COMP331 /557

Chapter 4:
Duality Theory

(Bertsimas & Tsitsiklis, Chapter 4)
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Example

Goal: Find an upper bound on the optimal solution value z*.

Easy: Any feasible solution provides one.

Examples:
> (x1,x) = (4,5
> (x1,x) = (3,4
> (x1,x) = (2,4
> (x1,x)=1(2,3

minimize

s.t.

IV IV IV IV IV
o Ul NN
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Example

minimize x3  + 2x»

st. X1
X2
—X1 + X2
X1 + X
X1, X2

IV IV IV IV IV

O 1T = NN

— Zz
<—C1
(*CQ
<—C3
(—C4

New goal: Find a lower bound on the optimal solution value.

Examples:

> = z>5
> (G+2 G = z>6
> 3G +2CG =

» 36 -G =
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Example

minimize x3 4+ 2xo —z
s.t. X1 > 2 +— G
xXo > 2 — C2
-1 + x =21 <+ @G
X + x > 5 <G
x1,x2 > 0

|dea: Add non-negative combination p; - C; + po - Co + p3 - C3 + py - C4 of the
constraints, s.t.:

z=x1+2x0>(pr—p3+psa)-x1+(p2+p3+pa) x
>2p+2p2+p3+5ps

Dual Problem:
Find the best such lower bound.



More general

minimize  c¢1x
s.t. axa
a1xi

dm1X1

Consider: p1 GG +p2 G+ -+ + pmCim
Q: What are the conditions on py, ...

+

, Pm so that this combination lower bounds z?7

CnXn
a1nXn
a2nXn

dmnXn

ai1p1+ ap2 + -+ amiPm

ainpp1 + ainp2 + - + amnPm

Q: What lower bound do we get?

P1, P2, - ..

» Pm

ALY,

VIV -

<

IV IA A

by

o

G

Cn
0

— Z
%Cl
(*Cg
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Primal and Dual LP

Primal:, Decision variables X1, oo Xn-
minimize  ¢1x1 .
st. anxy + - +
a1xy + o+
amx1 + -+
X1,
Dual: Decision variables p1, ..., p.
maximize bip;
s.t. aupr + - +
ap1r + +
appr + -0 F

p1, -

CnXn
d1nXn
a2nXn

AmnXn
-3y Xn

bmpm
dm1Pm
am2Pm

dmnPm
> Pm

ALY,

(AVAIAVARE

IAINA

AVAVARREE

b1
bo

(on
© 3

]
(&)

Cn

min ¢’ x

st. Ax >0b
X >0

max b’ p

st. ATp <c
p =0




Primal and Dual Example (1)

Primal:
mn x3 + 2x
st. 21 + xo
—-x1 + 3x
x1  + 4x
X1, X2

Dual:

VIV IV IV

o o= N



Primal and Dual Example (2)

Primal:

Dual:

min
s.t.

3X1
X1

+ 4x
+ 2x

X1, X2

IV IA IV

w
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Primal and Dual Example (3)

Primal:

Dual:

min
s.t.

3X1
X1

+ 4x
+ 2x

X1, X2

VI IV

w



Primal and Dual Linear Program

Consider the general linear program: Obtain a lower bound:

min ¢’ - x max p' b

st. a! x> b for i € My s.t. pi >0 forie My

a;T - x < b for i € Mo pi <0 for i € Ma

ail - x=b for i € Ms pi free for i € M3

xj >0 for j € Nq Al p<qg  forjeM

x; <0 for j € N AJ-T-pch- for j € Ny

x; free for j € N3 AJ-T-p:cJ- for j € N3

The linear program on the right hand side is the dual linear program of the primal linear
program on the left hand side.



Primal and Dual Variables and Constraints

primal LP (minimize)

dual LP (maximize)

> b; >0
constraints < b; <0 variables
= b; free
>0 <g
variables <0 > ¢  constraints

free
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Examples

primal LP dual LP
T .
min ¢’ - x rr;atx ZT _ ,[j c
' S .t =
st. A-x >b p >0
. T .
min ¢ max pT - b

X
st. A-x =b
X

st. AT.p <c
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Basic Properties of the Dual Linear Program

Theorem 4.1.

The dual of the dual LP is the primal LP.

Proof:

Primal in general form:

min ¢

Ty
s.t. a,-T-XZ b;
a,'T-XSb,
a,-T-X—b,
xj = 0
x =0
xj free

Dual:

max p' b
s.t. p;i >0
pi <0
pi free
AJ-T'PS G
AJT'PZ G

forie My
fori € M,
for i € Ms

for j € Nq
for j € N
for j € N3
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Basic Properties of the Dual Linear Program

Proof (cont.):

Dual:

s.t. pi >0 forie M
pi <0 for i € M»
pi free for i € Ms

A-T-pgcj for j € Ny

A-T-chj for j € N,

AJT‘p:Cj for j € N3

Dual (in primal form):

min  —p’ -b
st.  — AJ-T p> =G
_ AJ-T p<—¢
_ AJ-T p=—q
pi >0
pi <0
p; free

for j € Ny
for j € N,
for j € N3
for i e My
for i € M»
fori e M3
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Basic Properties of the Dual Linear Program

Proof (cont.):

Dual (in primal form):

min —p' - b
s.t. —AJ-T~p2—cJ-
—AjT'PS—Cj
—AJT-p:—Cj
pi =0
pi <0

p; free

for j € Ny
for j € Na
for j € N3
fori e My
for i € M»
for i € Ms

Dual of Dual:
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Equavalence of the Dual LP

Theorem 4.2.

