1). Set of feasible solutions:

\[\mathcal{X} = \{ x \in \mathbb{R}^A | x \text{ satisfies (1.2), (1.3), and (1.4)} \} \]

Notice that (1.1) is a linear function of \(x \) and (1.2) – (1.4) are linear equations and linear inequalities, respectively.

\[u(a) \ldots \text{capacity of } a \]

\[c(a) \ldots \text{cost of shipping 1 unit over a} \]
Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

\[
\begin{align*}
\text{minimize} & \quad \sum_{a \in A} c(a) \cdot x(a) \\
\text{subject to} & \quad \sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \quad \text{for all } v \in V, \\
& \quad x(a) \leq u(a) \quad \text{for all } a \in A, \\
& \quad x(a) \geq 0 \quad \text{for all } a \in A.
\end{align*}
\]

- Objective function given by (1.1). Set of feasible solutions:

\[
X = \{ x \in \mathbb{R}^A \mid x \text{ satisfies (1.2), (1.3), and (1.4)} \}.
\]
Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

\[\text{minimize} \quad \sum_{a \in A} c(a) \cdot x(a) \quad (1.1) \]

subject to

\[\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \quad \text{for all } v \in V, \quad (1.2) \]

\[x(a) \leq u(a) \quad \text{for all } a \in A, \quad (1.3) \]

\[x(a) \geq 0 \quad \text{for all } a \in A. \quad (1.4) \]

- Objective function given by (1.1). Set of feasible solutions:

\[X = \{x \in \mathbb{R}^A \mid x \text{ satisfies (1.2), (1.3), and (1.4)} \} . \]

- Notice that (1.1) is a linear function of \(x \) and (1.2) – (1.4) are linear equations and linear inequalities, respectively. \text{linear program}
Example (cont.): Adding Fixed Cost

Fixed costs \(w : A \rightarrow \mathbb{R}_{\geq 0} \).

If arc \(a \in A \) shall be used (i.e., \(x(a) > 0 \)), it must be bought at cost \(w(a) \).
Example (cont.): Adding Fixed Cost

Fixed costs $w : A \rightarrow \mathbb{R}_{\geq 0}$.

If arc $a \in A$ shall be used (i.e., $x(a) > 0$), it must be bought at cost $w(a)$.

Add variables $y(a) \in \{0, 1\}$ with $y(a) = 1$ if arc a is used, 0 otherwise.
Example (cont.): Adding Fixed Cost

Fixed costs $w : A \to \mathbb{R}_{\geq 0}$.

If arc $a \in A$ shall be used (i.e., $x(a) > 0$), it must be bought at cost $w(a)$.

Add variables $y(a) \in \{0, 1\}$ with $y(a) = 1$ if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

\[
\text{minimize} \quad \sum_{a \in A} c(a) \cdot x(a) + \sum_{a \in A} w(a) \cdot y(a)
\]

\[
\text{subject to} \quad \sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \quad \text{for all } v \in V,
\]

\[
x(a) \leq u(a) \cdot y(a) \quad \text{for all } a \in A,
\]

\[
x(a) \geq 0 \quad \text{for all } a \in A.
\]

\[
y(a) \in \{0, 1\} \quad \text{for all } a \in A.
\]
Example (cont.): Adding Fixed Cost

Fixed costs $w : A \rightarrow \mathbb{R}_{\geq 0}$.

If arc $a \in A$ shall be used (i.e., $x(a) > 0$), it must be bought at cost $w(a)$.

Add variables $y(a) \in \{0, 1\}$ with $y(a) = 1$ if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

\[
\text{minimize} \quad \sum_{a \in A} c(a) \cdot x(a) + \sum_{a \in A} w(a) \cdot y(a)
\]

subject to
\[
\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \quad \text{for all } v \in V,
\]
\[
x(a) \leq u(a) \cdot y(a) \quad \text{for all } a \in A,
\]
\[
x(a) \geq 0 \quad \text{for all } a \in A.
\]
\[
y(a) \in \{0, 1\} \quad \text{for all } a \in A.
\]

MIP: Linear program where some variables may only take integer values.
Example: Maximum Weighted Matching Problem

Given: undirected graph $G = (V, E)$, weight function $w : E \rightarrow \mathbb{R}$.

