
Covering Games: Approximation through
Non-Cooperation ?

Martin Gairing

Department of Computer Science, University of Liverpool, U.K.
m.gairing@liverpool.ac.uk

Abstract. We propose approximation algorithms under game-theoretic
considerations. We indroduce and study the general covering problem
which is a natural generalization of the well-studied max-n-cover prob-
lem. In the general covering problem, we are given a universal set of
weighted elements E and n collections of subsets of the elements. The
task is to choose one subset from each collection such that the total
weight of their union is as large as possible. In our game-theoretic set-
ting, the choice in each collection is made by an independent player.
For covering an element, the players receive a payoff defined by a non-
increasing utility sharing function. This function defines the fraction that
each covering player receives from the weight of the elements.
We show how to construct a utility sharing function such that every Nash
Equilibrium approximates the optimal solution by a factor of 1− 1

e
. We

also prove that any sequence of unilateral improving steps is polynomially
bounded. This gives rise to a polynomial-time local search approximation
algorithm whose approximation ratio is best possible.

1 Introduction

Motivation and Framework. Large scale distributed systems, like the Inter-
net, usually lack a centralized control authority. Instead, they are operated and
controlled in a distributed fashion by competing entities – modeled as players –
which make their decisions in order to optimize their own private utility. Such
systems are assumed to end up in a Nash equilibrium [21] – a state in which
no player wishes to unilaterally leave her own strategy in order to improve the
value of her private utility. However, Nash equilibria are often suboptimal solu-
tions with respect to the social objective function. The price of anarchy [19] is
a measure for the performance degradation. It is defined as the worst-case ratio
between the values of a social objective function in a Nash equilibrium and in
an optimum solution.

As the designer of a distributed system we are faced with the main challenge
of how to design the distributed system in order to optimize this social objec-
tive function even in the presence of myopic players. However, even if all players
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adhere to some centralized authority, finding the optimum solution with respect
to the social objective might be an NP-hard optimization problem. Approxima-
tion algorithms [25] are a powerful tool for coping with intractable optimization
problems. In general, they compute (in polynomial time) suboptimal solutions
but with a provable performance guarantee. However, approximation algorithms
usually presume a centralized authority. In this paper we propose to consider
approximation algorithms that take the selfish user behavior into account. More
precisely, we propose to design the distributed system in a way that the price
of anarchy is optimized and the system is guaranteed to converge to a Nash
equilibrium in polynomial time.

For our study of such approximation algorithms we consider a very general
covering problem. In covering problems a finite set of elements has to be covered
with subsets of the elements. Such problems arise in many contexts: Cover-
ing problems can be used to model service installation problems in distributed
systems. Moreover, many packing problems and fixed parameter optimization
problems can be modeled as a covering problem (see [14]). A well-studied rep-
resentative is the max-n-cover problem (see e.g. [10, 15]): Given a finite set of
weighted elements E, choose n subsets of the elements (from a given collection
of subsets) such that the total weight of their union is as large as possible. We
consider a generalization of the max-n-cover problem that we call general cov-
ering problem. Here, we are given not 1 but n collections of subsets and we have
to choose one subset from each collection. Although this generalization seems
natural, we are not aware of any previous work on it.

We study the general covering problem as a covering game, where the choice
for the subset in each of the n collections is made by an independent player.
Covering games are a subclass of the congestion games introduced by Rosenthal
[22]. For covering an element, the players receive a payoff defined by a utility
sharing function. This function defines the fraction that each covering player
receives from the weight of the element and depends only on local parameters.
Those parameters are the number of players covering an element and the cardi-
nality of an element (i.e. the number of players that have this element in at least
one of their strategies). We only make two natural assumptions on the utility
sharing function: First, we assume that it is non-increasing in the number of
players covering the element. And second, we want that the payoff to the players
for covering an element does not exceed the weight of the element.

The focus of this paper is to design utility sharing functions, such that:
1. In any Nash equilibrium the total weight of the covered elements is as large

as possible. Or more precisely, the price of anarchy is maximized.
2. A Nash equilibrium is reached in polynomial time.

Obviously, each utility sharing function that fulfills both of this properties gives
rise to a local search approximation algorithm. In fact, we will show that this
approach yields essentially the best possible approximation ratio.

Contribution. In this paper, we introduce and study covering games. Such
games are congestion games that have the general covering problem as underlying
structure.
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In the first part of the paper, we focus on the design of utility sharing func-
tions that maximize the price of anarchy. In particular, we construct a utility
sharing function which achieves a price of anarchy of 1 − 1

e (Theorem 4) and
show that no utility sharing function performs better (Theorem 1). To show this,
we first prove a corresponding result on the price of anarchy, that depends on
the maximum cardinality k of the elements (Theorem 3). Surprisingly, we get
matching bounds for each fixed k. All our results on the price of anarchy hold
for pure and mixed Nash equilibria.