Let My and My be two LPs where Iy has been obtained from Iy by (several)
transformations of the following type:

H replace a free variable by the difference of two non-negative variables;

H introduce a slack variable in order to replace an inequality constraint by an
equation;

M if some row of a feasible equality system is a linear combination of the other rows,

eliminate this row.

Then the dual of Ty is equivalent to the dual of I,.
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Weak Duality Theorem

Theorem 4.3.

If x is a feasible solution to the primal LP (minimization problem) and p a feasible
solution to the dual LP (maximization problem), then

cl-x>pT-b.

Corollary 4.4.
Consider a primal-dual pair of linear programs as above.

B If the primal LP is unbounded (i.e., optimal cost = —oc0), then the dual LP is
infeasible.

B If the dual LP is unbounded (i. e., optimal cost = o0), then the primal LP is
infeasible.

If x and p are feasible solutions to the primal and dual LP, resp., and if

cT-x=p" b, then x and p are optimal solutions.
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Strong Duality Theorem

Theorem 4.5.
If an LP has an optimal solution, so does its dual and the optimal costs are equal.
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Different Possibilities for Primal and Dual LP

primal \ dual | finite optimum unbounded infeasible
finite optimum possible impossible  impossible
unbounded impossible impossible possible
infeasible impossible possible possible

Example of infeasible primal and dual LP:

min  x3 +2x»
st. x1+ x=1
2x14+2x =3

max p1+3p
st. pp+2pp=1
p1+2p2 =2
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Complementary Slackness
Consider the following pair of primal and dual LPs:

min ¢’ - x max p' b

st. A-x>b st. pl-A=c’
p=0
If x and p are feasible solutions, then ¢ - x =p’ - A-x > p' - b.Thus,
cT-x:pT-b <~ forall i: p,-:Oifa,-T-x>b,-.

Theorem 4.6.

Consider an arbitrary pair of primal and dual LPs. Let x and p be feasible solutions to
the primal and dual LP, respectively. Then x and p are both optimal if and only if

ui=pi(a;” -x—b))=0 foralli, (1)
vii=(c—p"-A)x=0 forall}. (2)
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Complementary Slackness Example

Consider the following LP in standard form and its dual:

min  13xy + 10x» 4 6x3 max 8p; + 3p>
st. 5x+ x2+3x3=38 st. 5p1 +3p2 <13
3x1+ xo =3 p1+ p2<10
x1,%2,x3 > 0 3p1 <6

Claim: x* = (1,0,1) is a non-degenerate optimal solution to the primal.
Verify this using complementary slackness!



Geometric View

Consider pair of primal and dual LPs with A € R”*" and rank(A) = n:

min ¢’ - x max p'-b
m
st. al -x>bj, i=1,...,m s.t. Zp;-a;:c
i=1
p=>0

Let / C{1,...,m} with |[/| = n and a;, i € I, linearly independent.

= a;' -x=b;, i €1, has unique solution x’ (basic solution)

Let p € R™ (dual vector). Then x, p are optimal solutions if
B a7 - x> b; forall i (primal feasibility)
H p; =0 for all i ¢ I (complementary slackness)
B > 7, pi-a = c (dual feasibility)
p > 0 (dual feasibility)
(ii) and (iii) imply >";c; pi - ai = ¢ which has a unique solution p'.

The a;, i € I, form basis for dual LP and p’ is corresponding basic solution.
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Geometric View (cont.)

NV .
a» j




Dual Variables as Marginal Costs

Consider the primal dual pair:

min ¢! - x max p'-b
st. A-x=b>b s.t. pT-AgcT
x>0

Let x* be optimal basic feasible solution to primal LP with basis B, i.e., x5 = B~! - b
and assume that x5 > 0 (i.e., x* non-degenerate).

Replace b by b+ d. For small d, the basis B remains feasible and optimal:

Bl (b+d)=Bt-b+Bt-d>0 (feasibility)

cl=c"—cg"-B1-A>0 (optimality)

Optimal cost of perturbed problem is

g’ Bl (b+d)=cg’ x5+ (g’ -B71)-d

Thus, p; is the marginal cost per unit increase of b;.