Task: find matching $M \subseteq E$ with maximum total weight.

($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)
Example: Maximum Weighted Matching Problem

Given: undirected graph $G = (V, E)$, weight function $w : E \rightarrow \mathbb{R}$.

Task: find matching $M \subseteq E$ with maximum total weight.

($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: $x_e \in \{0, 1\}$ for $e \in E$ with $x_e = 1$ if and only if $e \in M$.
Example: Maximum Weighted Matching Problem

Given: undirected graph \(G = (V, E) \), weight function \(w : E \to \mathbb{R} \).

Task: find matching \(M \subseteq E \) with maximum total weight.

\((M \subseteq E \text{ is a matching if every node is incident to at most one edge in } M.\)\)

Formulation as an integer linear program (IP):

Variables: \(x_e \in \{0, 1\} \) for \(e \in E \) with \(x_e = 1 \) if and only if \(e \in M \).

\[
\begin{align*}
\text{maximize} & \quad \sum_{e \in E} w(e) \cdot x_e \\
\text{subject to} & \quad \sum_{e \in \delta(v)} x_e \leq 1 \quad \text{ for all } v \in V, \\
& \quad x_e \in \{0, 1\} \quad \text{ for all } e \in E.
\end{align*}
\]
Example: Maximum Weighted Matching Problem

Given: undirected graph $G = (V, E)$, weight function $w : E \to \mathbb{R}$.

Task: find matching $M \subseteq E$ with maximum total weight.

($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: $x_e \in \{0, 1\}$ for $e \in E$ with $x_e = 1$ if and only if $e \in M$.

$$\text{maximize } \sum_{e \in E} w(e) \cdot x_e$$

subject to $$\sum_{e \in \delta(v)} x_e \leq 1 \quad \text{for all } v \in V,$$

$$x_e \in \{0, 1\} \quad \text{for all } e \in E.$$ }

IP: Linear program where all variables may only take integer values.
Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_n on n nodes, weight function $w : E(K_n) \to \mathbb{R}$.

Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)
Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_n on n nodes, weight function $w : E(K_n) \rightarrow \mathbb{R}$.

Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.
Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_n on n nodes, weight function $w : E(K_n) \rightarrow \mathbb{R}$.

Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.

Formulation as an integer linear program? (maybe later!)
Example: Weighted Vertex Cover Problem

Given: undirected graph $G = (V, E)$, weight function $w : V \rightarrow \mathbb{R}_{\geq 0}$.

Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):

Variables:

$x_v \in \{0, 1\}$ for $v \in V$ with $x_v = 1$ if $v \in U$.

minimize

$\sum_{v \in V} w(v) \cdot x_v$

subject to

$x_v + x_v \geq 1$ for all $e = \{v, v\} \in E$, $x_v \in \{0, 1\}$ for all $v \in V$.
Example: Weighted Vertex Cover Problem

Given: undirected graph $G = (V, E)$, weight function $w : V \rightarrow \mathbb{R}_{\geq 0}$.

Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):

Variables: $x_v \in \{0, 1\}$ for $v \in V$ with $x_v = 1$ if and only if $v \in U$.
Example: Weighted Vertex Cover Problem

Given: undirected graph $G = (V, E)$, weight function $w : V \rightarrow \mathbb{R}_{\geq 0}$.

Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):

Variables: $x_v \in \{0, 1\}$ for $v \in V$ with $x_v = 1$ if and only if $v \in U$.

minimize $\sum_{v \in V} w(v) \cdot x_v$

subject to $x_v + x_{v'} \geq 1$ for all $e = \{v, v'\} \in E$,
$x_v \in \{0, 1\}$ for all $v \in V$.
Markowitz’ Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R, for each security $i \in [n]$:

- expected return μ_i, variance σ_i

For each pair of securities i, j:

- covariance ρ_{ij},
Markowitz’ Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R, for each security $i \in [n]$:

- expected return μ_i, variance σ_i

For each pair of securities i, j:

- covariance ρ_{ij}

Task: Find a portfolio x_1, \ldots, x_n that minimises “risk” (aka variance) and has expected return $\geq R$.

Formulation as a quadratic programme (QP):
Markowitz’ Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R, for each security $i \in [n]$:
- expected return μ_i, variance σ_i

For each pair of securities i, j:
- covariance ρ_{ij},

Task: Find a portfolio x_1, \ldots, x_n that minimises “risk” (aka variance) and has expected return $\geq R$.

Formulation as a quadratic programme (QP):

minimize $\sum_{i,j} \rho_{ij} \sigma_i \sigma_j x_i x_j$

subject to $\sum_i x_i = 1$

$\sum_i \mu_i x_i \geq R$

$x_i \geq 0$, for all i.
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an *efficient algorithm* with “small” worst-case running time?
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an \textit{efficient algorithm} with “small” worst-case running time?
- How to formulate the problem as a (mixed integer) linear program?
Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an efficient algorithm with “small” worst-case running time?
- How to formulate the problem as a (mixed integer) linear program?
- Is there a useful special structure of the problem?
Literature on Linear Optimization (not complete)

Literature on Combinatorial Optimization (not complete)

Chapter 2: Linear Programming Basics

(Bertsimas & Tsitsiklis, Chapter 1)
Example of a Linear Program

minimize \quad 2x_1 - x_2 + 4x_3

subject to \quad x_1 + x_2 + x_4 \leq 2
\quad \quad \quad \quad 3x_2 - x_3 = 5
\quad \quad \quad \quad x_3 + x_4 \geq 3
\quad \quad \quad \quad x_1 \geq 0
\quad \quad \quad \quad x_3 \leq 0

Remarks.
I. The objective function is linear in vector of variables \(x = (x_1, x_2, x_3, x_4)^T \).
I. The constraints are linear inequalities and linear equations.
I. The last two constraints are special (non-negativity and non-positivity constraints, respectively).
Example of a Linear Program

\[
\begin{align*}
\text{minimize} \ & \ 2x_1 - x_2 + 4x_3 \\
\text{subject to} \ & \ x_1 + x_2 + x_4 \leq 2 \\
& \ 3x_2 - x_3 = 5 \\
& \ x_3 + x_4 \geq 3 \\
& \ x_1 \geq 0 \\
& \ x_3 \leq 0
\end{align*}
\]

Remarks.

- **objective function** is linear in vector of variables \(x = (x_1, x_2, x_3, x_4)^T \)
- **constraints** are linear inequalities and linear equations
- last two constraints are special
 - (non-negativity and non-positivity constraint, respectively)
General Linear Program

minimize $c^T \cdot x = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$

subject to

\begin{align*}
 a_i^T \cdot x &\geq b_i & \text{for } i \in M_1, \quad (2.1) \\
 a_i^T \cdot x &= b_i & \text{for } i \in M_2, \quad (2.2) \\
 a_i^T \cdot x &\leq b_i & \text{for } i \in M_3, \quad (2.3) \\
 x_j &\geq 0 & \text{for } j \in N_1, \quad (2.4) \\
 x_j &\leq 0 & \text{for } j \in N_2, \quad (2.5)
\end{align*}
General Linear Program

\[
\begin{align*}
\text{minimize} & \quad c^T \cdot x \\
\text{subject to} & \quad a_i^T \cdot x \geq b_i \quad \text{for } i \in M_1, \\
& \quad a_i^T \cdot x = b_i \quad \text{for } i \in M_2, \\
& \quad a_i^T \cdot x \leq b_i \quad \text{for } i \in M_3, \\
& \quad x_j \geq 0 \quad \text{for } j \in N_1, \\
& \quad x_j \leq 0 \quad \text{for } j \in N_2,
\end{align*}
\]