In the second part of the paper, we show how to use our results on the price
of anarchy to construct a local search approximation algorithm for the general
covering problem (Theorem 6), which runs in polynomial time, if the weights of
the elements are polynomially bounded. Our hardness result in Theorem 7 shows
that this restriction on the weights is necessary. For the general case, we also
present a (centralized) approximation algorithm, which is based on LP-rounding
and generalizes an algorithm for MaxSat [13].

Related Work. Congestion games and variants thereof have long been used
to model non-cooperative resource sharing among selfish players. Rosenthal [22]
showed that congestion games always possess pure Nash equilibria. However,
computing such a pure Nash equilibrium is PLS-complete [9]. The price of an-
archy in congestion games has been studied extensively (see e.g. [1, 6, 11, 23]).

The general covering problem is a natural generalization of the well-studied
max-n-cover problem. For the max-n-cover problem, the greedy approach yields
a (1 − 1

e )-approximation [15] and no polynomial time algorithm can do better,
unless NP ⊆ TIME(nO(log logn)) [10] . Applying the greedy approach to our
more general problem guarantees only a 1

2 -approximation. For an overview on
approximation algorithms for covering problems, we refer to [14, Chapter 3].

The MaxSat problem is a special case of the generalized covering problem,
where each of the n collections consists of at most 2 subsets (corresponding
to true/false). The power of local search for approximating MaxSat has been
studied in [2, 18]. MaxSat has also been considered in a game-theoretic setting
as a Sat-game [4, 12], which is itself a special case of our covering games. Bilò
[4] mainly focuses on the expressiveness of Sat-games. Mavronicolas et al. [20]
concentrate on structural properties and complexity questions for a generaliza-
tion of Sat-games, called weighted boolean formula games. Here, each player
controls a set of variables and aims to maximize the total weight of his satisfied
formulas. Giannakos et al. [12] study the price of anarchy (for pure Nash equi-
libria) of Sat-games under different utility sharing functions and point out the
relation to approximation algorithms. Our work generalizes their results in two
perspectives. First, we consider a far more general class of games, and second,
we allow for mixed Nash equilibria. Moreover, in Example 1 we show that their
main result [12, Thm. 5] is incorrect.

Under certain conditions on the utility sharing functions, our games fall in
the class of valid utility games [26]. For such games, Vetta [26] shows that each
Nash equilibrium is a 1

2 -approximation. Our result improves this ratio to 1− 1
e .
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Coordination mechanisms have been introduced in [7] as a notion to improve
the price of anarchy. The idea is to define local policies such that the corre-
sponding price of anarchy is as small as possible. A few other papers follow this
approach, e.g. [3, 5, 16]. Our task of designing utility sharing functions can be
seen as such a coordination mechanism. However, we take the idea of coordina-
tion mechanisms one step further. In the design of our utility sharing function,
the goal is not only to optimize the price of anarchy, but also to ensure that
the system converges to a Nash equilibrium in polynomial time. Azar et al. [3]
pursue a similar approach for the unrelated scheduling problem. However, the
price of anarchy of their best coordination mechanism increases significantly by
requiring a polynomial convergence.

Roadmap. The rest of the paper is organized as follows. In Section 2, we in-
troduce covering games. Section 3 comprises our results on the price of anarchy,
while Section 4 presents our approximation algorithms. We conclude in Section 5.
Due to lack of space, some proofs are omitted.

2 Model

For any two integers l ≤ m, denote [m] = {1, . . . ,m} and [l,m] = {l, . . . ,m}.
For a vector v = (v1, . . . , vn), let v−i = (v1, . . . vi−1, vi+1, . . . vn) and (v−i, v′i) =
(v1, . . . vi−1, v

′
i, vi+1, . . . vn).

The general covering problem. In the general covering problem we are given
a finite set of elements E and a weight function w : E 7→ N that assigns a positive
integer weight we to each element e ∈ E. Moreover, we are given n collections
S1, . . . , Sn of subsets of E where for each i ∈ [n], the collection Si ⊂ 2E is a
subset of the power-set of the elements. Given such an instance our task is to
choose one subset si from each collection Si such that their union ∪i∈[n]si has
maximum total weight, i.e.

∑
e∈∪i∈[n]si

we is maximized.

Covering Games. Each covering game has a general covering problem as an
underlying structure. Here, each of the n collections of subsets is controlled
by a rational player, that is player i ∈ [n] has Si as her strategy set. Denote
S = S1 × . . . × Sn. As for the general covering problem, each element e ∈ E
has a weight we ∈ N. For any subset of the elements E′ ⊆ E denote W (E′) =∑
e∈E′ we. Let W = W (E). For each element e ∈ E denote by ke = |{i ∈ [n] :

e ∈ si for some si ∈ Si}| the cardinality of e which is the number of players that
can possibly cover e. Let k = maxe∈E ke and kmin = mine∈E ke. A covering game
is a Sat-game if |Si| ≤ 2 for all player i ∈ [n]. In this case, elements correspond
to clauses and players correspond to variables which can be set to true or false.