Dual Variables as Shadow Prices

Diet problem:
» ajj := amount of nutrient i in one unit of food j
» b; := requirement of nutrient / in some ideal diet
» ¢ := cost of one unit of food j on the food market

LP duality: Let x;j := number of units of food j in the diet:

min ¢’ -x max p'-b
st. A-x=b st. pl-A<c’
x>0

Dual interpretation:
» p; is “fair’ price per unit of nutrient i
» pT - Ajis value of one unit of food j on the nutrient market

» food j used in ideal diet (Xj‘ > 0) is consistently priced at the two markets (by
complementary slackness)

» ideal diet has the same value on both markets (by strong duality)
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Dual Basic Solutions

Consider LP in standard form with A € R™*", rank(A) = m, and dual LP:

min ¢’ - x max p' -b
st. A-x=b st. pl-A<c’
x>0

Observation 4.7.
A basis B yields
» a primal basic solution given by xg := B~! - b and
» a dual basic solution p” :=cg” - B71.
Moreover,
B the values of the primal and the dual basic solutions are equal:
cBT-xB:cBT‘Bfl‘b:pT-b :
B p is feasible if and only if ¢ > 0;
reduced cost ¢ = 0 corresponds to active dual constraint;

Bl p is degenerate if and only if ¢; = 0 for some non-basic variable x;.




Dual Simplex Method

v

Let B be a basis whose corresponding dual basic solution p is feasible.
If also the primal basic solution x is feasible, then x, p are optimal.
Assume that xg(;) < 0 and consider the /th row of the simplex tableau

(XB(e)s V15 -+ -5 V) (pivot row)

Let j € {1,...,n} with v; < 0 and
§_ .G
\vj] i:v;<0 |V,'|
Performing an iteration of the simplex method with pivot element v; yields new
basis B’ and corresponding dual basic solution p’ with

g’ -BTL-A<cT and p'T-b>pT b (with > if G > 0).

If vi >0 forall i e {1,...,n}, then the dual LP is unbounded and the primal LP is

infeasible.

156



Dual Simplex Example

X1 X2 X3 X4 X5

0 2 6 10 0 0

X4 = 2 -2 4 1 1 0
X5 = - 4 -2 -3 0 1

» Determine pivot row (x5 < 0)
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Dual Simplex Example

X1 X2 X3 X4 X5

0 2 6 10 0 0

X4 = 2 -2 4 1 1 0
- EN e

» Determine pivot row (x5 < 0)

» Find pivot column.
» Column 2 and 3 have negative entries in pivot row.
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Dual Simplex Example

X1 X2 X3 X4 X5

0 2 6 10 0 0

X4 = 2 -2 4 1 1 0
xs=| —1 4 - -3 0 1

» Determine pivot row (x5 < 0)

» Find pivot column.

» Column 2 and 3 have negative entries in pivot row.

» Column 2 attains minimum.
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Dual Simplex Example

X1 X2 X3 X4 X5

0 2 6 10 0 0

X4 = 2 -2 4 1 1 0
x5 =| —1 4 = 3 0 1

» Determine pivot row (x5 < 0)

» Find pivot column.
» Column 2 and 3 have negative entries in pivot row.
» Column 2 attains minimum.

» Perform basis change:

» x5 leaves and x» enters basis.
» Eliminate other entries in the pivot column.
» Divide pivot row by pivot element.
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Dual Simplex Example

X1 X2 X3 X4 X5

-3 14 0 1 0 3

X4 = 2 -2 4 1 1 0
x5 =| —1 4 = 3 0 1

» Determine pivot row (x5 < 0)

» Find pivot column.
» Column 2 and 3 have negative entries in pivot row.
» Column 2 attains minimum.

» Perform basis change:

» x5 leaves and x» enters basis.
» Eliminate other entries in the pivot column.
» Divide pivot row by pivot element.




Dual Simplex Example

X1 X2 X3 X4 X5

-3 14 0 1 0 3

X4 = 0 6 0 -5 1 2
x5 =| —1 4 = 3 0 1

» Determine pivot row (x5 < 0)

» Find pivot column.
» Column 2 and 3 have negative entries in pivot row.
» Column 2 attains minimum.

» Perform basis change:

» x5 leaves and x» enters basis.
» Eliminate other entries in the pivot column.
» Divide pivot row by pivot element.




Dual Simplex Example

X1 X2 X3 X4 X5

-3 14 0 1 0 3

X4 = 0 6 0 -5 1 2
o= | 1/2 | =2 1 3/2 0 —1/2

» Determine pivot row (x5 < 0)

» Find pivot column.

» Column 2 and 3 have negative entries in pivot row.
» Column 2 attains minimum.

» Perform basis change:

» x5 leaves and x» enters basis.

» Eliminate other entries in the pivot column.
» Divide pivot row by pivot element.
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Remarks on the Dual Simplex Method

» Dual simplex method terminates if lexicographic pivoting rule is used:

> Choose any row £ with xg(;) < 0 to be the pivot row.
» Among all columns j with v; < 0 choose the one which is lexicographically
minimal when divided by |v;|.

» Dual simplex method is useful if, e. g., dual basic solution is readily available.

» Example: Resolve LP after right-hand-side b has changed.



	Linear Programming Basics
	The Geometry of Linear Programming
	The Simplex Method
	Duality

