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Motivation – Organising social tags semantically

• Social tagging: Users sharing resources –
create “keyword” descriptions –
terminology of a social group / a domain

• “Folksonomy [social tags] is the result of 
personal free tagging of pages and objects 
for one’s own retrieval” (Thomas Vander Wal, 2007)

• Issues: 
• Plain (no relations among tags)

• Noisy and ambiguous, thus not useful to 
support information retrieval and 
recommendation. Social tags for movie “Forrest Gump” in MovieLens

https://movielens.org/movies/356



Research aim: from social tagging data to knowledge 

Researcher generated data
(user-tag-resource)

Useful knowledge structures,
i.e. broader-narrower relations and hierarchies

http://www.micheltriana.com/blog/2012/01/20/ontology-whathttp://www.bibsonomy.org/tag/knowledge



Challenges

• Not enough contextual information. 
• The effective pattern-based approaches (Hearst, 1992; Wu et al., 2012) are not applicable.

• Sparse: low frequency.
• The co-occurrence based approaches (see review in García-Silva et al., 2012, Dong et al., 2015, and the 

features used in Rêgo et al., 2015) are not suitable.

• Tags are ambiguous, noisy.
• Data cleaning (Dong et al., 2017).
• Many tags do not match to lexical resources as WordNet or Wikipedia (Andrews & 

Pane, 2013; Chen, Feng & Liu, 2014).

We need special data representation techniques to characterise the 
complex meaning of tags.



Types and issues of current methods

• Heuristics (Co-occurrence) based methods (set inclusion, graph centrality and association rule) 
are based on co-occurrence, does not formally define semantic relations (García-Silva et al., 2012).

• Semantic grounding methods (matching tags to lexical resources) suffer from the low coverage of 
words and senses in the relatively static lexical resources (Andrews & Pane, 2013; Chen, Feng & Liu, 2014).

• Machine learning methods: (i) unsupervised methods could not discriminate among broader-
narrower, related and parallel relations (Zhou et al., 2007); (ii) supervised methods so far based on data 
co-occurrence features (Rêgo et al., 2015). 

• We proposed a new supervised method, binary classification founded on a set of assumptions 
using probabilistic topic models.



Supervised learning based on Probabilistic Topic Modeling
Binary classification: input two tag concepts, output whether they have a 
subsumption (broader-narrower) relation. There are 14 features.



Data Representation
• Probabilistic Topic Modelling, Latent Dirichlet Allocation (Blei et al, 2003), to infer the hidden topics in the 

“Bag-of-Tags”. Then we represented each tag as a probability distribution on the hidden topics.

• Input: Bag-of-tags (resources) as documents

• Output: p(word | topic), p(topic | document)

,where C is a tag concept, z is a topic and N is the occurrences.



Assumptions and Feature Generation
• Assumptions: Topic similarity, Topic distribution, Probabilistic association

• Assumption 1 (Topic Similarity) Tags that have a broader-narrower relations 
must be similar to each other to some extent (Wang et al., 2009).

For the generalised Jaccard Index,



• Assumption 2 (Topic Distribution): A broader concept should have a topic distribution spanning 
over more dimensions; while the narrower concept should span over less dimensions within 
those of the broader concept.

is the significant topic set for 
the concept 𝐶𝑎.

is the whole topic set.

is a probability threshold, 0.1 here.



• Assumption 3 (Probabilistic Association) For two tag concepts having a broader-
narrower relation, they should have a strong association with each other, modelled 
with conditional and joint probability.



Data preparation

• Social tagging data - Full Bibsonomy data from 2005 to July 2015.
• Concepts extracted through grouping the tag variants together (Dong et al., 2017).

• Removed resources with less than 3 tag tokens: 7,458 tag concepts and 128,782 publication 
resources.

• Semantic source - “2015-10” for instance labelling. 
• Selected 6 categories, 

• Ml (Category:Machine learning), 

• SW (Category:Semantic Web),  

• Sip (Category:Social information processing), 

• Dm (Category:Data mining), 

• Nlp (Category:Natural language processing), 

• IoT (Category:Internet of Things)

• 1065 data instances
• 355 positive instances, 

• 710 negative instances = 355 reversed negative + 355 random negative



Data Cleaning and Concept Extraction

Using user frequency and edited distance to group word forms.

Image in Dong, H., Wang, W., & Coenen, F. (2017). Deriving Dynamic Knowledge from Academic Social 

Tagging Data: A Novel Research Direction. In iConference 2017 Proceedings (pp. 661-666). 
https://doi.org/10.9776/17313



Tag grounding for instance labelling 

DBpedia concept pairs Matched tag concept pairs (positive data)
http://dbpedia.org/page/Category:Machine_learning



Classification and Testing

• Baselines: 
• Topic similarity with “Information Theory Principle for Concept Relationship” in the study by 

Wang et al. (2009), equivalent to the feature set S1.

• Co-occurrence based features (support, confidence, cosine similarity, inclusion and 
generalisation degree, mutual overlapping and taxonomy search) in the study by Rêgo et al. 
(2015), denoted as the feature set S4.

• Training 80%, testing 20%. 

• Parameters C and  for SVM Gaussian Kernel (Hsu, 2003) were tuned with 10-fold cross-
validation on the training data.

• For using Latent Dirichlet Allocation to generate features, we set 
• the topic-word hyperparameter  as 50/|z|, 

• the document-topic hyperparameter  as 0.01, 

• the number of topic |z| as 600, empirically selected based on the perplexity measure.



Classification Results

Classifiers: Logistic Regression (LR), SVM 
Gaussian Kernels (SVM), and Weighted-
SVM (C+/C- = 2) (Veropoulos et al., 1999).

S1: Topic Similarity Features (Wang et al., 2009)

S2: Topic Distribution Based Features

S3: Probabilistic Association Features

S4: Co-occurrence Features (Rêgo et al., 2015)



Examples of the learned relations



Conclusion and Future Studies

• Relation extraction from social tags as a supervised learning problem.

• A novel method to derive domain independent features to learn broad-narrower relation. Three 
assumptions, including Topic similarity, Topic distribution, Probabilistic association, help capture 
tag relations based on human cognitive processing of information.

• Future studies:

• Heterogeneous Knowledge Bases for tag grounding and instance labelling.

• Knowledge Base Enrichment: identify new relations to enrich KBs.

• Deep learning approaches: neural network architectures for relation extraction.
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