Strategies and Strategy Profiles. A pure strategy for player i is some specific
strategy si ∈ Si, while a mixed strategy Pi = (p(i, si))si∈Si is a a probability
distribution over Si, where p(i, si) denotes the probability that player i chooses
the pure strategy si.

A pure strategy profile is an n-tuple s = (s1, . . . , sn) whereas a mixed strategy
profile P = (P1, . . . , Pn) is represented by an n-tuple of mixed strategies. For a
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mixed strategy profile P, denote by p(s) =
∏
i∈[n] p(i, si) the probability that

the players choose the pure strategy profile s.

Utility Sharing Functions. For each element e ∈ E there is a payoff function
fe that describes how much a player receives for covering e. In this paper we
consider payoff functions that come from a common utility sharing function f .
We want this function to depend only on local parameters. We consider two
different kinds of utility sharing functions:

– A cardinality dependent utility sharing function depends on the number of
players covering an element and the cardinality of the element, i.e. f : [k]×
[k] 7→ N and for all elements e ∈ E and j ∈ [k], fe(j) = f(j, ke) · we.

– A symmetric utility sharing function depends only on the number of players
covering an element, i.e. f : [k] 7→ N and for all elements e ∈ E and j ∈ [k],
fe(j) = f(j) · we.

For both cases we assume that f is non-increasing in the number of players.
Moreover, we assume that f does not overpay the players, i.e. j · f(j) ≤ 1 for
all j ∈ [k] in the symmetric case (and j · f(j, l) ≤ 1 for all j ∈ [l], l ∈ [k] in the
cardinality dependent case).

Load and Player Utilities. For a pure strategy profile s, let δe(s) = |{i ∈ [n] :
e ∈ si}| denote the load on element e ∈ E, i.e. the number of players covering e.

Fix a pure strategy profile s. The utility ui(s) of player i ∈ [n] is defined by
the payoff from the elements she covers. Thus, ui(s) =

∑
e∈si

fe (δe(s)). For a
mixed strategy profile P, the utility of player i ∈ [n] is ui(P) =

∑
s∈S p(s) ·ui(s).

Social Utility. Fix a pure strategy profile s. Denote by Es the subset of elements
that are covered by at least one player in s, i.e. Es = {e ∈ E : δe(s) > 0}. The
social utility in s is the total weight W (Es) of the covered elements. We abuse
notation and denote this value also as W (s). For a mixed strategy profile P the
social utility W (P) =

∑
s∈S p(s) ·W (Es) is the expected total weight of the cov-

ered elements. Throughout denote by s∗ a pure strategy profile that maximizes
the total weight of the covered elements, thus, s∗ = arg maxs∈SW (Es).

Nash Equilibria and Potential Function. A mixed strategy profile P is a
Nash equilibrium if and only if no player can increase her utility by unilaterally
changing her strategy, that is, ui(P) ≥ ui(P−i, si) for all i ∈ [n] and si ∈ Si.
Depending on the type of strategy profile we distinguish between pure and mixed
Nash equilibria. Given a pure strategy profile s, a selfish step of player i ∈ [n] is
a deviation to a strategy profile (s−i, s′i) where ui(s−i, s′i) > ui(s), that is player
i increases her utility.

For covering games, Rosenthal’s [22] exact potential function Φ implies the
existence of a pure Nash equilibrium. For every pure strategy profile s, the po-
tential Φ(s) is defined by Φ(s) =

∑
e∈E

∑δe(s)
i=1 fe(i). If a player performs a selfish

step and increases her utility by ∆, then Φ(s) also increases by ∆.

Price of Anarchy. Let G(k) be the class of covering games where ke ≤ k for
all e ∈ E. Fix a utility sharing function f . The Price of Anarchy for f , denoted
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by PoAf , is the infinium, over all instances Γ ∈ G(k) and Nash equilibria P, of
the ratio W (P)

W (s∗) . Thus, PoAf (k) = infΓ∈G(k),P
W (P)
W (s∗) . Similarly, define PoAf by

dropping the restriction on k.

3 Price of Anarchy Results

In this section, we study the price of anarchy for different utility sharing func-
tions. We start with an upper bound that holds for all utility sharing functions.

Theorem 1. Consider the class of covering games G(k) with unweighted ele-
ments. Then, PoAf (k) ≤ 1− 1

1
(k−1)(k−1)!+

P
j∈[0,k−1]

1
j!
.

This holds (a) for every cardinality dependent utility sharing function f , (b)
even for Sat-games, if we restrict ourselves to symmetric utility sharing func-
tions f .

