By reduction from QTG. Given an instance of QTG, construct a network congestion game:

- Network is lower left triangle of $n \times n$ grid.
- Source and sink nodes of i:
 - s_i is the i^{th} node in the first column
 - t_i is the i^{th} node in the last row.

In addition add threshold edges (s_i, t_i).

Design latency functions as follows:

- Fix a large integer $D > \sum w_{ij}$
- Threshold edge gets delay $D \cdot (i-1) + T_i$
- Column edges are free
- Row edges have delay $D e$

Delay functions on nodes:

- Node in column i and row j gets delay function of r_{ij} from QTG.

- Now the threshold edge corresponds to S_i^{ext}
 and row-column path corresponds to S_i^{int}

- All other strategies are dominated.

\Rightarrow NE in both games coincide.