Exercise 8:
In this exercise you are completing the proof of Theorem 3.6.
Let \(c(x) = a \cdot x + b \) be a linear function with \(a \geq 0, b \geq 0 \). Let \(0 \leq x_1 \leq x_2 \).

(a) Use the definition of \(c \) to express \(x_1 \cdot (c(x_2) - c(x_1)) \) as a quadratic function in \(x_1 \).

(b) Use calculus to show that for any fixed \(x_2 \) the term \(x_1 \cdot (c(x_2) - c(x_1)) \) is maximised for \(x_1 = \frac{x_2}{2} \).

(c) Use (b) to show that
\[
x_1 \cdot (c(x_2) - c(x_1)) \leq \frac{1}{4} \cdot x_2 \cdot c(x_2).
\]

Exercise 9:
Consider the following refinement of Theorem 3.7:

- Let \(f \) be a Wardrop equilibrium for \((G, r, c)\) and \(f^\star \) a feasible flow for \((G, (1 + \beta)r, c)\) for some \(\beta > 0 \).
 Show an upper bound on \(C(f) \) with respect to \(C(f^\star) \) and \(\beta \).

Hint: Theorem 3.7 gives such a bound for \(\beta = 1 \)