Proof. We start by proving part (b). Given the maximum cardinality k ∈ N,
define a Sat-game as follows. For simplicity of description, we borrow the rep-
resentation from [8] which makes use of an game graph G: Elements correspond
to nodes and players correspond to arcs. We allow arcs to be self loops indicat-
ing that the corresponding player has only one strategy. Every other player has
exactly two strategies, namely choosing one or the other of her adjacent nodes.

The game graph is a tree which is constructed as follows: The tree consists
of k + 1 levels. We let level 0 denote the root level. At the root we have one
self-loop and the root has k− 1 children. Furthermore, every (non-root) node at
level i ∈ [k] has k − i children. Figure 1 depicts our construction for k = 4.

Denote by Ej the set of elements at level j ∈ [0, k]. By construction, |E0| = 1
and for each j ∈ [k], |Ej | = (k − 1) · (k−1)!

(k−j)! .

Fig. 1. The game graph for k = 4

Let s denote the strategy profile in Γ (k) where each player chooses the ele-
ment which is closer to the root. Similarly, let s∗ be the profile where players use
the elements further away from the root. It is easy to see that s is a pure Nash
equilibrium for any utility sharing function that only depends on the number of
players covering the element. In particular, for any such function, each player
would receive the same payoff by switching to her alternative strategy. More-
over, for each level j ∈ [0, k] and element e ∈ Ej , the profile s assigns exactly
δe(s) = k − j players to element e. So,

W (Es) =
∑

j∈[0,k−1]

|Ej | = 1 +
∑

j∈[k−1]

(k − 1) · (k − 1)!
(k − j)!
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On the other hand, in s∗ there is exactly one player assigned to each element.
So,

W (Es∗) =
∑
j∈[0,k]

|Ej | = 1 +
∑
j∈[k]

(k − 1) · (k − 1)!
(k − j)!

It follows that

PoAf (k) ≤ W (Es)
W (Es∗)

=
1 +

∑
j∈[k−1](k − 1) · (k−1)!

(k−j)!

1 +
∑
j∈[k](k − 1) · (k−1)!

(k−j)!

= 1− 1
1

(k−1)(k−1)! +
∑
j∈[0,k−1]

1
j!

.

This finishes the proof of part (b).
For part (a) we modify our instance such that ke = k for all e ∈ E. For such

instances there is no difference between symmetric and cardinality dependent
utility sharing functions. We will add additional (single element) strategies to
the strategy sets of the players. This is done in a way such that s is still a Nash
equilibrium and s∗ still covers all elements.

For all levels j ∈ [2, k], consider an arbitrary circular ordering of the elements
in Ej . For each player i ∈ [n], denote by ei the element that i covers in s∗. If
ei ∈ Ej for some j ∈ [2, k] then add the next j − 1 elements – that follow ei in
the ordering of Ej – as single element strategies to Si. Observe that |Si| = j+ 1
afterwards. If we do this for all players i ∈ [n] then we end up with an instance
where s is still a Nash equilibrium and ke = k for all e ∈ E. This finishes the
proof of part (a). ut

For Sat-games Giannakos et al. [12, Thm. 5] claim that using the cardinality
dependent utility sharing function defined by f(1, l) = 1 and f(j, l) = 1

2(l−1) for
j ≥ 2 achieves a price of anarchy of 2

3 . The following example shows that this
does not hold:

Example 1. Given the maximum cardinality k, define a Sat-game with k players
and k+1 elements. We have we = 1 for all e ∈ [k−1] and wk = wk+1 = 2(k−1).
Each player i ∈ [k − 1] can either cover element i or element k, while player k
can choose between the elements k and k + 1.

Let s be the strategy profile where each players i ∈ [k] covers element i. It’s not
hard to see that s is a Nash equilibrium with W (Es) = 3(k − 1). On the other
hand there is a strategy profile s∗ (where only element 1 is not covered) with
W (s∗) = 5(k−1)−1. For k ≥ 4, this stands in conflict to the claim in [12, Thm.
5]; and for k →∞, we might only cover 3

5 of the optimum total weight. In fact,
we believe that our upper bound in Theorem 1 holds also for Sat-games with
cardinality dependent utility sharing functions.
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We proceed by introducing a parameter χf of the utility sharing function f .
This parameter is a measure on how fast the utility sharing function decreases.
We will use χf in Theorem 2 to prove a general lower bound on the price of
anarchy that depends on χf .

Definition 1. Given a cardinality dependent utility sharing function f , define
χf as the minimum value such that for all cardinalities l ∈ [k] we have

j · f(j, l)− f(min{j + 1, l}, l) ≤ χf · f(1, l) for all j ∈ [l].