with $c \in \mathbb{R}^n$, $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for $i \in M_1 \cup M_2 \cup M_3$ (finite index sets), and $N_1, N_2 \subseteq \{1, \ldots, n\}$ given.
General Linear Program

\[\begin{align*}
\text{minimize} & \quad c^T \cdot x \\
\text{subject to} & \quad a_i^T \cdot x \geq b_i \quad \text{for } i \in M_1, \\
& \quad a_i^T \cdot x = b_i \quad \text{for } i \in M_2, \\
& \quad a_i^T \cdot x \leq b_i \quad \text{for } i \in M_3, \\
& \quad x_j \geq 0 \quad \text{for } j \in N_1, \\
& \quad x_j \leq 0 \quad \text{for } j \in N_2,
\end{align*} \]

where \(c \in \mathbb{R}^n, a_i \in \mathbb{R}^n \) and \(b_i \in \mathbb{R} \) for \(i \in M_1 \cup M_2 \cup M_3 \) (finite index sets), and \(N_1, N_2 \subset \{1, \ldots, n\} \) given.

\(x \in \mathbb{R}^n \) satisfying constraints (2.1) – (2.5) is a feasible solution.
General Linear Program

\[
\begin{align*}
\text{minimize} & \quad c^T \cdot x \\
\text{subject to} & \quad a_i^T \cdot x \geq b_i \quad \text{for } i \in M_1, \\
& \quad a_i^T \cdot x = b_i \quad \text{for } i \in M_2, \\
& \quad a_i^T \cdot x \leq b_i \quad \text{for } i \in M_3, \\
& \quad x_j \geq 0 \quad \text{for } j \in N_1, \\
& \quad x_j \leq 0 \quad \text{for } j \in N_2,
\end{align*}
\]

with \(c \in \mathbb{R}^n, a_i \in \mathbb{R}^n \) and \(b_i \in \mathbb{R} \) for \(i \in M_1 \cup M_2 \cup M_3 \) (finite index sets), and \(N_1, N_2 \subseteq \{1, \ldots, n\} \) given.

- \(x \in \mathbb{R}^n \) satisfying constraints (2.1) – (2.5) is a feasible solution.
- feasible solution \(x^* \) is optimal solution if

\[
c^T \cdot x^* \leq c^T \cdot x \quad \text{for all feasible solutions } x.
\]
General Linear Program

\[
\begin{align*}
\text{minimize} & \quad c^T \cdot x \\
\text{subject to} & \quad a_i^T \cdot x \geq b_i & \quad \text{for } i \in M_1, (2.1) \\
& \quad a_i^T \cdot x = b_i & \quad \text{for } i \in M_2, (2.2) \\
& \quad a_i^T \cdot x \leq b_i & \quad \text{for } i \in M_3, (2.3) \\
& \quad x_j \geq 0 & \quad \text{for } j \in N_1, (2.4) \\
& \quad x_j \leq 0 & \quad \text{for } j \in N_2, (2.5)
\end{align*}
\]

with \(c \in \mathbb{R}^n \), \(a_i \in \mathbb{R}^n \) and \(b_i \in \mathbb{R} \) for \(i \in M_1 \cup M_2 \cup M_3 \) (finite index sets), and \(N_1, N_2 \subseteq \{1, \ldots, n\} \) given.

- \(x \in \mathbb{R}^n \) satisfying constraints (2.1) – (2.5) is a feasible solution.
- feasible solution \(x^* \) is optimal solution if
 \[
 c^T \cdot x^* \leq c^T \cdot x \quad \text{for all feasible solutions } x.
 \]
- linear program is unbounded if, for all \(k \in \mathbb{R} \), there is a feasible solution \(x \in \mathbb{R}^n \) with \(c^T \cdot x \leq k \).