Theorem 2. Consider the class of covering games G(k). Let f be a cardinality
dependent utility sharing function, where αmin = minl∈[k] f(1, l) and αmax =
maxl∈[k] f(1, l). Then, PoAf(k) ≥ 1

χf +1 ·
αmin
αmax

.

Proof. Let P be an arbitrary mixed Nash equilibrium and s∗ be an optimum
pure strategy profile. Since P is a Nash equilibrium, it follows that ui(P) −
ui(P−i, s∗i ) ≥ 0 for all player i ∈ [n]. So,

0 ≤
∑
i∈[n]

ui(P)−
∑
i∈[n]

ui(P−i, s∗i ) =
∑
s∈S

p(s)

∑
i∈[n]

ui(s)−
∑
i∈[n]

ui(s−i, s∗i )

 (1)

By definition of player utility, for any pure strategy profile s,∑
i∈[n]

ui(s) =
∑
i∈[n]

∑
e∈si

fe(δe(s)) =
∑
e∈E

δe(s) · fe(δe(s)) =
∑
j∈[k]

∑
e∈Es,

δe(s)=j

j · fe(j). (2)

Moreover,∑
i∈[n]

ui(s−i, s∗i ) =
∑
i∈[n]

∑
e∈s∗i

fe(δe(s−i, s∗i )) ≥
∑
i∈[n]

∑
e∈s∗i

fe(min{ke, δe(s) + 1})

≥
∑
e∈Es∗

fe(min{ke, δe(s) + 1}) =
k∑
j=0

∑
e∈Es∗ ,

δe(s)=j

fe(min{ke, j + 1}) (3)

where the first inequality follows since fe is a non-increasing function and the
second inequality follows since δe(s∗) ≥ 1 for all e ∈ Es∗ .
So, for any pure strategy profile s, (2) and (3) imply:∑
i∈[n]

ui(s)−
∑
i∈[n]

ui(s−i, s∗i )

≤
∑
j∈[k]

∑
e∈Es,

δe(s)=j

j · fe(j)−
k∑
j=0

∑
e∈Es∗ ,

δe(s)=j

fe(min{ke, j + 1})

=
∑
j∈[k]

∑
e∈Es,

δe(s)=j

j · fe(j)−
∑
j∈[k]

∑
e∈Es∗ ,

δe(s)=j

fe(min{ke, j + 1})−
∑

e∈Es∗\Es

fe(1)



Covering Games: Approximation through Non-Cooperation 9

=
∑
j∈[k]

∑
e∈Es\Es∗ ,

δe(s)=j

jfe(j) +
∑
j∈[k]

∑
e∈Es∗ ,

δe(s)=j

[jfe(j)− fe(min{ke, j + 1})]−
∑

e∈Es∗\Es

fe(1)

By Definition 1 and the fact that fe is non-increasing, we have j · fe(j) ≤
(χf + 1)fe(1) for all e ∈ E and j ∈ [ke]. Using this and Definition 1, we get:∑

i∈[n]

ui(s)−
∑
i∈[n]

ui(s−i, s∗i )

≤
∑
j∈[k]

∑
e∈Es\Es∗ ,

δe(s)=j

(χf + 1) · fe(1) +
∑
j∈[k]

∑
e∈Es∗ ,

δe(s)=j

χf · fe(1)−
∑

e∈Es∗\Es

fe(1)

=
∑

e∈Es\Es∗

(χf + 1) · fe(1) +
∑

e∈Es∗∩Es

χf · fe(1)−
∑

e∈Es∗\Es

fe(1)

=
∑

e∈Es\Es∗

(χf + 1) · fe(1) +
∑

e∈Es∗∩Es

(χf + 1) · fe(1)−
∑
e∈Es∗

fe(1)

≤ (χf + 1) · αmax ·W (Es)− αmin ·W (Es∗).

With (1) we get 0 ≤
∑

s∈S p(s) ((χf + 1) · αmax ·W (Es)− αmin ·W (Es∗)) =
(χf + 1) · αmax ·

∑
s∈S p(s) ·W (Es) − αmin ·W (Es∗). Rearranging terms yields

W (P)
W (s∗) =

P
s∈S p(s)·W (Es)

W (Es∗ )
≥ αmin

(χf +1)·αmax
. The theorem follows since P is an arbi-

trary Nash equilibrium. ut

In the following, we construct a utility sharing function such that the corre-
sponding lower bound in Theorem 2 is maximized. Observe, that χf is indepen-
dent of the values for αmin and αmax. So, without loss of generality, we can restrict
our attention to a symmetric utility sharing function f , where αmin = αmax. Our
task is to construct a symmetric utility sharing function that solves the following
optimization problem:

minimize χ (4)
subject to j · f(j)− f(j + 1) ≤ χ · f(1) ∀j ∈ [k − 1]

(k − 1)f(k) ≤ χ · f(1)

Replacing ”≤” with ”=” yields a homogeneous system of linear equations. The
values for χ and the utility sharing function f in the following theorem corre-
spond to the solution of this system where f(1) = 1.

Theorem 3. Given k we can construct a symmetric utility sharing function f ,
such that PoAf (k) ≥ 1− 1

1
(k−1)(k−1)!+

Pk−1
i=0

1
i!
.

Proof. Given k, let f be the symmetric utility sharing function defined by

f(j) = (j − 1)!
1

(k−1)(k−1)! +
∑k−1
i=j

1
i!

1
(k−1)(k−1)! +

∑k−1
i=1

1
i!

for all j ∈ [k]. (5)
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It is not hard to check that f is a valid utility sharing function, i.e. f is non-
increasing and j ·f(j) ≤ 1 for all j. Moreover, f satisfies the constraints in (4) for
χ = 1

1
(k−1)(k−1)!+

Pk−1
i=1

1
i!

. Recall that αmin = αmax for symmetric utility sharing

functions. The claim follows by applying Theorem 2. ut
In order to construct the utility sharing function f in Theorem 3 we need to

know the maximum cardinality k over all elements. However, since the value for
χ from the proof of Theorem 3 is increasing with k, we can get the same lower
bound if each element e ∈ E is only aware of her own cardinality ke. For this
case, the cardinality dependent utility sharing function is defined by replacing k
with ke in (5). This implies:

Corollary 1. There exists a cardinality dependent utility sharing function f ,
such that PoAf (k) ≥ 1− 1

1
(k−1)(k−1)!+

Pk−1
i=0

1
i!
.

Observe that the lower bounds on the price of anarchy in Theorem 3 and Corol-
lary 1 match exactly the upper bound in Theorem 1.

There might also be cases where we want to use a utility sharing function
that works for all k. For example, neither k is known a priori nor the elements
can determine their own cardinality. For such cases, we get:

Theorem 4. There exists a symmetric utility sharing function f with PoAf (k) ≥
1− 1

e ,which works for arbitrary k.

Proof. This follows by applying Theorem 3 for k → ∞. In this case, f reduces
to f(j) = (j−1)!

e−1

[
e−

∑j−1
i=0

1
i!

]
for all j ∈ N,and χ = 1

e−1 . ut

We close this section with an alternative lower bound on the price of anarchy
that depends on the maximum dimension dmax = maxi∈[n] |Si| over all players
and the minimum cardinality of an element kmin. For certain cases (e.g. if kmin >
dmax) this is better than the bound in Theorem 4.

Theorem 5. Consider the class of covering games G where ke ≥ kmin for all
elements e ∈ E and dmax = maxi∈[n] |Si|. Let f be a cardinality dependent utility
sharing function with f(1, l) = 1 for all cardinalities l ∈ [k]. Then, PoAf (G) ≥

kmin
dmax−1+kmin

.

Proof. Let P be an arbitrary (mixed) Nash equilibrium and s∗ be an optimum
pure strategy profile. Since P is a Nash equilibrium we have ui(P) ≥ ui(P−i, s′i)
for all i ∈ [n] and all s′i ∈ Si. By summing up over all players i ∈ [n] and all
strategies s′i ∈ Si \ {si}, we get

0 ≤
∑
i∈[n]

∑
s′i∈Si\{si}

ui(P)−
∑
i∈[n]

∑
s′i∈Si\{si}

ui(P−i, s′i)

=
∑
i∈[n]

∑
s′i∈Si\{si}

∑
s∈S

p(s) · ui(s)−
∑
i∈[n]

∑
s′i∈Si\{si}

∑
s∈S

p(s) · ui(s−i, s′i)

=
∑
s∈S

p(s) ·

∑
i∈[n]

∑
s′i∈Si\{si}

ui(s)−
∑
i∈[n]

∑
s′i∈Si\{si}

ui(s−i, s′i)

 (6)
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Now, for any pure strategy profile s, we have∑
i∈[n]

∑
s′i∈Si\{si}

ui(s)−
∑
i∈[n]

∑
s′i∈Si\{si}

ui(s−i, s′i)

=
∑
i∈[n]

(di − 1)
∑
e∈si

fe(δe(s))−
∑
i∈[n]

∑
s′i∈Si\{si}

∑
e∈s′i

fe(δe(s−i, s′i))

≤ (dmax − 1)
∑
e∈Es

δe(s) · fe(δe(s))−
∑
i∈[n]

∑
s′i∈Si\{si}

∑
e∈s′

i
,

e∈Es∗\Es

fe(δe(s−i, s′i))

≤ (dmax − 1)
∑
e∈Es

we −
∑
i∈[n]

∑
s′i∈Si\{si}

∑
e∈s′

i
,

e∈Es∗\Es

fe(1)

= (dmax − 1)
∑
e∈Es

we −
∑

e∈Es∗\Es

ke · fe(1)

= (dmax − 1)
∑
e∈Es

we −
∑

e∈Es∗\Es

ke · we

≤ (dmax − 1) ·W (Es)− kmin ·W (Es∗ \ Es)
≤ (dmax − 1 + kmin) ·W (Es)− kmin ·W (Es∗) . (7)

By combining (6) and (7) we get

W (P)
W (s∗)

=
∑

s∈S p(s) ·W (Es)
W (Es∗)

≥ kmin

dmax − 1 + kmin
.

The theorem follows since P is an arbitrary Nash equilibrium. ut

4 Approximation Algorithm

In the previous section, we have shown results on the price of anarchy for covering
games. In this section, we want to use those results to construct a distributed,
local-search approximation algorithm for the covering problem.

The idea of the algorithm is simple:

– Choose an appropriate utility sharing function,
– start with an arbitrary strategy profile, and
– let the players unilaterally perform selfish steps until a pure Nash equilibrium

is reached.

The approximation ratio is the price of anarchy for the chosen utility sharing
function. Rosenthal’s potential function [22] can be used to bound the number
of selfish step until a pure Nash equilibrium is reached. Unfortunately, the utility
sharing functions in Theorem 3 and Theorem 4 do not provide a sub-exponential
bound on the number of selfish steps, since the increase in the potential due to
a single selfish step can be arbitrary small.
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To overcome this, we will design a new symmetric utility sharing function f ,
where for each element e ∈ E the players receive strictly positive payoff only if
at most a constant number k′ of players cover this element, i.e. f(j) = 0 for all
j > k′.

We will show that the right choice of f yields a (1 − 1
e − ε)-approximation

algorithm, where ε = ε(k′) = o(1).

Theorem 6. For every constant ε > 0 there exists a local-search approximation
algorithm with approximation ratio (1− 1

e−ε) that uses at most O( 1
ε ·log log 1

ε )·W
selfish steps.

Proof. Let k′ ∈ N be some positive integer (to be determined later) and construct
f as a solution to the following optimization problem:

minimize χ (8)
subject to j · f(j)− f(j + 1) ≤ χ · f(1) ∀j ∈ [k′ − 1]

k′ · f(k′) ≤ χ · f(1)

For the solution of the corresponding homogeneous system of linear equations

with f(1) = 1 we get: f(j) = (j − 1)!
Pk′

i=j
1
i!Pk′

i=1
1
i!

for all j ∈ [k′] and f(j) = 0 for

j > k′. It is not hard to check that f is a valid utility sharing function, i.e. f is
non-increasing and j · f(j) ≤ 1 for all j.

Observe, that f(1) = 1, k′ · f(k′) = 1Pk′
i=1

1
i!

and f(j + 1) = j!
Pk′

i=j
1
i!−

1
j!Pk′

i=1
1
i!

=

j ·f(j)− 1Pk′
i=1

1
i!

.Thus, f satisfies the constraints in (8) for χ = 1Pk′
i=1

1
i!

. Applying

Theorem 2 yields

PoAf ≥ 1− 1∑k′

i=0
1
i!

= 1− 1
e
− ε(k′),

where ε(k′) = 1Pk′
i=0

1
i!
− 1

e =
P∞

i=k′+1
1
i!

e·
Pk′

i=0
1
i!

=
P∞

i=k′+1
k′!
i!

e·
Pk′

i=0
k′!
i!

= Θ( 1
(k′+1)! ). So for every

constant ε we choose k′ = Θ
(

log( 1
ε )

log log( 1
ε )

)
. We will now bound the maximum num-

ber of selfish steps. To do so, we will first show an upper bound on Rosenthal’s
potential function Φ(s). Afterwards, we show a lower bound on the increase in
Φ due to a selfish step. For any pure strategy profile s we have

Φ(s) =
∑
e∈E

δe(s)∑
i=1

fe(i) ≤
∑
e∈E

k′∑
i=1

fe(i) ≤
∑
e∈E

k′∑
i=1

1
i
· we = H(k′) ·W,

where H(k′) is the harmonic number of order k′.
Recall, that we ∈ N for all e ∈ E. Moreover, for all j ∈ [k′], f(j) is an integer

multiple of 1Pk′
i=1

k′!
i!

. To see this multiply the enumerator and denominator by

k′! and observe that both become integer. So if a player improves, then she
improves by at least 1Pk′

i=1
k′!
i!

. Using the property of Rosenthal’s exact potential
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function (cf. Sec. 2), it follows that each selfish step increases Φ by at least
1Pk′

i=1
k′!
i!

= 1
b(e−1)k′!c . So the number of selfish steps is upper bounded by b(e −

1)k′!c ·H(k′) ·W = O(k′! · log k′) ·W = O( 1
ε · log log 1

ε ) ·W . ut
Theorem 6 implies a polynomial time (1 − 1

e − ε)-approximation algorithm
for the case that the total weight W is polynomially bounded. This includes
the important case of unweighted elements, where we = 1 for all e ∈ E. In
the following theorem we show that this restriction on W is necessary, since for
arbitrary weights the problem of computing a pure Nash equilibrium is PLS-
complete (see [17] for an introduction to the complexity class PLS).

Theorem 7. Consider the class of covering games with arbitrary weights. Then,
for every symmetric utility sharing function with f(1) > f(2), it is PLS-complete
to compute a pure Nash equilibrium. This holds even for Sat-games.

Proof. We reduce from MaxCut [24]: Given an undirected graphG = (V (G), E(G))
with non-negative edge weights. Find a partition of V (G) into two subsets L and
R such that the total weight of edges between L and R cannot be increased by
flipping a single node.

Given an instance of MaxCut we construct an instance of the covering game
as follows: Each node u ∈ V (G) corresponds to a player u. For each edge (u, v) ∈
E(G) of weight w we introduce two elements eL(u,v) and eR(u,v) with weight w. Each
player u has strategy set Su = {Lu, Ru} where Lu = {eL(u,v) : (u, v) ∈ E(G)} and
Ru = {eR(u,v) : (u, v) ∈ E(G)}. A player u choosing Lu (resp. Ru) corresponds to
assigning node u to L (resp. R). It is not hard to see that if a player improves her
payoff by ∆ by unilaterally changing her strategy, then the total weight of the
corresponding cut increases by ∆

f(1)−f(2) , and vice versa. The claim follows. ut

In the following we discuss an alternative approach for approximating the
general covering problem which works for arbitrary weights. This approach is a
generalization of the corresponding algorithm for MaxSat from [13] (see [25,
Chapter 16.3] for a textbook description) which is based on LP-rounding.

For the following integer program representation of the general covering prob-
lem, we introduce two sets of indicator variables. For each element e ∈ E we have
a variable ze ∈ {0, 1} that can only be set to 1 if e is covered at least once. More-
over, for each player i and strategy si ∈ Si, we have a variable yi,si

∈ {0, 1} which
is 1 if player i chooses strategy si.

maximize
∑
e∈E

we · ze (9)

subject to
∑
i∈[n]

∑
si∈Si:
e∈si

yi,si
≥ ze ∀e ∈ E

∑
si∈Si

yi,si
= 1 ∀i ∈ [n]

ze ∈ {0, 1} ∀e ∈ E
yi,si ∈ {0, 1} ∀i ∈ [n], si ∈ Si
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For the general case, we present a (centralized) approximation algorithm, which
is based on LP-rounding and generalizes an algorithm for MaxSat [13].

Theorem 8. There exists a (centralized) polynomial-time (1− 1
e )-approximation

algorithm for the general covering problem.

Proof. Consider the LP-relaxation of (9) where the z and y variables can hold
arbitrary values between 0 and 1.

The algorithm is simple: Solve the LP-relaxation, denote z∗, y∗ as the opti-
mum solution. Let player i choose strategy si with probability y∗i,si

.
Fix an element e ∈ E. For each player i ∈ [n], denote yie =

∑
si∈Si:e∈si

yi,si
.

Then the probability that e is covered in y∗ is

1−
∏
i∈[n]

(1− yie) ≥ 1−

(∑
i∈[n]:yie>0(1− yie)

ke

)ke

≥ 1−
(

1− z∗e
ke

)ke

≥ 1−
(

1
e

)z∗e
≥
(

1− 1
e

)
· z∗e .

Here, the first inequality uses the arithmetic-geometric mean inequality, the sec-
ond inequality uses the constraint on ze from the LP, the third inequality is a
standard property of e, and the last inequality follows by concavity.

It follows that the expected total weight of the covered elements is lower
bounded by

∑
e∈E

(
1− 1

e

)
· z∗e · we =

(
1− 1

e

)
· OPT∗,

where OPT∗ is the value of the solution to the LP-relaxation, which is at least
the value of an optimum integral solution. The algorithm can be derandomized
via method of conditional expectation [25, Chapter 16.2]. The claim follows. ut

5 Conclusion

In this paper we use game theoretic concepts for the design of new local search
approximation algorithms for a very general covering problem. Our approach is
to design player payoff functions that minimize the price of anarchy and guaran-
tee that any sequence of unilateral improvements by the players is of polynomial
length. For the covering problem this yields essentially the best possible approx-
imation ratio.
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For future work, we propose to study how far such ideas can be utilized to get
new local search approximation algorithms also for other interesting optimiza-
tion problems. Certainly, our approach will not always yield the best possible
approximation ratio. This gives rise to the new interesting concept of selfish ap-
proximation ratio, i.e. the best possible approximation ratio that can be achieved
by selfish players.
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